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Abstract— The process of learning a manipulation task de-
pends strongly on the action space used for exploration: posed
in the incorrect action space, solving a task with reinforcement
learning can be drastically inefficient. Additionally, similar
tasks or instances of the same task family impose latent
manifold constraints on the most effective action space: the
task family can be best solved with actions in a manifold of
the entire action space of the robot. Combining these insights
we present LASER, a method to learn latent action spaces for
efficient reinforcement learning. LASER factorizes the learning
problem into two sub-problems, namely action space learning
and policy learning in the new action space. It leverages data
from similar manipulation task instances, either from an offline
expert or online during policy learning, and learns from these
trajectories a mapping from the original to a latent action
space. LASER is trained as a variational encoder-decoder
model to map raw actions into a disentangled latent action
space while maintaining action reconstruction and latent space
dynamic consistency. We evaluate LASER on two contact-rich
robotic tasks in simulation, and analyze the benefit of policy
learning in the generated latent action space. We show improved
sample efficiency compared to the original action space from
better alignment of the action space to the task space, as we
observe with visualizations of the learned action space manifold.
Additional details: pair.toronto.edu/laser

I. INTRODUCTION

Deep Reinforcement Learning (RL) has fueled rapid
progress in robot manipulation by enabling learning of closed
loop visuomotor control policies that integrate perception
and control in a single system [1]. However, the focus of
end-to-end policy learning has been on the complexity of
the observation (or state) space, while the decision space
parameterization that affords efficient learning has been less
studied. The best action space to learn continuous control of
a robotic task depends on its specific characteristics [2].

Consider the task of opening a door with unknown swing
radius (kinematics) and torsion spring (dynamics). The agent
must discover that the task progresses in a particular manifold
of the action space, while yanking the arm up or down or
flailing around has no value, as illustrated in Fig. 1. This form
of reasoning is necessary to perform many similar everyday
tasks and arguably forms the basis of efficient generalization.
However, a generic RL agent’s policy is often trained in raw
actuation spaces, such as joint angles or torques, discarding
the latent structure in the manipulation task or task-family.

We can model the solution of a sensorimotor control task (a
policy), without loss of generality, as a function π(o) : O →
A which maps observations o ∈ O to control commands
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Fig. 1: Learning Latent action spaces for efficient reinforcement
learning. Manipulation tasks, such as opening a door, are often
structured and do not require exploration in the entire action space,
only on certain manifold. LASER learns this action space manifold
from data, either offline (expert) or online (training with LASER),
enabling faster learning in subsequent novel instances of the task
by transferring the knowledge via an efficient latent action space.

a ∈ A in the low-level action space that are sent to the
robot’s actuators. Inspired by prior work [3], we propose to
factorize the original problem into two sub-problems: first,
learning a mapping g(o) : O → Ā from observations to
actions in a new space of reference signals provided by
a robot controller; and second, using the robot controller
f(ā) : Ā → A to map from reference signals to actuation
commands. The combined control law becomes a = f ◦ g(o),
where ā ∈ Ā is an abstract action providing a reference
signal to be tracked by the mapping, f(·). In contrast to
prior works, we propose to learn the new action space (and
the controller mapping to robot’s actuation commands) from
the robot’s experiences on similar tasks. As a result, the
original hard policy learning problem, π(·), is factorized into
two coupled, simpler problems: 1) finding a suitable action
representation (i.e., defining the mapping between this space
and the original low-level action space, f ), and 2) finding
the mapping between observations and actions in this new
latent representation space, g.
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In this work we propose an algorithmic approach to learn a
Latent Action Space for Efficient exploration in Reinforcement
learning (LASER) in a data-driven manner. LASER learns
from a set of task instances an optimal action space to be used
in all instances of the task. Then, LASER’s learned action
space accelerates posterior training processes in previously
seen task instances by encoding implicit structure of the task
in an efficient latent action representation.

LASER is trained as a encoder-decoder model that learns
to map the manifold of low-level control inputs (in our
experiments, joint positions and joint torques) to a latent
action space. To this end, in LASER latent spaces we enforce
controllability (coverage of required raw controls for a task
or task family), as well as dynamical consistency across
states (same action in similar states has similar effect). We
experiment with two LASER variants: learning iteratively
while policy learning (online), and learning from batch data
generated by an expert policy (offline). We evaluate these
LASER variants in two manipulation tasks and observe
in both the online and offline settings that the learned
action space accelerates training of new task instances. We
also analyze the learned action space and observe that the
dimensions are disentangled and well aligned with the task
semantics.

Summary of contributions:
1) We present LASER, an algorithmic approach to learning
efficient latent action spaces from off-policy or online actions
of an expert to accelerate posterior training of unseen tasks,
2) We compare learning efficiency with RL in original
action space with LASER learned action space, and observe
that the learned action space by LASER provides marked
improvements in subsequent learning iterations, indicating a
transference of information between tasks.
3) We evaluate different variants of the LASER framework
including state conditional reconstruction as well as varia-
tional reconstruction in two manipulation tasks in simulation,
and find that the learned action spaces correlate clearly to
the dimensions of the task space,

II. RELATED WORK

Robot control literature has multiple analytical maps f(·)
(controllers) to transform action spaces (such as joint space)
to task spaces (such as end effector position, velocity and
acceleration) [4, 5, 6, 7]. Prior work has shown that the
choice of action space, often based on sophisticated analytical
mappings, affects policy learning [3, 8] and proposed action
space abstractions that facilitated learning of different families
of tasks [3, 9, 10, 11, 12]. However, the choice of an optimal
action space given a task family is unclear a priori. For
instance, in a tennis swing, it is important to control position,
velocity, and possibly the acceleration of the end-effector [13],
while in a surface-to-surface alignment task, minimizing the
moment around a contact is important for robustness [14].
In this work, we propose an autonomous data-driven method
to infer a latent action space better suited for learning from
experiences on similar tasks.

Data-driven discovery of (near-)optimal action abstractions
for efficient RL has been scarcely studied as an alternative
to human-derived analytical controllers. Only the discovery
of temporal action abstractions (options) have received
significant attention, both in hierarchical control and option
learning framework [15, 16, 17, 18, 19, 20, 21, 22]. However,
temporal action abstraction is orthogonal to the underlying
action space and can be applied to LASER as well, and is,
therefore, not the focus of this study.

Some very recent works have explored learning abstractions
for action spaces. Some of them [23, 24] proposed to learn an
equivalent latent full Markov decision process (MDP) of the
original problem where reinforcement learning (RL) is easier.
We only learn a transformation of the action space, without
needing to learn the dynamics model. Chandak et al. [25]
learn a continuous manifold to embed discrete actions based
on the similarity of their effects. In the new continuous action
space, the learning process is faster because the solution can
make use of the expected correlated outcomes of close-by
discrete actions. We map between two continuous action
spaces for robot control. Similarly to us, Losey et al. [26]
learn a new action space as a manifold within the original
low-level action space. However, their method is not suited to
facilitate policy learning but to simplify human teleoperation.

The work we present here is connected to meta-learning,
where the objective is to transfer knowledge from similar tasks
when training on a novel instance of the task [27, 28, 29].
These methods use a policy to transfer information between
tasks; on the other hand, we propose to use a learned action
space as medium for this knowledge transfer, indicating an
alternative form of meta-learning.

III. PROBLEM FORMULATION

We formulate our continuous-control robot tasks as discrete-
time Markov Decision Processes defined by the tuple M =
(S,A, T ,R, γ). Here, s ∈ S ⊂ Rn is the state space, a ∈
A ⊂ Rm is the action space, T (s′|s, a) is the state transition
model characterizing the probability of transitioning to state
s′ from taking action a in state s, r = R(s) ∈ R is a state
reward function, and γ ∈ [0, 1) is the discount factor. The
goal of a RL agent is to learn an action selection policy
π : S → A that maximizes the discounted sum of rewards
from any state s as Jt =

∑∞
k=0 γ

krt [30].
Following the formalism of van der Pol et al. [24], we

assume we can lift the original MDP, M = (S,A, T ,R, γ),
into a new MDP with latent action space, M̄ =
(S, Ā, T̄ ,R, γ), where ā ∈ Ā is the latent action space and
T̄ (s′|s, ā) is the latent dynamics model. We assume there
exists some optimal mapping, f : Ā → L, where L ⊂ A,
satisfies the property that for any task in the given task family,
there exists some sequence of control actions, a ∈ L, that is
optimal for solving the task, so that RL exploration within
the space L is more efficient for solving unseen tasks within
the given task family compared to RL exploration in A.

The latent MDP can thus be viewed as an abstraction of
the original MDP such that f maps latent actions, ā ∈ Ā, to
control actions, a ∈ A. The insight here is that, acting within
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Fig. 2: LASER Overview: We train a latent action space Ā using
batches of tuples (s, a, s′). These batches come from a previously
generated dataset (LASER offline) or from a dynamically generated
replay buffer (LASER online). Actions are used in an encoder-
decoder architecture with reconstruction loss, Lrec . The encoder’s
Gaussian prediction, (µ, σ), is regularized via the KL loss LKL.
The robot components of state, s, and next state, s′, and the latent
actions are used to train a latent state transition model, T , with
a dynamics loss, Ldyn . In the LASER online variant, this process
alternates with policy learning that generates new tuples to add to
the dataset (replay buffer), and uses the actor loss, Lactor . The policy
generates actions in the latent action space, Ā, that are decoded
into robot’s original action space. Gradients updates from the actor
loss propagate also through and are applied to online LASER’s
decoder during policy updates. The learned LASER action space Ā
accelerates subsequent training for new instances of the task.

this subset of the original action space prevents exploration
of actions that would never be optimal for solving those
tasks. Using this insight, the goal of LASER is to learn the
transformation, f , that maps latent actions to actions in the
original action space, allowing any task within the given task
family to be solved efficiently.

Assuming that LASER has found an optimal mapping, f ,
from the latent action space to the original action space, a
RL policy π : S → Ā would be able to explore the optimal
region of the original action space by acting in the latent
action space of the lifted latent MDP Ā. A policy on the
latent MDP, π : s 7→ ā, generates a policy on the original
MDP, π′ : s 7→ f(ā). As shown by van der Pol et al. [24],
the generated policy on the original MDP is optimal if the
policy on the lifted MDP is optimal.

IV. LEARNING ACTION SPACES FOR EFFICIENT RL

This section describes LASER, our algorithm for represen-
tation learning of latent action spaces (see Fig. 2). LASER
learns a transformation between a latent action space, Ā, and
original action space, A, acting as a latent controller for more
efficient policy learning in the latent action space. We outline
the learning LASER algorithm in online and offline settings,
and a procedure for transfer learning with LASER.

A. Representing Latent Action Spaces

LASER learns a MDP transformation map between original
actions a and latent actions ā, as presented in Sec. III. We
assume that the mapping between latent and original action
spaces depends on the current state of the robot. This is
the case for the analytical robot controllers that we take

as inspiration for this work [3, 31], as we can see with
an example. Suppose that the original action space A of
the MDP is the space of torques at the joints of a robot,
a frequent low-level action space for robots in research.
Moreover, suppose that the task is best learned in a latent
action space Ā corresponding to desired positions for each
robot’s joint. Given an action in the latent space, ā ∈ Ā,
the joint torques corresponding to the desired joint position
would depend on the current state of the robot: if the current
robot state were close to or at the desired joint position ā,
the torques would be close to zero, but if the robot state were
very different to the desired joint positions the transformation
into the original action space would lead to larger joint
torques, a. The transformation is, however, independent of
other state information such as the state of the environment
or information about the task; this information is used by the
policy to deciding what actions to perform.

Based on these insights, in LASER we propose to learn
a representation mapping between original and latent action
spaces with a encoder-decoder neural architecture conditioned
on the current state of the robot. We assume that the state
of the environment, s, can be separated into a distinct robot
state sr and non-robot state snr : s = [sr , snr ]. sr can be
extracted from the full state (sr = SR(s)) and contains the
kinematic and dynamic information of the current state of
the robotic agent such as joint configurations, accelerations
and Cartesian pose of the end-effector, provided by robot’s
proprioceptive sensing. snr contains other information about
the state of the environment and that can be task-relevant
such as the goal of the task.

The action encoder of LASER is a variational neural
network EθE : A×Sr → Ā parameterized by θE that encodes
an action a in the original action space A, conditioned on the
current robot state sr , into a latent action ā ∼ EθE (a, sr ).
The function f : Ā → A defined in Sec. III for mapping from
latent actions to control inputs in the original action space will
be represented by a latent state-dependent variational decoder
neural network, DθD : Sr × Ā → A parameterized by θD,
where â = DθD (sr , ā) is the reconstruction of a, an action
in the original space that would have resulted in ā ∼ EθE (a).
Finally, the latent state transition function T̄r (s′r |sr , ā) can
be modeled as a function TθT : Sr × Ā → Sr to output the
next robot state s′r = TθT (sr , ā).

After learning an action space representation with LASER,
an RL policy π : S → Ā can then be trained in this latent
action space using the decoder to map the policy’s latent
actions back to the original action space a = DθD (sr , ā).

B. Learning an Action Representation with LASER

To learn a latent action space with LASER defined by an
encoder-decoder action space mapping, we will leverage a
replay buffer with experiences of attempts to complete the
task. These demonstrations may be collected ahead of time by
an expert policy as in offline LASER, or using a suboptimal
policy and collected as training progresses, as in online
LASER (see Sec. IV-C). The replay buffer contains triplets
of state, action, next state, (s, a, s′), from the original MDP



(a) Door (b) Wipe

Fig. 3: Two simulation tasks used to evaluate LASER. a) Door:
the agent controls a Panda robot and has to open a door a given
angle. b) Wipe: the agent controls a Panda robot with an eraser end-
effector and needs to contact a surface and wipe the dirt elements on
it. The two tasks involve solving problems in clear contact-generated
submanifolds of the action space. LASER can help an agent learn
the actions to traverse these manifolds and accelerate training in
new instances of the tasks.

with a ∈ A. Therefore, the dataset represents a distribution of
control actions in the associated state for useful for achieving
tasks within the intended task family.

As shown in Fig. 2, the LASER framework incorporates
several loss terms to find a suitable latent action space. In
order to allow for a latent action space to have lower dimen-
sionality than the original action space, we use autoencoders
that preserve the principal dimensions of variation of the
original space in the latent action space. Thus, the first loss
we impose is a reconstruction loss. The decoder DθD will
be trained to reconstruct an action â = D(sr , ā; θD) from
the latent action ā ∼ E(a, sr ; θE) from the encoder and the
given robot state sr . This results in a typical autoencoder
reconstruction loss [32] defined as:

Lrec(s, a, θE , θD) = ‖a−D(sr , E(a, sr ; θE); θD)‖22 (1)

As found in previous work on learning latent action
spaces [26], an effective latent action space should satisfy
three properties: latent controllability, latent consistency, and
latent scaling. Latent controllability requires the dynamics
transitions between two consecutive latent states sr and s′r to
mimic the transition between their corresponding states in the
original MDP, s and s′. Latent consistency enforces similar
state transition behavior when the same latent action is taken
in similar states. Assuming that executing a latent action
ā1 at the state sr results in transition to state s′r[1] , if we
execute another latent action ā2 close to ā1 (|ā1 − ā2|< δā)
at sr , we transition to a new state s′r[2] that is close to
s′r[1] (|s′r[1] − s

′
r[2]
|< δsr ). Finally, latent scaling ensures that

applying larger latent actions leads to larger changes in latent
state. As found by van der Pol et al. [24], these properties
can be achieved by incorporating a latent state dynamics
loss that forces the predicted state from the learned latent
state transition model, ŝ′r = T (sr , ā; θT ) to be close to the
true next latent state s′r for a latent action ā ∼ E(a; θE):

Ldyn(s, a, s′, θE , θT ) = ‖s′r − T (sr , E(a, sr ; θE); θT )‖22 (2)

Fig. 4: Exp1. LASER trained on offline batch data: SAC on
the original action space, a LASER action space, and on ablations
of LASER (Sec. V-B) on the Door (left) and Wipe (right) tasks.
LASER and LASER ablations are trained offline (Sec. IV-C) on
trajectories sampled from an expert SAC. Our results show that
training in the LASER action space converges faster than training
in the original action space.

Finally, we also include a regularization component to the
loss in the form of a Kullback–Leibler (KL) divergence term,
as is common in variational autoencoder architectures [33].
The KL loss ensures the encoder learns a smooth latent space
distribution with zero mean:

LKL(a, θE) = KL(N (µ(a; θE), σ(a; θE)) ‖ N (0, 1)) (3)

The final LASER loss function is a weighted-sum of
the aforementioned losses with a unique constant weighting
for each component. The weights allow to prioritize some
objectives over others, e.g. the reconstruction over the KL
divergence loss, following a β-VAE approach [34]:

(4)L(s, a, s′, θE , θD, θT ) = βrecLrec + βdynLdyn + βKLLKL

C. Offline and Online LASER Variants

There are two alternative variants to train LASER: offline
and online (Fig. 2). Both train using the LASER loss of
Equation 4, but differ in their training process. Also, the
online variant leverages an additional loss, as we will see
below. In the offline LASER variant, we leverage a dataset
of expert policy experiences acquired for a base task in order
to improve learning efficiency on subsequent transfer tasks.
The offline LASER process is as follows. First, we train a
standard RL algorithm to convergence on the base task, using
the original action space of the robot. After convergence,
we roll-out episodes using the trained policy and generate a
dataset of experiences (consisting of state, action, next state
tuples) and train LASER on this dataset. Finally, we train
RL agents on transfer tasks using the learned LASER action
space: the trained policies will generate actions in the latent
space that will be transformed into the original action space
of the task by the trained LASER’s state-conditioned decoder.

In the online LASER variant, we train LASER at the
same time that a policy is learning a task for without any
pre-training of either the policy or the representation. The
policy is using the non-stationary action space provided
by LASER. We alternate between LASER training using
experiences from the replay buffer of the policy, and policy
training in the latest LASER space. An online LASER policy
consists of an multi-layer perceptron head followed by the



Fig. 5: Exp2. LASER task transfer: SAC on the original and
LASER action spaces in new instances of Door (left), and Wipe
(right). In both tasks, we observe a significant benefit in efficiency
when learning in the LASER action space compared to the original
action space, indicating a transfer of information in the form of an
efficient action space.

LASER action decoder (Fig. 2, bottom). The decoder shares
the weights with the decoder in the encoder-decoder LASER
architecture. To improve LASER training, we exploit the
gradients from the policy to optimize LASER’s decoder: we
propagate gradients through the decoder during policy training
iterations. We found that this process significantly speeds up
online training. In Sec. V-B (Exp 2), we show that online
LASER procedure can learn the action representation and
the policy simultaneously, without incurring any efficiency
penalty when compared to training in the original action
space. Moreover, it retains the benefit of being able to learn
new policies in the learned action space.

V. EXPERIMENTAL EVALUATION

In our experiments, we aim to answer four questions:
1) How does a RL policy learning on LASER action space,
Ā, trained on offline batched data, compare to a RL policy
learning in the original action space, A?
2) How does the action space learned with LASER transfer
to different variants of the task?
3) Does online learning of a LASER action space affect
policy learning?
4) How do LASER action spaces align with the natural
dimensions of a task?

A. Experimental Setup

Environments: We conduct experiments on two contact-
rich tasks using the RoboSuite simulator [35]: Door and
Wipe (Fig. 3). The goals are to grasp and move a door
to a predefined configuration, and to wipe spots of “dirt”
on a table, respectively. All experiments are conducted
using 16 environments in parallel. We use Soft Actor Critic
(SAC, [36]) as our reinforcement learning algorithm. In the
Door environment, the original action space is joint torque
control; in the Wipe environment, the original action space
is joint position control.
Ablations: LASER involves learning three models: 1) a robot
state–conditioned encoder network, EθE (a, sr ), for lifting
actions from the original action space, A, to the latent action
space, Ā; 2) a decoder network DθD (sr , ā) for mapping
actions from the latent action space, Ā, back to the original
action space, A; and 3) a latent state transition function
T (sr , ā; θT ) to impose a smooth transition of robot states

Fig. 6: Exp3. LASER trained online with policy learning: SAC
on the original and online LASER action spaces on Door (left), and
Wipe (right). The improved performance (faster and more optimal
convergence) of SAC in the LASER action spaces indicates that
it is possible to learn a latent action space simultaneously with
policy learning, and that learning such an action space improves the
efficiency of policy learning.

from applying latent actions in the latent MDP. LASER uses
a state-conditioned decoder (“C”), and losses in dynamics
(“D”) and KL to an isotropic normal distribution in latent
action space, corresponding to a variational auto-encoder
architecture (“VAE”), summarized as the model “CDVAE”.
We compare LASER to the following ablations: 1) variants
without state-conditioning at the encoder (no “C” in name),
2) variants without state-conditioning at the encoder (no “D”
in name), and 3) variants without KL regularization leading
to simple auto-encoder architecture (“AE” name instead of
“VAE”). For all, we use βrec = 1, βdyn = 1, βKL = 0 for
non-variational variants, and βKL = 0.01 for variational ones
(Eq. 4).

B. Experiments
Exp1. LASER trained on offline batch data: The aim of
this experiment is to test whether policy learning is more
efficient in a learned latent action space than in an original
action space. First, we train a RL policy to convergence on a
set of tasks. We then sample 1,000 episodes from this expert
policy on each task to form a dataset of expert experiences,
which we use to train SAC on action spaces learned by
LASER and its ablations.

The results are shown in Fig. 4. In both the Door and
Wipe tasks, SAC with offline LASER converges faster than
SAC on the original action space. In Door, SAC achieves
and maintains a reward of over 100 zero-shot in the LASER
action space, while it takes 500,000 steps to achieve the
same reward in the original action space. In the Wipe task,
SAC reaches a reward of 300 in 600,000 steps with LASER,
compared to in 1.5 million in the original action space. This
suggests that LASER is able to learn action spaces that
simplify learning contact-rich tasks with manipulation of
constrained mechanisms.
Exp2. LASER task transfer: We investigate task transfer
to both the offline version of LASER presented in Sec. IV-C.
We use the action space learned with LASER offline for
the Door and Wipe tasks (Exp1) to learn with SAC in a
different instance of the base task and compare to learning
in the original action space.

In the unseen Door transfer task, we increase the damping
coefficient of the door by a factor of 5. The optimal joint
torques to solve the transfer task are of higher magnitude
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Fig. 7: Exp4a. Dimensionality analysis (best viewed in color):
Mean of each dimension of the variational encoder output for 10
different rollouts; each latent action dimension is shown in a different
colour. Only 2 out of the 4 dimensions are utilised (those coloured
in blue and red; while green and orange are zero), showing that
LASER recovers an action space that is as low-dimensional as
possible for efficient policy learning.

than the optimal joint torques to solve the base task, and
hence the optimal submanifold of the original joint torque
action space is out of the distribution of the LASER action
space. In the unseen Wipe transfer task, we have the robot
wipe randomly placed circles (instead of lines), so it needs
to learn a different motions within the same task manifold.

In Door variant, we reach a reward of 100 zero-shot in the
LASER action space, compared to in over 200,000 steps in
the original action space. Because the optimal task manifold
of the transfer task differs from that of the base task, SAC
in the LASER action space converges slightly less optimally
than SAC in the original action space does. However, the
zero-shot performance of SAC with offline LASER suggests
that the action space captures information common to solving
both tasks. In the Wipe variant, SAC reaches a reward of
300 in 600,000 steps with LASER, only achieving the same
performance in 1.4 million steps in the original action space.

Our results, depicted in Fig. 5, suggest that the action space
learned by LASER provides a useful representation for learn-
ing new task instances unseen during representation learning,
improving efficiency in subsequent training processes.
Exp3. LASER trained online with policy learning: In this
experiment we benchmark the performance when interleaving
representation learning (using LASER losses) with policy
learning (using the SAC losses), as described in Sec. IV-C.
Surprisingly, SAC in the action space learned simultaneously
with online LASER has converges faster than SAC in the
original action space, as shown in the training curve in Fig. 6.
This suggests that online learning of action space does not
impede policy learning but rather facilitates it.
Exp4. Qualitative action space evaluation: In this experi-
ment, we investigate the action space manifold learned by
LASER in the Wipe environment. Our goal is to observe
whether the latent action space aligns with the natural
dimensions of the task space in the Wipe task.

In a first experiment, we retrieve the encoded actions
during rollouts of the Wipe task to inspect the dimensionality
of the learned latent manifold. The results are depicted in
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Fig. 8: Exp4b. Latent space traversal (best viewed in color):
End-effector positions from 200 trajectories within a LASER space
on Wipe. The traversals lead to end-effector motions approximately
parallel to the xy-plane. The blue plane represents the table in the
Wipe task. Trajectories are colored by timestep in rollout, with
lighter colors representing earlier timesteps. LASER learns a space
which aligns with the natural task space.

Fig. 7. We observe that although we allow a latent action
space of dimensionality 4 to be learned, LASER reduces the
dimensionality of the latent space to 2 dimensions, learning
a manifold that corresponds to the 2-dimensional task-space.

In a second experiment, we traverse the latent action space
by continuously applying latent actions in a sinusoidal pattern,
executing actions obtained from the LASER decoder outputs,
and collecting the end-effector position. The end-effector
motion is depicted in Fig. 8. We observe that the robot is
controlled along the dimensions of interest to the task, the
xy-plane over the table surface. The end-effector’s motion
is primarily lateral, encapsulating the motions necessary to
wipe and pan around the table. These experiments indicate
that the learned action representation aligns well with the
task subspace, mapping to the submanifold of the original
action space on which the task should be executed.

VI. CONCLUSION

We presented LASER, an approach to learning a latent
action space for efficient reinforcement learning. LASER
transforms the original MDP of an RL problem into a new
MDP, where exploration is easier. The action representation
is learned from expert data in an offline (pre-acquired data)
or online manner (while the data is acquired). LASER is a
variational encoder-decoder model that maps actions in the
original action space into a disentangled latent space while
maintaining both state-conditioned reconstruction as well as
latent space dynamic consistency. We evaluated LASER and
LASER ablations in two contact rich manipulation tasks (door
opening, and surface wiping) and combined state-of-the-art
policy learning algorithms (SAC). Our results revealed that
LASER often facilitates training in the same tasks and helps
transfer knowledge for faster exploration and convergence
in transfer tasks. Visualizations of the learned action space
indicate that LASER learns an action space aligned with the
natural dimensions of the task-space, leading to the observed
improvement in subsequent training processes.
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