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An Anytime Algorithm for Chance Constrained Stochastic Shortest
Path Problems and Its Application to Aircraft Routing

Sungkweon Hong1, Sang Uk Lee1, Xin Huang1, Majid Khonji2, Rashid Alyassi2, Brian C. Williams1

Abstract— Aircraft routing problem is a crucial component
for flight automation. Despite recent successes, challenges still
remain when the environment is dynamic and uncertain. In
this paper, we tackle the following two challenges. First, when
the environment is uncertain, it is much safer if the route
planner can guarantee a specified level of safety. Second, when
the environment is dynamic, the planner needs to adapt to
the changes in the environment quickly. To address these
challenges, we present three contributions. First, we propose
formulating the aircraft routing problem under a dynamic
and uncertain environment as a chance constrained stochastic
shortest path (CC-SSP) problem. Second, we introduce an
anytime algorithm for the CC-SSP problem, which is effective in
a dynamic environment with limited planning time. To be more
specific, we present two versions of the algorithm and compare
their performances. Third, we show that the algorithm can be
generalized to solve a larger class of problems called chance
constrained partially observable Markov decision process (CC-
POMDP).

I. INTRODUCTION

Recent advances in robotics and automation have made
autonomous flight navigation possible. Flight route planning
is a crucial component for autonomous flight navigation. The
goal of flight route planning is to find a path (Fig. 1a) or a
policy (Fig. 1b) that takes the plane from the start location to
the goal location. A good route planning system would not
only make the flight safer [1], but also minimize flight delays
and revenue loss for airlines [2]. During route planning, we
need to take the navigation environment into account. For
example, we might want a route that avoids the region with
convective weather, because the atmospheric status in the
region might make the flight highly unstable.

In fact, similar problems arise in many other application
domains frequently. For example, a Mars rover exploring a
given territory might want to avoid regions with high slip
to avoid getting stuck in sand [3], [4]. Autonomous cars
might want to avoid entering certain streets due to extreme
traffic congestion [5], [6], or lanes occupied by other agents
to maintain safety [7].

The route planning problem is nontrivial when the environ-
ment is dynamic and uncertain. For example, in autonomous
flight navigation, the regions of convective weather drift
frequently, and models that can anticipate how it would
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drift are highly inaccurate. This is because the atmospheric
status of a region is affected by many factors, and the
dynamics of weather forecast is highly nonlinear [8]. In
fact, similar problems arise for autonomous cars trying to
avoid streets with extreme traffic congestion, because it is
extremely difficult to have an accurate model that anticipates
traffic congestion [9].

(a) Path (b) Policy

Fig. 1: An example route planning problem, in which the
goal is to find a path (a) or a policy (b) to the goal location
that avoids region with convective weather denoted in the
shaded area.

Traditionally, the route planning problem has been for-
mulated as a shortest path problem. Works in [10], [11]
have used Dijkstra or A* algorithm to solve the problem,
which are only suitable for a simple environment. In order
to account for a dynamically changing environment, works
in [12], [13] have developed variants of A* algorithm.
However, they had not considered the stochastic behavior
of the environment. In order to consider uncertainty, some
works formulated the route planning problem as a stochastic
shortest path (SSP) problem and computed a policy that
would take the agent, such as a plane, to the goal [14], [15].

However, the previous works that have formulated the
routing problem as a SSP problem had the following issues.
First, they do not have a guarantee on how well the planned
policy would avoid the regions with convective weather [14],
[15]. In the SSP problem, a policy that never enters the
undesirable regions is unrealistic and highly inefficient due
to uncertainty. The previous works tried to steer the agent
away from the undesirable regions by adding an extra cost
term that penalizes the plan entering the region, which does
not provide a guarantee on the performance. In safety-critical
tasks such as aircraft routing, it might be more desirable to
have a policy with a strict guarantee. Second, the previous



works are not suitable in dynamic environments, in which the
route planner would keep receiving updates on the changes
in the environment [14], [15]. This requires the planner to
compute a new policy fast enough based on the updated
environment. The previous works, however, take a long time
to compute an updated policy, and thus are not suitable in
real time applications.

In this paper, we propose an anytime algorithm to address
the route planning problem under dynamic and uncertain
environments with a performance guarantee. We provide
three main contributions. First, we formulate the routing
problem as a chance constrained stochastic shortest path
(CC-SSP) problem. Compared to the previously introduced
SSP problem formulation, the CC-SSP problem formula-
tion guarantees the planned policy to avoid entering the
undesirable regions with a certain performance level as a
probability that can be specified by the user. For instance,
we can specify that the planned policy has to avoid entering
the undesirable regions with at least 95% probability in
the CC-SSP formulation. Second, we propose an anytime
algorithm to find an optimal deterministic policy for the
CC-SSP problem. An anytime algorithm has two properties:
i) it outputs an initial feasible policy very fast and ii) it
computes an optimal policy given enough time by iteratively
improving the initial policy. The anytime property is highly
desirable when the environment is dynamic – When the
route planner needs to compute for a new policy due to
a changed environment, an anytime algorithm first outputs
an initial policy fast so that the agent can start following.
Then, as time permits, the policy would keep getting better
until it converges to the optimal. Third, we show that the
proposed algorithm can be applied to a more general set
of problems called chance constrained partially observable
Markov decision process (CC-POMDP) [16]–[18] with only
small modifications. This would make our algorithm useful
for problems other than the route planning problem.

We would like to further emphasize the third contribution.
In fact, to the author’s knowledge, no existing algorithms
for CC-POMDP achieved the anytime property. A work in
[16] introduced an algorithm called RAO*, which computes
for a solution for CC-POMDP problem fast, but without the
guarantee on the optimality of the solution. In [17], the CC-
POMDP problem is formulated as a mixed integer linear
programming (MILP) problem and solved through MILP
solvers. Though the MILP-based solution for CC-POMDP
problems is optimal, it takes a long time to compute and
is not applicable in real time systems. Several works have
solved for a relaxed problem that allows the computed policy
to be stochastic [19]–[21]. As a result, the stochastic policy
would steer the plane based on some probability distribution
over possible actions. Such random behavior is not desirable
in safety-critical scenarios. This motivates us to generate
a deterministic policy, which is considered to be a more
difficult problem, as pointed out in [17], [22].

This paper is organized as follows. In Section II, we
provide some backgrounds. The problem formulation of the
route planning problem as a CC-SSP problem and its anytime

algorithm is presented in Section III. In Section IV, we
present our experimental results. The paper is concluded in
Section V.

II. BACKGROUNDS

A. Stochastic Shortest Path Problem

A SSP is a tuple P = 〈S,A, T, C, s0, G,H〉 [23] in which
S is a set of discrete states; A is a set of discrete actions;
T : S×A×S → [0, 1] is the state transition function, where
T (s, a, s′) = Pr(s′|s, a) is the probability of being in state
s′ after executing action a in state s; C : S ×A → R is the
cost function, where C(s, a) is the cost of executing action
a in state s; s0 is the initial state; G ⊂ S is a set of goal
states; H is a planning horizon.

A policy π is defined as a mapping from state and time
step to an action, i.e., π(s, k) = a. Then, the problem of
the SSP is to find an optimal policy π∗ that minimizes the
expected cost up to a fixed horizon H , i.e.,

π∗ = argmin
π∈Π

E

[
H−1∑
k=0

C(sk, ak)

∣∣∣∣s0, π

]
, (1)

where Π is a set of all policies and C(s, a) is an augmented
cost function which is defined as follows:

C(sk, a) =

{
C(sk, a), if k < H − 1,

C(sk, a) + hV (sk+1), if k = H − 1,

where hV (·) is an admissible heuristic function. Note that
hV (·) can be set as 0 when it is not available.

B. AND/OR Heuristic Forward Search

A SSP can be represented as a tree [24]1 that can be solved
by an AND/OR heuristic forward search methods such as
AO* [25], [26]. The root node of the tree is the pair (s0, 0)
where s0 is the initial state and 0 is the initial time step.
Starting from the root, the tree interleaves OR node and
AND node. Each OR node is represented as a pair (s, k) that
can choose from different actions. On the other hand, each
AND node is represented as a triplet (s, a, k) that expands
all possible transitions by applying the action a from s. The
terminal nodes are the OR-nodes with a goal state or at the
planning horizon, i.e., (s, k) such that s ∈ G or k = H .

A policy of a SSP is a sub-tree with (s0, 0) as the
root node, in which each OR-node activates one of its
children and each AND-node activates all of its children,
recursively. The value of a policy can be computed by
backward induction from the terminal nodes. The value of the
terminal nodes are equal to heuristic function value hV (s),
i.e., V (s, k) = hV (s) if s ∈ G or k = H . Then the
value of an AND-node that has children as OR-nodes can be
computed by a weighted sum of children values as follows:

V (s, a, k) =
∑
s′∈S

Pr(s′|s, a) · V (s′, k + 1). (2)

1In general, a SSP can be represented as a graph if two nodes from
different ancestors coincide. In this paper, we assume that this does not occur
for simplicity. Our method can also be applied to the graph representation
with simple modifications, as we intend to show in future work.



The value of an OR-node is set as equal to its child AND-
node, based on the choice of the action. Using the backward
induction in this way, the value of the V (s0, 0) can be
computed as the value of the policy.

To find an optimal policy, the AO* algorithm starts from
the root node and alternates between two main steps: expan-
sion and backup. In the expansion step, it expands one of
the tip nodes in the current best policy. In the backup step,
it updates values for the expanded node and its ancestors
with the backward induction. For each backup step, different
actions are evaluated, and the best actions with minimal
expected cost are marked for the OR-nodes. The new best
policy is then updated by following the marked actions from
the root node. Finally, the algorithm terminates when all
the tip nodes in the current best policy are terminal nodes.
This method guarantees optimality, given that the heuristic
function is admissible, similar to the A* algorithm [26].

C. Chance Constraint

Chance constrained approach has been widely studied
in various domains including operations research, motion
planning, control, to name a few [3], [27], [28]. One of
the major advantages of the chance constrained approach
over the others, such as the penalty-based method [14], is
that the user can define the level of safety guarantees and
thus systematically balance the efficiency and the risk by
specifying the probability of success of the plan.

Within the SSP framework, the useful notion of chance
constraint was introduced in [16], [29]. Given a set of
constrained states S ⊂ S, the execution risk er is defined
as the risk of violating a constraint when following a policy
π up to horizon H from the initial state s0. It is defined
formally as follows:

er(s0|π) = 1− Pr

(
H∧
i=0

Sai = 1

∣∣∣∣s0, π

)
, (3)

where Sai is a Bernoulli random variable with value 1, when
an agent has not violated constraints at time i. Then we can
enforce the chance constraint with the following constraint:

er(s0|π) ≤ ∆, (4)

where ∆ is a user-specific parameter for allowable risk.

III. DYNAMIC ROUTING UNDER
CONVECTIVE WEATHER CONDITIONS

Commercial flight operation is based on a flight plan,
which designates procedures and air routes the flight should
follow to accomplish its flight task [30]. However, there are
several situations where an aircraft has to deviate from the
flight plan. One of the most common such situations is when
there is a convective weather cell around the planned route
of the flight.

Due to the uncertainty in weather forecast, air traffic con-
trollers tend to give conservative alternative path guidance for
safety, which usually results in loss of efficiency. To balance
safety and efficiency, there have been several research efforts

to systematically generate alternatives given weather forecast
[14], [31]. Although those efforts enable air traffic controllers
and/or flight crews to find more efficient alternatives while
maintaining safety, the methods are not able to specify the
level of safety, which is crucial in air traffic management
[32].

In this section, we provide an alternative model for the
aircraft routing problem under probabilistic weather forecast
which specifies the level of safety as a chance constraint.

A. Problem Description
The problem of aircraft routing under convective weather

conditions is explained with the exemplary scenario shown
in Fig. 2, in which an aircraft plans to travel from its
current position to the goal waypoint. There are predefined
waypoints that aircraft can navigate which are shown with
triangle markers in Fig. 2. In addition, there is a weather cell
shown with a red polygon in the figure which drifts by time
stochastically.

Fig. 2: An exemplary aircraft routing scenario under convec-
tive weather condition. The waypoints are denoted as triangle
markers, and a stochastic weather cell is dentoed in red. The
initial and goal waypoints are marked respectively.

The described aircraft routing problem can be modeled as
CC-SSP as follows.

1) State Space S: A state is defined as a tuple, including
aircraft position and heading, and position of a con-
vective weather cell. The positions of an aircraft are
limited to waypoints defined in the airspace of interest.

2) Action Space A: Available actions for a state includes
every movements to adjacent waypoints that are reach-
able from the current aircraft position and heading.

3) State Transition Function T : State transitions consist of
transition for an aircraft and a convective weather cell.
Since the magnitude of navigational error is negligible
in comparison with the magnitude of stochasticity in
the weather forecast, we assume the state transition
of an aircraft is deterministic. The transition of the
weather cell depends on the prediction and the dura-
tion. We discretize the weather prediction with cardinal
directions to provide discrete state transitions.

4) Cost Function C: The cost function is proportional to
the length of the flight segment given an action applied
in a certain state.



5) Set of Constrained States S: A set of constrained states
consists of the states where an aircraft position is
within a weather cell.

The initial state s0, goal state G, horizon H , heuristic cost
function hV and the risk bound parameter ∆ are problem
specific. Hence, they will be described in the experimental
results section.

Finally, we want to find a policy for the aircraft from its
current waypoint to the goal waypoint which minimizes cost
function

f(π) = E

[
H−1∑
k=0

C(sk, ak)

∣∣∣∣s0, π

]
(5)

while maintaining the risk of entering the convective weather
cell less than or equal to ∆ by satisfying the constraint

g(π) = er(s0|π)−∆ ≤ 0. (6)

B. Anytime Algorithms

In this section, we provide two anytime algorithms for a
CC-SSP.

1) k-best Enumeration: A proposed k-best enumeration
method finds an optimal deterministic chance constrained
policy with two successive stages. In the first stage, the
method uses AO* to find an optimal solution π∗ with respect
to the modified cost function which is defined as follows:

f(π) = f(π) + λ · g(π), (7)

where λ is a sufficiently large positive constant. By optimiz-
ing Eq. (7), we can find a conservative but feasible solution.

In the second stage, the method takes as input the first
solution π∗ then finds k-best solutions in terms of the modi-
fied cost function in Eq. (7). Suppose the k-th solution found
during the second stage is the first solution which violates the
chance constraint in Eq. (6). Then, it is guaranteed that the
current incumbent solution is an optimal chance constrained
solution with respect to the original problem.

The proposed algorithm has its importance especially in
risk-sensitive online planning applications such as aircraft
routing. In the first stage of the algorithm, it finds a con-
servative but safe policy first to enable an agent to safely
execute a mission. On the other hand, in the second stage,
the method keeps updating the solution that enables an agent
to navigate more efficiently given extra planning time.

The algorithm is outlined in Algorithm 1. The inputs are
the initial solution π∗, the lower (LB) and upper bounds
(UB) of the original cost values, where they are initialized as
the modified cost function value of the initial solution f(π∗)
and the original cost function value of the initial solution
f(π∗), respectively. The algorithm returns immediately in
the following two cases. First, if the initial solution is
infeasible (g(π∗) > 0), the problem is infeasible. Second, if
LB = UB, π∗ becomes a true optimal solution. Otherwise,
the algorithm iteratively finds the next best solution until
the termination condition LB ≥ UB is satisfied. Note that
fk and fk are the modified and the original cost function
values of the k-th best policy, respectively. Hence the first

Algorithm 1: Anytime Algorithm for CC-SSP
Input: π∗, LB,UB

1 if g(π∗) > 0 then
2 return infeasible

3 else if LB = UB then
4 π∗ ← π∗

5 return π∗

6 else
7 k = 1,Ψ = {π∗} and Γ = {}
8 while True do
9 if LB ≥ UB then

10 π∗ ← π∗

11 return π∗

12 else
13 k ← k + 1

14 (πk, fk, fk, gk),Ψ,Γ←
Next-Best-Policy(k, Ψ,Γ)

15 LB ← fk
16 if gk ≤ 0 and fk < UB then
17 UB ← fk and π∗ ← πk

Algorithm 2: Next-Best-Policy
Input: index k, best policies set Ψ, candidates set Γ

1 for (s, k) ∈ πk−1 do
2 Ā = {}
3 for πi ∈ Ψ do
4 if πroot

i ((s, k)) = πroot
k−1((s, k)) then

5 Ā ← Ā ∪ {πi((s, k))}

6 A′((s, k))← A((s, k))\Ā
7 Run AO* with A′((s, k)) to compute πspur((s, k))
8 Join πroot

k−1((s, k)) and πspur((s, k)) to compute
πnew, f new, fnew and gnew

9 Γ← Γ ∪ {(πnew, f new, fnew, gnew)}
10 (πk, fk, fk, gk)← pop(Γ)
11 Ψ← Ψ ∪ {πk}
12 return (πk, fk, fk, gk),Ψ,Γ

time LB ≥ UB is satisfied is the time when we found the
first solution which violates the chance constraint in Eq. (6).

The crucial part of the second stage is finding the k-
th best solution given a set of (k − 1)-best solutions. We
extend the Yen’s algorithm [33], which is summarized in
the Algorithm 2. Let Ψ is a set of (k − 1)-best policies
and Γ is a set of candidate policies that we found so far.
Note that Γ is a priority queue sorted by the modified cost
function value f(π). The algorithm starts with the last best
policy πk−1 ∈ Ψ, and updates Γ by including the deviated
policies from πk−1. To find each deviation, it selects an OR
node (s, k) in πk−1 and collects all the actions that have
already been selected at (s, k) from the policies in Ψ with
the same root policy, i.e., πroot

i ((s, k)) = πroot
k−1((s, k)). Note



(a) The process starts with two
initial solutions π− and π+.

(b) Update π− if πnew is feasible. (c) Update π+ if πnew is infeasi-
ble.

(d) The process is terminated if
λnew is unchanged.

Fig. 3: Graphical explanation of the process of solving Lagrangian dual problem.

that πroot
i ((s, k)) = πi\πspur

i ((s, k)) where πspur
i ((s, k)) is

a sub-policy of πi starting with (s, k). Then it runs AO*
by excluding the actions previously taken from any policy
with the same root policy to find a deviated sub-policy
πspur((s, k)) starting at node (s, k). Then a new candidate
can be generated by joining πroot

k−1((s, k)) and πspur((s, k)).
After generating all the candidates from πk−1, the next k-th
best policy can be obtained by selecting the best policy from
the candidates set with respect to the modified cost function
value.

2) Lagrangian Dual Based Enumeration: Although k-best
enumeration method enables us to find an optimal solution
in an anytime fashion, there are several limitations. First,
the initial solution tends to overly conservative with a large
constant λ. Second, the algorithm has to search all of the
feasible solutions in the second stage before the termination
condition is satisfied. To overcome these limitations, we
propose to modify the k-best enumeration method based on
a Lagrangian dual method.

In the first stage, instead of taking λ as a large constant
as in Eq. (7), we consider λ as a variable, which is in fact a
Lagrangian variable λ, i.e.,

f(π, λ) = f(π) + λ · g(π). (8)

Then we solve the following:

λ∗ = arg max
λ≥0

[
min
π∈Π

f(π, λ)
]
. (9)

Ep. (9) is known as Lagrangian dual problem and we can
solve for an associated policy πd which is feasible unless
the problem is infeasible [34].

Given πd, the Algorithm 1 remains the same except that
π∗, LB and UB are initialized as πd, f(πd, λ∗) and f(πd),
respectively. Also fk is now f(πk, λ

∗), where πk is k-th best
solution.

Although solving a Lagrangian dual problem in Eq. (9)
is not as simple as optimizing Eq. (7), there are a wide
variety of methods available. In particular, since Eq. (8) is
a Lagrangian function with a single Lagrangian variable,
Eq. (9) can be efficiently solved with bisection-like method
as proposed in [35], which is illustrated in Fig. 3. As shown
in Fig. 3a, we start with two initial solutions π+ and π−,
which can be found by minimizing Eq. (8) with λ = 0 and
λ = M , respectively, where M is a large constant. Note
that, if π− is infeasible, then the problem is infeasible. Given

π+ and π− and their corresponding function and constraint
values f+, g+, f− and g−, we update λ as the intersection of
two solutions, i.e., (f−−f+)/(g+−g−). Then we solve for
π by minimizing Eq. (8) with updated λ. New π can be either
feasible or infeasible, which result in updating π− (Fig. 3b)
or π+ (Fig. 3c), respectively. By iterating this process, we
can finally find the λ∗ and corresponding feasible solution
πd (Fig. 3d).

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results to
validate the proposed method for the aircraft routing problem
under convective weather conditions. In addition, we show
the potential application of the proposed method to a more
general class of problems by applying it to a CC-POMDP
problem.

A. Aircraft Routing Under Convective Weather Condition

The configuration of the airspace and the weather con-
dition are shown in Fig. 2, which also shows the initial
state of the problem. The goal is a set of states where
the aircraft is located at the goal waypoint. In addition, the
euclidean distance was used as an admissible cost heuristic.
The convective weather cell drifts stochastically, with the
distribution shown in Table I.

dx/dt dy/dt Prob.
-0.2 0 0.8
-0.2 -0.2 0.1
0 -0.2 0.1

TABLE I: Probability distribution of weather cell drift.

The proposed Lagrangian dual based enumeration method
is compared with the penalty based method which is used in
[14]. Instead of having chance constraint, the penalty based
method adds a penalty term to the cost function if a state
violates a constraint. Note that this is mathematically equiv-
alent to finding an optimal solution based on Eq. (7) with
some fixed λ. For each method, 500 number of simulations
have been conducted, where the planning and execution are
interleaved with planning horizon 6. For every simulations,
the chance constraint probability ∆ was set as 0.2.

Table II summarizes the experimental results. The second
column shows the λ values for the penalty based method.
The third and the fourth columns show the percentage of the



cases with constraint violations and the average accumulated
cost until the goal is reached, respectively. As shown in
the table, the penalty based method could obtain better cost
than the proposed method in cases where λ = 0.8, 1.2. In
those cases, however, the method weighted cost term much
more than the risk term, which results in higher failure
rates compared to the desired chance constraint probability
0.2. With λ = 1.5, 1.8, the penalty based method failed
less than 20% of the time, but the costs were higher than
the proposed method. This result shows that the proposed
method could outperform penalty based method in both
safety and efficiency. Moreover, the λ value has to be
heuristically selected for the penalty based method, which
takes extra effort, but it is not an issue for our method.

λ Failure Rate Avg. Cost

Penalty Method

0.8 88.0% 5.82
1.2 46.0% 6.02
1.5 18.0% 6.20
1.8 12.0% 6.21

Lagrangian Method 10.0% 6.13

TABLE II: Summary of experimental results of aircraft
routing under convective weather condition.

In addition to the overall experimental results, Fig. 4
presents an ablation study on the anytime solution histories
between the k-best and Lagrangian dual based enumera-
tion methods, visualized in blue circles and red squares,
respectively. As shown in the figure, the convergence rate of
the Lagrangian dual based enumeration method was much
faster than the k-best enumeration, which demonstrates the
advantage of the proposed method empirically.

Fig. 4: k-best vs. Lagrangian dual based enumeration, in
terms of cost history evolved over time.

B. CC-POMDP Benchmark

Although the proposed algorithm was applied to the CC-
SSP problem, the algorithm can be applied to a more general
class of problems that can be represented as AND/OR tree,
such as chance constrained partially observable Markov de-
cision process (CC-POMDP) [16], [17], [24]. To demonstrate
the application of the proposed algorithm for CC-POMDP,
we used Paint Problem which is a publicly available bench-
mark problem in pomdp.org. To modify the Paint Problem
as chance constrained problem, we define the constraints as
a set of states where an agent ships a part with fault or
rejects a part without fault. For the demonstration purpose,

we compared the proposed method with MILP based method
which is one of the state-of-the-arts proposed in [17]. Note,
the MILP was solved using CPLEX 12.9

Table III summarizes the evaluation results. The first two
columns show the planning horizon and the chance constraint
probability of each case. For each case, we show the results
for both the proposed algorithm and a MILP method. For
the baseline method, optimal value and computation time in
seconds are reported. The computation time includes both
time for expanding the tree and the CPLEX solving time,
and the time-out was set to 7200 seconds.

Dual based enumeration method MILP

H ∆
< 5% < 1% val. tMILP (s)val. (opt gap) t/tMILP val. (opt gap) t/tMILP

9 0.1 1.08 (2.42%) 0.65 - - 1.10 11.34
0.2 1.25 (4.62%) 0.46 1.30 (0.79%) 0.51 1.31 17.65

10 0.1 1.14 (4.59%) 0.35 1.18 (0.65%) 0.37 1.19 170.25
0.2 1.42 (0.40%) 0.30 1.42 (0.40%) 0.30 1.42 181.55

11 0.1 1.24 (3.52%) 0.57 1.28 (0.79%) 0.58 1.29 1042.94
0.2 1.50 (2.01%) 0.48 1.52 (0.38%) 0.48 1.53 1219.72

TABLE III: Evaluation results of our proposed method
compared to a MILP-based method.

Similarly, for the proposed algorithm, the value of the
solution and computation time are presented. To show the
anytime history, two different solutions are summarized,
which obtain 5%, and 1% optimality gaps, respectively. The
optimality gap is indicated in the parenthesis next to the
value of the solution, and computation time is shown as a
proportion to the MILP computation time, to demonstrate the
speeding up of our algorithm. The time-out was set as the
baseline computation time, and a “-” sign in a cell indicates
a time-out.

As shown in the table, the proposed algorithm could
obtain a near-optimal solution, with a less than 5% (< 5%)
optimality gap, much faster than the MILP-based method in
all problem settings. The proposed algorithm could improve
the solutions with a less than 1% (< 1%) optimality gap
with only marginal additional time for most of the cases. The
results show that even the MILP based method is exact and
optimal, the proposed method can benefit by finding anytime
solutions especially with time limited planning domains.

V. CONCLUSION

In this paper, we proposed formulating the aircraft routing
problem under a dynamic and uncertain environment as a
CC-SSP problem. The CC-SSP formulation is useful in risk-
sensitive uncertain environments, because it can guarantee
a specified level of safety. Next, we introduced an anytime
algorithm for the CC-SSP formulation, which is effective in
a dynamic environment with limited planning time. Finally,
we generalized the algorithm to a larger class of problem
called CC-POMDP.

Future efforts could focus on explaining how fast the initial
solution converges in the anytime algorithm. Although our
experimental results show the fast convergence rate of the
algorithm empirically, we expect a theoretical analysis on
the convergence rate can be useful in many applications.
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