
Agile Actions with a Centaur-Type Humanoid: A Decoupled Approach

Matteo Parigi Polverini, Enrico Mingo Hoffman, Arturo Laurenzi, and Nikos G. Tsagarakis

Abstract— The kinematic features of a centaur-type hu-
manoid platform, combined with a powerful actuation, enable
the experimentation of a variety of agile and dynamic motions.
However, the higher number of degrees-of-freedom and the
increased weight of the system, compared to the bipedal and
quadrupedal counterparts, pose significant research challenges
in terms of computational load and real implementation. To
this end, this work presents a control architecture to perform
agile actions, conceived for torque-controlled platforms, which
decouples for computational purposes offline optimal control
planning of lower-body primitives, based on a template kine-
matic model, and online control of the upper-body motion to
maintain balance. Three stabilizing strategies are presented,
whose performance is compared in two types of simulated
jumps, while experimental validation is performed on a half-
squat jump using the CENTAURO robot.

I. INTRODUCTION

The problem of realizing agile and dynamic actions with a
legged robotic platform is an active research topic spanning:
fast dynamic gaits [1], [2], jumping [3], [4], kicking [5]. In
this respect, remarkable demonstrators have been realized
thanks to the recent technological advances in designing
powerful, robust and increasingly lightweight robotic plat-
forms. The seminal work of Raibert on the one-legged hopper
[6], followed by the jumping and landing pneumatic robot
Mowgli [7], represent the first examples of actuated jump-
ing mechanisms. From then on, research on agile motions
have been carried out, almost in parallel, on bipeds and
quadrupeds. Regarding the former type of platforms, Boston
Dynamics has shown Atlas running outdoor and performing
the world-famous back-flip and parkour demonstrators. Im-
plementation details have not been made available, however
in [8] an algorithm is presented which combines a simplified
dynamic model with the robot full kinematics to make Atlas
jump in simulation. As shown in a popular video, Honda
Asimo has been capable of running and performing small
jumps, even on single stance, while the small-size biped
QRIO, manufactured by SONY, was able to run and jump
through generation of dynamically consistent motion patterns
[1]. In [9] an approach based on ground reaction forces is
introduced to make the HRP-2 robot perform vertical jumps
in simulations. Recently, in [10] a torque and velocity con-
trollers to perform jumps have been tested on the humanoid
robot iCub. Almost concurrently, impressive results have
been achieved among the quadrupedal robotic community. In

This work was supported by the European Union’s Horizon 2020 Re-
search and Innovation Program under Grant No. 779963 (EUROBENCH).

The authors are with the Humanoids & Human Centered Mechatronics
Research Line (HHCM), Istituto Italiano di Tecnologia (IIT), Genova,
Italy {matteo.parigi, enrico.mingo, arturo.laurenzi,
nikos.tsagarakis}@iit.it

[2] the ANYmal predecessor, the StarlETH quadruped using
series elastic actuators, was able to perform dynamic gaits
and a squat jump. Similar results have been demonstrated
on ANYmal [3] by setting user-defined base target positions
to the whole-body controller in order to perform the jump.
Thanks to recent advances in actuator development, pseudo-
direct-drive concepts have found application in high-dynamic
legged robots as in the MIT Cheetah [11], [12], which is able
to run and jump at high speeds. Similar concepts have been
adopted in the small-size quadrupeds Minitaur [13] and MIT
Mini Cheetah [4].

II. DECOUPLED ARCHITECTURE FOR CENTAUR-TYPE
HUMANOIDS

Centaur-type humanoids, as the wheeled-legged system
CENTAURO [14], represent a new kinematic paradigm that
combines the inherent stability advantage of quadrupeds
over bipeds, with the loco-manipulation capabilities enabled
by a humanoid upper-body. In this respect, while several
agile actions are theoretically enabled by such topology (if
combined with a powerful actuation), the increased weight
of the system and the higher number of degrees-of-freedom
(DoF), compared to the bipedal and quadrupedal counter-
parts, pose significant research challenges. Targeting the
actual realization of dynamic behaviours on a centaur-type
humanoid while meeting computational and implementation
requirements, we present a control architecture, designed for
torque-controlled platforms, which builds upon our previous
work in [15]. It consists of the following components,
organized in a decoupled structure, see Fig. 1:

- Offline stage: a lower-body planner employs optimal
control, applied to a quadrupedal template kinematic
model, to generate a database of lower-body agile primi-
tives, consisting in a time series of planned contact posi-
tions rC ∈ Rk×Ns and contact forces F C ∈ Rk×Ns . We
will hereafter assume nC point contacts, thus k = 3nC,
while Ns ∈ R is the number of shooting intervals.

- Online stage: the planned lower-body actions are re-
played on the system using upper-body motions to
maintain balance. The following components are em-
ployed:

1) Upper-body stabilizer: is responsible to maintain
the balance of the whole system through upper-
body motions, based on IMU angular velocity
ωimu ∈ R3 feedback;

2) Hierarchical Inverse Kinematics (IK): tracks the
planned lower-body contact positions rC and
the upper-body stabilizing action by means of
Quadratic Programming (QP);

ar
X

iv
:2

10
3.

07
18

3v
1 

 [
cs

.R
O

] 
 1

2 
M

ar
 2

02
1



Fig. 1. Overview of the proposed decoupled architecture.

3) Contact force distribution: tracks at best the
planned contact forces, while ensuring balance.

4) Contact detection: detects if contact with the envi-
ronment has been established, based on estimated
or measured contact forces FC ∈ Rk.

5) Joint-level control: a decentralized joint
impedance controller with torque feed-forward
τff ∈ Rn, feeding the torque control loop.

While the lower-body planner and the upper-body stabilizer,
which are main contributions of this paper, will be described
in Sec. III and Sec. IV, respectively, the reader can refer to
[15] for details on the remaining components.

III. PLANNING LOWER-BODY ACTIONS

A. Lower-Body Template Kinematic Model

In order to overcome the computational complexity in-
troduced by the adoption of a full kinematic model, the
quadrupedal lower-body of a centaur-type platform will be
herein modeled as a template 5-mass floating-base system.
Note that, while this modelling choice simplifies the robot
kinematics for computational purposes, no further simplifica-
tion will be introduced on the dynamic model. With reference
to Fig. 2, let us consider a floating-base system consisting of
the actuated prismatic joint coordinates qC ∈ Rk, enabling
the positioning of the 4 leg end-effectors. Again, as a
common assumption for quadrupeds, point contacts are con-
sidered, thus k = 12. The corresponding Cartesian positions
and contact forces for the i-th leg, expressed w.r.t. the world
frame W , are denoted with pC,i(q) ∈ R3 and FC,i ∈ R3,
respectively. The pose of the under-actuated floating-base is
modeled through three prismatic joints pu ∈ R3 and a spher-
ical joint, whose orientation is given by the unit quaternion
ρu ∈ R4. As shown in Fig. 2, the inertial properties of each
rigid body are given by the related mass value and inertia
tensor. Note also that, in order account for the presence of
the robot upper-body, as in CENTAURO, the waist body
mass has been shifted towards the front legs. Finally, let us
consider a generic environment plane S, whose orientation
is given by its normal nS ∈ R3. By now denoting with
n and nu the number of actuated and unactuated degrees-
of-freedom (DoFs), respectively, the generalized coordinates
can be collected in the vector q ∈ Rn+nu , with n = k and

nu = 7 for the introduced template model:

q =
[
pTu ρTu qTC

]T
(1)

while the generalized velocities ν ∈ Rn+nu−1 and accelera-
tions ν̇ ∈ Rn+nu−1 are given by:

ν =
[
ṗTu ωTu q̇TC

]T (2a)

ν̇ =
[
p̈Tu ω̇Tu q̈TC

]T (2b)

where ṗu, p̈u ∈ R3 and ωu, ω̇u ∈ R3 are the linear and
angular velocity and acceleration, respectively, of the robot
floating-base expressed in the world W coordinates. Given
ρu =

[
εTu ηu

]T
, with εu ∈ R3 and ηu ∈ R, the quaternion

propagation [16] is given by:

ρ̇u =

[
1

2
ωu, 0

]
◦ ρu (3)

expressing the relation between ρ̇u and ωu. The symbol ◦ is
used to denote the quaternion product.

B. Floating-Base Dynamic Model

The dynamics of a floating-base robot is expressed by the
following equation:

B(q)ν̇ + h(q,ν) = Sτ + JTC (q)FC (4)

where τ ∈ Rn are the actuated joint torques, while
B(q) ∈ R(n+nu−1)×(n+nu−1) is the full joint space inertia
matrix and h(q,ν) ∈ Rn+nu−1 is the vector of non-linear
(gravity, centrifugal/Coriolis) terms. Differently from a fixed-
base robot, the actuation matrix S ∈ R(n+nu−1)×n models

Fig. 2. The 5-mass template model for the quadrupedal lower-body
featuring prismatic joints.



the system under-actuation. Contact forces FC ∈ Rk are
taken into account by concatenating the Jacobian of all
support links JC(q) ∈ Rk×(n+nu−1) and the corresponding
overall contact wrench. The equation of motion in (4) can
be further split into nu under-actuated and n actuated rows,
denoted with subscript u and a, respectively.

Bu(q)ν̇ + hu(q,ν) = J
T
C,u(q)FC (5a)

Ba(q)ν̇ + ha(q,ν) = τ + JTC,a(q)FC (5b)

C. Optimal Control Formulation and Transcription

Let us consider the following choice for the state x(t) and
control u(t) vectors:

x =
[
qT νT

]T (6a)

u =
[
ν̇T F TC

]T (6b)

Based on the floating-base model described in Sec. III-B, the
OCP formulation we address in this Section reads as:

min
x(·),u(·)

∫ T

0

L
(
x(t),u(t)

)
dt+ E

(
x(T )

)
subject to

(7)

x0 − xinit = 0 initial state
x(T )− xgoal = 0 final state
ẋ(t)− f

(
x(t),u(t)

)
= 0 double integrator

τu
(
x(t),u(t)

)
= 0 under-actuation

τ ≤ τ
(
x(t),u(t)

)
≤ τ torque bounds

p
Ci
≤ pCi(t) ≤ pCi work-space bounds

if Ci in contact:
pCi(t ∈ TC) ∈ S(pCi) surface contact
ṗCi(t ∈ TC) = 0 no slip condition
FCi(t ∈ TC) ∈ F(FCi,nS , µ) friction cone

otherwise:
FCi(t 6∈ TC) = 0 no contact force

Herein the double-integrator relation from ν̇(t) to q(t) can be
expressed through the following state-space representation:

ẋ(t) =

[
0 Ŝ
0 0

]
x(t) + fquat

(
x(t)

)
+

[
0 0
I 0

]
u(t) (8)

where fquat(x) represents the quaternion propagation in (3),
while the selection matrix Ŝ is given by:

Ŝ =
[
I3×(n+nu) 04×(n+nu) In×(n+nu)

]T
(9)

When the robot is establishing contact with a surface S,
constraints on contact positions, velocities and forces must
be simultaneously enforced. To this end, the following con-
straint:

pCi(q) ∈ S
(
pCi(q)

)
(10)

ensures that the i-th contact point lays on the surface S. In
the simple planar case, the surface equation is given by:

S
(
pCi(q)

)
: nS

TpCi + d = 0 (11)

being nS =
[
a b c

]T ∈ R3 the surface normal, with
a, b, c, d ∈ R. We also need to ensure that contact points
do not slip, i.e.:

ṗCi(q,ν) = JCiν = 0 (12)

In order to further encode the impact of the surface ori-
entation on contact forces, friction constraints must be in-
corporated. Being F nCi ∈ R3 and F tCi ∈ R3, the normal and
tangential component of the contact force at the i-th contact
point:

F nCi = (FCi · nS)nS (13a)
F tCi = FCi − (FCi · nS)nS (13b)

the i-th point contact remains in rest contact mode if FCi lies
inside the friction cone directed by nS , i.e.:

F(FCi,nS , µ) :=

{
FCi · nS > Fthr

‖F tCi‖2 ≤ µ(FCi · nS)
(14)

where µ is the Coulomb friction coefficient, while Fthr ≥ 0
is a scalar force threshold. The Euclidean norm ‖ · ‖2 models
Coulomb friction cones with circular section. The under-
actuation constraint is implemented according to (5a) by
denoting with τu ∈ Rnu−1 the under-actuated torques, i.e.:

τu = Buν̇ + hu − JTC,uFC (15)

Similarly, torque bounds are imposed on the actuated torques
τ ∈ Rn, whose expression can been retrieved from (5b):

τ = Baν̇ + ha − JTC,aFC (16)

In order to perform a Direct Multiple Shooting (DMS)
transcription [17] of (7) into a Nonlinear Program (NLP) that
can be solved by off-the-shelf solvers [18], let us consider a
number of shooting intervals Ns, which discretize the control
horizon. The state variable and control vector at the k-th
shooting interval, xk and uk respectively, are denoted as:

xk =
[
qTk νTk

]T (17a)

uk =
[
ν̇Tk F TC,k

]T (17b)

We hereafter assume a piece-wise constant control
parametrization along each shooting interval. The Ns + 1
states are collected in the state vector X:

X =
[
xT0 ,x

T
1 , . . . ,x

T
Ns

]T
(18)

and the Ns controls in the control vector U :

U =
[
uT0 ,u

T
1 , . . . ,u

T
Ns−1

]T
. (19)

In agreement with DMS, a continuity condition needs to be
further satisfied: s (xk,uk)− xk+1 = 0. Here the function
s (xk,uk) is used to simulate the double integrator dynamics
in (8) over one shooting interval. We additionally leave the
solver free to decide the optimal step size for each shooting
interval, introducing the step size variable dtk ∈ R+ in the
control vector:

uk =
[
ν̇Tk F TC,k dtk

]T
, (20)



(a) Squat jump (b) Half-squat jump

Fig. 3. Snapshots of the produced motion in rviz ROS with visualization of contact forces (upper snapshots) and time histories of contact forces, feet
positions and waist position (lower plots) for the squat jump (left side) and the half-squat jump (right side) planned agile actions.

together with the bound: dt ≤ dtk ≤ dt. Finally, we adopted
a linearized version of friction cones which, in our experi-
ence, is easier to handle for the solver.

D. Planned Agile Actions

Building upon the OCP in (7), we hereafter address the
planning problem of a set of agile lower-body actions, con-
sisting in two types of squat jumps. The related NLPs have
been implemented using CasADi [19] and Pinocchio [20]1.
The planned trajectories are then conveniently interpolated
using the integrator function s (·) with fixed step-size of
1 · 10−3s and replayed on the robot in the online stage, see
Fig. 1.

1) Squat jump: The robot is initially in contact with
the ground, while its goal is to reach a target floating-
base position pu ∈ R3 displaced vertically along the z−axis.
Since the control horizon comprises also the landing phase,
we denote NT as the take-off interval and NL as the landing

1Two software packages have been developed to this end: the
casadi kin dyn library (https://github.com/ADVRHumanoids/
casadi_kin_dyn) and the Horizon library (https://github.com/
ADVRHumanoids/Horizon)

interval, with: Ns = 30, NT = 10 and NL = 20. In order to
give the possibility to the solver to determine the duration
of each phase, the control vector comprises the step-size
variable within the following bounds: dtk = 0.03s and
dtk = 0.25s. The following piece-wise cost function has
been considered:

F (X,U) =

NL∑
k=NT+1

(
γνν

T
k νk + γpu(p

[z]
u,k − p

[z]
u )2

)
+

+

Ns∑
k=NT+1

γq̇C q̇
T
C,kq̇C,k +

Ns−2∑
k=NL+1

γḞC
Ḟ TC,kḞC,k +

Ns−2∑
k=0

γν̈ ν̈
T
k ν̈k

(21)

with γpfb = 50, γq̇a = 1, γḞC
= 1 and γν̈ = 10−3. We first

penalize the tracking of a target floating-base position along
the z−axis during the flight phase only, i.e. between the take-
off and the landing shooting interval. The second term in (21)
minimizes the velocity of the actuated joints during the flight
phase, while the third and last terms minimize the derivative
of contact forces (ḞC,k ≈ FC,k+1 − FC,k) and of accelerations
(ν̈k ≈ ν̇k+1 − ν̇k), respectively, in order to smooth out the
control actions. Snapshots of the resulting motion and time

https://github.com/ADVRHumanoids/casadi_kin_dyn
https://github.com/ADVRHumanoids/casadi_kin_dyn
https://github.com/ADVRHumanoids/Horizon
https://github.com/ADVRHumanoids/Horizon


histories of relevant quantities are depicted in Fig. 3(a) (these
results are also illustrated in the accompanying video). Due
to the introduced offset on the waist mass location (modeling
the presence of the upper-body), the robot waist moves
backward before jumping, so that contact forces are equally
distributed. Note also how the solver adapts the step-size.

2) Half-squat jump: Inspired by the pushing task in [15],
where CENTAURO contacts a wall with its rear feet in order
to push a heavy object, we set up an OCP in which the robot,
initially in contact with the ground S1, has to simultaneously
lift and put its rear feet on a vertical surface S2 pivoting on its
front feet, in a so-called “half-squat jump” manoeuvre. The
following parameter have been selected: Ns = 30, NT = 10
and NL = 20, dtk = 0.03s, dtk = 0.25s. The cost function in
(21) has been employed, with same weights, now penalizing
the tracking of the initial floating-base pose. Snapshots of
the resulting motion and time histories of relevant quantities
are depicted in Fig. 3(b). The robot waist moves towards
the front feet in order to be able to lift the rear legs and
consequently establish contact with the vertical surface.

IV. UPPER-BODY STABILIZERS

We here present three different feedback strategies that
exploit upper-body motion to maintain balance.

A. Raibert-Like Postural Task

In the work of Raibert on the one-legged hopper [6],
body posture control on ground is obtained by setting the
torque between the leg and the body to be proportional to
the body angle. As a result, the balance arm, acting as fly
wheel, spins in the direction of falling in order to stabilize
the system posture. Applying a similar control approach to
the upper-body of a humanoid, the following postural task
can be introduced:

TPosture-Raibert : Subqd,k+1 = Subqd,k + Γωimu (22)

where qd ∈ Rn is the desired robot posture (initialized in the
homing configuration), the matrix Sub ∈ Rn×n enables the
motion of a subset of the upper-body joints, ωimu ∈ R3 is the
measured IMU angular velocity, while Γ ∈ Rn×3 is a gain
matrix. The considered SoT can be written using the Math
of Task (MoT) formalism [21] as follows:((∑

i
PelvisT [XYZ]

Footi

)
/

TPosture-Raibert

)
<<

(
C Pos.

Lims
+ C Vel.

Lims

)
, (23)

Note that the first layer is responsible for the tracking of the
planned lower-body trajectories.

B. Angular Momentum Task

An alternative stabilizing strategy consists in controlling
the system’s centroidal momentum [22] to maintain balance
through emergent arm motions, thus without authoring any
upper-body motion, as in Sec. IV-A. Let h ∈ R6 be the rate
of change of the system centroidal momentum:

h = A(q)q̇ (24)

whereA(q) ∈ R6×(n+6) is the centroidal momentum matrix.
The centroidal momentum h =

[
hTlin hTang

]T
is a spatial

quantity comprised of the system’s net linear momentum
hlin ∈ R3 and angular momentum hang ∈ R3 about the CoM.

Similarly to [5], in order to maintain balance through
emergent arm motions, the following angular momentum
task TAngMom can effectively provide a dampening of any
excess angular momentum:

TAngMom : hang, d = 0 (25)

The resulting SoT can be written as follows:(∑i
PelvisT [XYZ]

Footi

)
/

WorldTPelvis/
TAngMom + TPosture

 <<
(
C Pos.

Lims
+ C Vel.

Lims

)
, (26)

where the task WorldTPelvis is used to conveniently incorporate
the IMU feedback as follows:

WorldTPelvis : ωfb, d = −ωimu (27)

C. OCP Postural Task

Building upon the idea of treating the upper-body of a
humanoid as a fly wheel in order to produce enough angular
momentum to maintain balance, a dedicated OCP can be
designed to produce a periodic joint-space trajectory which
maximizes the angular momentum along the tilting axis. The
optimization is done on the fixed-based single-arm model of
the robot, with x =

[
qT q̇T

]T
and u = q̈. With abuse of

notation here q ∈ Rnarm is the single arm joint vector. Some
of the constraints in the optimization are:

- Same initial and final state, in order to produce a
periodic trajectory. Note that, the the solver is let free
to choose the arm’s initial configuration.

- Joint position, velocity and torque bounds.
- Work-space constraints on the end-effector Cartesian

position, to prevent self-collisions.
The problem can be set up as DMS transcription with Ns
shooting intervals over a normalized time horizon, where the
following cost function has been considered:

F (X,U) =

Ns∑
k=0

(
γhang(hang,k − hd) + γq̇q̇

T
k q̇k

)
(28)

in order to maximize the angular momentum e.g. along the
y-axis. Similarly to the fly wheel control in [6], the planned
joint-space trajectory q∗ ∈ Rnarm×Ns can be then replayed
forward and backward on each robot arm with a velocity
scaling proportional to the IMU feedback. In order to do
so, by considering an equivalent SoT to the one in (23), an
upper-body postural task TPosture-OCP is designed as follows:

TPosture-OCP : qd = q∗k +Ns(τk+1 − k/Ns)(q∗k+1 − q∗k ) (29)

where the scaling factor τk+1 ∈ [0, 1] is proportional to the
IMU angular velocity controlled component, e.g. the pitch:

τk+1 = τk + γτ ω
[P ]
imu (30)

being the sample k ∈ R given by: k = bNs · τk+1c.



(a) Squat jump (b) Half-squat jump

Fig. 4. Time histories of the IMU pitch orientation and snapshots from Gazebo simulations of the squat jump (left side) and the half-squat jump (right
side) planned agile actions, with and without (black solid lines) the proposed upper-body stabilizing strategies.

(a) No stabilizer (b) Raibert-like stabilizer

Fig. 5. Snapshots from performed half-squat jumps experiments with no stabilizing action (left side) and employin with the proposed Raibert-like postural
task (right side). The arms’ motion effectively prevents the robot from tilting excessively, thus allowing to establish a steady contact with the wall.

V. VALIDATION

In order to first compare the performance of the proposed
upper-body stabilizers, we set up a simulation benchmark
scenario in Gazebo using the CENTAURO robot [14] to
perform the planned agile actions. CENTAURO is a 39
DoF hybrid wheeled-legged quadruped equipped with a
bimanual humanoid upper-body, and has a weight of 92
kg. The robot is fully torque-controlled with direct sensing
of the link-side torque. CENTAURO is powered by the
XBotCore middleware [23], while the CartesI/O framework
[24], which relies on the hierarchical IK library OpenSoT
[21], is responsible for Cartesian control. Three separate
ROS nodes running at 1 kHz are responsible for the replay
of the planned lower-body trajectories, the HIK managed
by CartesI/O, and the contact force distribution among
the lower-body contact points, respectively. The joint-level
controller runs at 2 kHz. Snapshots and time histories of the
IMU pitch orientation are shown in Fig. 3. These results are
illustrated in the provided supplementary video. Performing
the squat jump without upper-body stabilization results in a
notable tilt of the robot waist. Similarly, in the half-squat
jump, the absence of upper-body stabilization results in an
excessive tilt of the robot, eventually causing it to fall without
accomplishing the task. In order to effectively mitigate the
tilt rotation measured by ω[P ]

imu, the shoulder pitch and elbow
pitch joints have been enabled trough Sub in TPosture-Raibert,
see (22), while the motion of the shoulder joints and the

elbow joints is engaged in TAngMom. All the arm joints have
been considered in TPosture-OCP. Based on the benchmark
results, trading-off controller performance against number of
parameters to tune and complexity of motion, i.e. number
of enabled joints, the Raibert-like stabilizer stands out as
the most suitable algorithm to perform experiments on the
real robotic platform. In this respect, note that, although
self-collisions are not inherently prevented, no collisions
occurred in the performed agile actions for our choice of
parameters. Due to high peak torques involved in the squat
jump and battery current limitations, experimental validation
has been successfully performed on the half-squat jump task
employing the Raibert-like stabilizing action, see Fig. 5.

VI. CONCLUSIONS

Aiming at performing agile actions with a centaur-type
torque-controlled humanoid, this paper has presented a de-
coupled control architecture which meets the computational
and implementation requirements to achieve a real demon-
strator. Lower-body motion primitives are generated through
optimal control in an offline stage, based on a simplified
kinematic model. The planned lower-body trajectories are
then replayed on the robot, in the online stage, using three
different upper-body stabilizing strategies to maintain bal-
ance. The stabilizers’ performance has been compared in two
types of simulated jumps, while experimental validation has
been performed on a half-squat jump using CENTAURO.



REFERENCES

[1] K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh, and J. Yamaguchi,
“Integrated motion control for walking, jumping and running on a
small bipedal entertainment robot,” in IEEE International Conference
on Robotics and Automation, vol. 4, 2004, pp. 3189–3194.

[2] C. Gehring, S. Coros, M. Hutter, et al., “Practice makes perfect:
An optimization-based approach to controlling agile motions for a
quadruped robot,” IEEE Robotics & Automation Magazine, vol. 23,
no. 1, pp. 34–43, 2016.

[3] M. Hutter, C. Gehring, et al., “Anymal-toward legged robots for harsh
environments,” Advanced Robotics, vol. 31, no. 17, pp. 918–931, 2017.

[4] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for push-
ing the limits of dynamic quadruped control,” in IEEE International
Conference on Robotics and Automation, 2019, pp. 6295–6301.

[5] P. M. Wensing et al., “Generation of dynamic humanoid behaviors
through task-space control with conic optimization,” in IEEE Interna-
tional Conference on Robotics and Automation, 2013, pp. 3103–3109.

[6] M. H. Raibert, Legged robots that balance. MIT press, 1986.
[7] R. Niiyama, A. Nagakubo, et al., “Mowgli: A bipedal jumping and

landing robot with an artificial musculoskeletal system,” in IEEE
International Conference on Robotics and Automation, 2007, pp.
2546–2551.

[8] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2014, pp. 295–302.

[9] S. Sakka and K. Yokoi, “Humanoid vertical jumping based on force
feedback and inertial forces optimization,” in IEEE International
Conference on Robotics and Automation, 2005, pp. 3752–3757.

[10] F. Bergonti, L. Fiorio, and D. Pucci, “Torque and velocity controllers
to perform jumps with a humanoid robot: theory and implementation
on the iCub robot,” in IEEE International Conference on Robotics and
Automation, 2019, pp. 3712–3718.

[11] S. Seok, , et al., “Design principles for highly efficient quadrupeds
and implementation on the mit cheetah robot,” in IEEE International
Conference on Robotics and Automation, 2013, pp. 3307–3312.

[12] H.-W. Park, P. M. Wensing, S. Kim, et al., “Online planning for
autonomous running jumps over obstacles in high-speed quadrupeds,”
2015.

[13] G. Kenneally, A. De, and D. E. Koditschek, “Design principles for a
family of direct-drive legged robots,” IEEE Robotics and Automation
Letters, vol. 1, no. 2, pp. 900–907, 2016.

[14] N. Kashiri, L. Baccelliere, L. Muratore, et al., “CENTAURO: A
Hybrid Locomotion and High Power Resilient Manipulation Platform,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1595–1602,
2019.

[15] M. Parigi Polverini, A. Laurenzi, E. Mingo Hoffman, F. Ruscelli,
and N. G. Tsagarakis, “Multi-Contact Heavy Object Pushing with
a Centaur-Type Humanoid Robot: Planning and Control for a Real
Demonstrator,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 859–866, 2020.

[16] B. Graf, “Quaternions and dynamics,” 2008.
[17] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct

multiple shooting algorithms for optimal robot control,” in Fast
motions in biomechanics and robotics. Springer, 2006, pp. 65–93.

[18] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[19] J. A. E. Andersson, J. Gillis, G. Horn, et al., “CasADi – A software
framework for nonlinear optimization and optimal control,” Mathe-
matical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.

[20] J. Carpentier, F. Valenza, N. Mansard, et al., “Pinocchio: fast forward
and inverse dynamics for poly-articulated systems,” https://stack-of-
tasks.github.io/pinocchio, 2015–2019.

[21] E. Mingo Hoffman, A. Rocchi, A. Laurenzi, and others., “Robot
Control for Dummies: Insights and Examples using OpenSoT,” in
IEEE-RAS International Conference on Humanoid Robots, 2017, pp.
736–741.

[22] D. E. Orin, A. Goswami, et al., “Centroidal dynamics of a humanoid
robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176, 2013.

[23] L. Muratore, A. Laurenzi, E. Mingo Hoffman, et al., “Xbotcore:
A real-time cross-robot software platform,” in IEEE International
Conference on Robotic Computing (IRC), 2017, pp. 77–80.

[24] A. Laurenzi, E. M. Hoffman, et al., “CartesI/O: A ROS based real-
time capable cartesian control framework,” in IEEE International
Conference on Robotics and Automation, 2019, pp. 591–596.


	I Introduction
	II Decoupled Architecture for Centaur-Type Humanoids
	III Planning Lower-Body Actions
	III-A Lower-Body Template Kinematic Model
	III-B Floating-Base Dynamic Model
	III-C Optimal Control Formulation and Transcription
	III-D Planned Agile Actions
	III-D.1 Squat jump
	III-D.2 Half-squat jump


	IV Upper-Body Stabilizers
	IV-A Raibert-Like Postural Task
	IV-B Angular Momentum Task
	IV-C OCP Postural Task

	V Validation
	VI Conclusions
	References

