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Abstract— In this paper, we propose an operational space
control formulation for a planar N -link underactuated manip-
ulator (PAN´1)1 with a passive first joint subject to actuator
constraints (N ě 3), covering both stabilization and tracking
tasks. Such underactuated manipulators have an inherent first-
order nonholonomic constraint, allowing us to project their dy-
namics to a space consistent with the nonholonomic constraint.
Based on the constrained dynamics, we can design operational
space controllers with respect to tasks assuming that all joints
of the manipulator are active. Due to underactuation, we design
a Quadratic Programming (QP) based controller to minimize
the error between the desired torque commands and available
motor torques in the null space of the constraint, as well as
involve the constraint of motor outputs. The proposed control
framework was demonstrated by stabilization and tracking
tasks in simulations with both planar PA2 and PA3 manip-
ulators. Furthermore, we verified the controller experimentally
using a planar PA2 robot.

I. INTRODUCTION

Underactuated manipulators, which have fewer number
of control inputs than degrees of freedom, have attracted
researchers in both control and robotics communities. It is
known that underactuated manipulators2 can be divided into
two main types: Vertical Underactuated Manipulators (VUM)
and Horizontal Underactuated Manipulators (HUM). Due to
the presence of gravity, the control of VUMs mostly focuses
on the stabilization of the vertical unstable equilibrium po-
sition at which their linearized model is locally controllable
[1]. However, the control of HUMs like stabilizing the end-
effector is particularly challenging since the linearized model
at any equilibrium position is not controllable because of the
absence of gravity [2]. A general nonlinear control method
is not yet available, thus the control design depends on
what constraint the system owns according to integrability
conditions [3], e.g., a second-order nonholonomic constraint
[4], a first-order nonholonomic constraint [8], or a holonomic
constraint [5]. Although there is a large amount of existing
work devoted to controlling specific or a class of HUMs,
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1Denoting planar horizontal N -link underactuated manipulator with a
passive first joint as planar PAN´1 manipulator, where “P” means a passive
joint and “A” means an active joint. The first letter denotes the first joint.

2Assuming manipulators only have revolute joints.

the development of systematic and efficient controllers re-
mains open. Especially for the planar horizontal N -link
underactuated manipulator with a passive first joint (denoted
as planar PAN´1 manipulator, N ě 3) which has a first-
order nonholonomic constraint, to the best of our knowledge
only a few limited solutions are available in the literature.
Therefore, in this paper, we restrict our attention to the
operational space control of planar PAN´1 manipulators.

In the control community, researchers started from planar
PA2 manipulators that were in low dimension. Their opera-
tional space control design was significantly different from
common practice in fully-actuated or redundant manipula-
tors, e.g., using operational space frameworks in [14]. Firstly,
the control was not accomplished at the task space level, but
at the joint space level; optimization or searching methods
were used to determine the desired joint configuration with
respect to the desired end-effector position, such as genetic
algorithm [8], differential evolution algorithm [9] and particle
swarm optimization [10], [11]. Secondly, several control
strategies were designed to force the joints to achieve the
desired ones, such as Lyapunov function methods [8], [11]
and model reduction to planar Acrobot [10]. However, the
resulting controllers in [10], [11] were two-stage control
with switching. And [9], [10] required the explicit relation
between the passive joint and active joints for their planning
process, which may hinder their methods from being scaled
up to a general case due to extensive derivation efforts.

Subsequently, researchers in the control community stud-
ied general planar PAN´1 manipulators. Prohibited by the
increasing computation cost, the idea of planning for each
joint was not directly extended. The model reduction became
more appealing in high-dimensional planar PAN´1 manipu-
lators, e.g., only keeping two joints active and maintaining
other N ´ 3 active joints at zero angle. Thus, the original
manipulator can be reduced to a virtual planar three-link
one [12], [13] and then the method developed in planar
PA2 manipulators can be used. Although their solutions
were able to stabilize the end-effector to a desired position,
they suffered from complex design and realization. Model
reduction allowed one to reuse previous solutions, but it
limited the capability of the original manipulator, i.e., the
N ´ 3 active joints (N ą 3) that were keeping zero
should have provided degrees of freedom for secondary
tasks. Moreover, most mentioned work involved optimization
or searching techniques offline and thus they may not be able
to reject external disturbance and uncertainty in real time.
Besides, no experiment has been provided in the mentioned
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work. Overall, a simple, real-time, and efficient feedback
controller with more control capability for the operational
space control of planar PAN´1 underactuated manipulators
is desired.

In the robotics community, operational space control has
been extensively studied since it provides us with standard
solutions to obtain desired behavior of tasks. Except for well-
built control frameworks for fully-actuated and redundant
systems, researchers show an increasing interest in designing
task-oriented controllers for underactuated systems. Based
on a unified formulation on the operational space framework
[14], some researchers extended it to underactuated systems,
such as free-floating humanoid robots [15], quadrupedal
robots [16], orbital robots [17], aerial robots [18], and
planar underactuated manipulators with a passive third joint
[19]. There were two main solutions to the extension: 1)
Quadratic Programming (QP)-based prioritized control (or
iterative null-space projection) [16], [20]–[22]; 2) projection-
based control [15], [19], [23], [24], which can deal with
constraints and underactuation in different way. For example,
[21] proposed a constrained prioritized multi-objective QP-
based control formulation. Different from previous work, the
defined tasks were not desired motions or desired constraint
forces, but desired feedback control laws that were designed
based on the model of the robot and environment. Due to
underactuation, exact realization of desired control laws was
infeasible and QP was used for minimizing the error between
the desired and actual control. [23] and [24] proposed dif-
ferent projection operators, but both of them could eliminate
Lagrange multipliers (e.g., constraint forces) and obtain a
constrained inverse dynamics control equation. However,
they may not be able to involve actuation limitations.

In this paper, we propose an operational space control
formulation for planar PAN´1 manipulators using orthogonal
projection and QP. The main strategy is to leverage on the
projection operator (e.g., linear projection) in order to obtain
constrained dynamics, and on the optimization method (e.g.,
QP) in order to maximize the ability of implementing the
desired control law considering underactuation. As men-
tioned before, planar PAN´1 manipulators have an inherent
first-order nonholonomic constraint, allowing us to create a
projection matrix that can project a space into the null space
of the constraint mapping. With the projection operator, we
can obtain a projected dynamics, i.e., the original dynamics
is projected into a space consistent with the nonholonomic
constraint or the null space of the constraint. With geometry
properties in [23], we can obtain a constrained dynamics
that incorporates the inherent constraint and owns a passivity
property. Note that our projection matrix stems from a first-
order nonholonomic constraint, while existing work mostly
generates a projection matrix based on task constraints [22]
or physical contact constraints [24].

With the resulting constrained dynamics, we can design
task-oriented operational space controllers according to the
task we want to implement assuming that all joints are
active. However, underactuation in the manipulator limits
the exact implementation of the desired control commands
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Fig. 1: Planar N -link underactuated manipulators with a passive
first joint in the absence of gravity. The first joint is passive and
connected to a base, while the rest of joints are active.

generated by those task-oriented controllers. Inspired by the
use of QP in [22], we design a QP-based controller based
on the constrained dynamics to maximize the capability of
implementing the control commands.

Overall, the key contributions of this paper are:
1) Proposing an operational space control formulation for
planar PAN´1 manipulators that can provide simple, real-
time, and efficient control solutions to both stabilization and
tracking tasks, as well as utilize redundancy if any;
2) Utilizing a first-order nonholonomic constraint in planar
PAN´1 manipulators to obtain a constrained dynamics and
formulating a general QP problem that can integrate different
task-oriented controllers and input limitations;
3) Demonstrating the proposed formulation in experiments
based on a newly-designed planar PA2 platform with negli-
gible gravity effects.

II. MODELLING

A. Inherent Constraint

Considering a planar N -link underactuated manipulator
with a passive first joint, its Lagrange equation describing
the motion can be written as

d

dt
p
BL

B 9qn
q ´

BL

Bqn
“ τn, n “ 1, 2, ¨ ¨ ¨ , N, (1)

where L denotes Lagrangian, qn denotes the generalized
coordinate, and τn denotes the generalized force. Note that
here Lagrangian is only related to the total system kinetic
energy since the system is in the absence of gravity. The
first joint is passive and the rest of joints are active. A matrix
form of the dynamics is given by

Mpqq:q `Cpq, 9qq 9q “ Bu, (2)
where q “ rq1, q2, ¨ ¨ ¨ , qN s

T denotes the generalized state
vector, Mpqq P RNˆN denotes the symmetric and positive-
definite inertia matrix, and Cpq, 9qq P RN denotes Coriolis
and centrifugal forces. B “ r0TpN´1qˆ1 IpN´1qˆpN´1qs

T is
the actuator matrix corresponding to N ´ 1 active joints and
u “ rτ2, τ3, ¨ ¨ ¨ , τN s

T is the actuator torque vector.
To show the inherent first-order nonholonomic constraint

in the system, we recall (1) with n “ 1, i.e.,
d

dt
p
BL

B 9q1
q ´

BL

Bq1
“ 0, (3)



where L “ 1
2

9qTMpqq 9q. According to [3], the planar
underactuated manipulator with a passive first joints owns
the property of partial integrability since the inertia matrix
Mpqq does not depend on q1 and there is no gravity, thus
BL
Bq1

“ 0. Further, the first term of (3) is computed as
BL
B 9q1

“ B
B 9q1
p 12 9qTMpqq 9qq “

řN
n“1M1npqq 9qn. Therefore, in-

tegrating (3) yields the inherent constraint of the manipulator,
N
ÿ

n“1

M1npqq 9qn “
N
ÿ

n“1

M1npq0q 9qn0, (4)

where q0 is the initial joint configuration and 9qn0 is the
initial angular velocity of the n-th joint [6]. A specific
expression of (4) for N “ 3 can be found in [7]. Any
admissible 9q should satisfy this constraint.

Therefore, unlike other types of planar underactuated
manipulators with the second-order nonholonomic constraint,
the planar PAN´1 manipulator has an inherent first-order
constraint, as given by (4). The quantity (4) is referred to as
angular momentum conjugate to q1.

B. Constrained Dynamics with Orthogonal Projection

Previous work focused on constrained underactuated sys-
tems, like underactuated manipulators with tip contact con-
straints [19] and humanoid robots with foot contact con-
straints [24]. An effective way is to eliminate their constraint
forces by projection and thus the constrained dynamics
can be obtained. Motivated by this idea, we approach the
constrained dynamics of the planar PAN´1 manipulator by
orthogonal projection related to the inherent constraint (4)
with an assumption.

Assumption 1: The manipulator starts from a static state.
The constraint (4) can be written in the Pfaffian form

Apqq 9q “ 0. (5)
Apqq P R1ˆN “ rM11,M12, ¨ ¨ ¨ ,M1N s

T is the constraint
mapping and the joint velocity has to be in the null space of
the constraint. P “ INˆN ´A

`A is called as null-space
projection matrix, where p‚q` represents the Moore–Penrose
pseudoinvere such thatA` “ AT

pAAT
q´1 and the function

dependency is omitted for simplicity. There exists a relation
P 9qnull “ 9q, if (5) is satisfied, where 9qnull denotes the
the velocity vector in the null space of A. In this paper,
the discussed system inherently satisfies the constraint (5)
because the system starts from static states and has the
property of angular momentum conservation. Thus, we have3

P 9q “ 9q. (6)
Pre-multiplying both sides of (2) with P yields

PM :q ` PC 9q “ PBu, (7)
where (7) can be considered as projected dynamics in the
null space of the constraint. However, PM is not invertible
since P is generally rank deficient (rankpP q “ N ´ 1).

To make the inertia matrix invertible, different ideas have
been proposed. [26] provided one treatment that can keep
fundamental properties in normal Lagrange formulations.
Specifically, substituting (6) and its time derivative into (7)

3With a slight abuse of notation, we replace 9qnull with 9q.

yields
PMP :q ` pPC ` PM 9P qP 9q “ PBu. (8)

Taking time derivative of pI ´ P q 9q “ 0 gives
pI ´ P q:q `A` 9A 9q “ 0. (9)

The constrained dynamics is obtained by adding (8) and (9)
M̄ :q ` C̄ 9q “ PBu, (10)

where M̄ :“ PMP`I´P and C̄ :“ PCP`PM 9PP`
A` 9AP . M̄ is called as constraint inertia matrix, which
is symmetric and positive-definite. Note that 9̄M ´ 2C̄ is a
skew-symmetric matrix. These two fundamental properties
have been proved in [26].

What we want to emphasize is that the projection used
is based on a “virtual” first-order nonholonomic constraint
inside the manipulator, different from those systems with
physical constraints. Interestingly, we can still formulate the
original dynamics of the planar PAN´1 manipulator as the
form of the constrained dynamics. Such a formulation paves
the way to the design of operational space controllers.

III. OPERATIONAL SPACE CONTROL FORMULATION

In this section, we will present the proposed operational
control formulation with two parts: task-oriented control and
QP-based control.

A. Task-Oriented Controllers

Given a task variable xpqq P Rm (1 ď m ď N ´ 1), the
task Jacobian J P RmˆN is defined by the relation

9x “ J 9q, (11)
where J “ Bx

BqP and P 9q “ 9q are used. Note that the
inherent constraint has been integrated into the task Jacobian
for consistency. Naturally, important relations occur

JP “ J and JT “ PJT . (12)
Taking the time derivative of (11) yields

:x “ J:q ` 9J 9q, (13)

where 9J “ d
dt p

Bx
Bq qP ` Bx

Bq
9P and 9P “ ´A` 9AP ´

P 9A
T
A`

T
according to [28].

To achieve the operational space control, we first assume
all joints of the manipulator are active by replacing4 Bu with
the generalized force vector τ osc P RN , thus the constrained
dynamics is updated to

M̄ :q ` C̄ 9q “ Pτ osc. (14)
Based on (14), we can design a desired control law τ osc to
achieve the desired task assuming J is full rank5.

1) PD Controller: The goal is to stabilize the planar
PAN´1 manipulator from an initial task variable x0 to a
desired task variable xd. Here we choose a PD controller in
[25] (Chapter 8.6), i.e.,

τ osc “ J
TKpe´ J

TKdJ 9q, (15)
where Kp ą 0, Kd ą 0, and e “ xd ´ x. If the task
variable involves spatial rotation, the error can be calculated

4This assumption has been used in [22]. Eq. (14) implies that only the
generalized force in the null space of the constraint contributes to the motion
of the manipulator.

5This could be ensured by a suitable trajectory planning [29].



by using angle and axis or quaternions [25]. The second
term is used to enhance system damping. Substituting (15)
into (14) generates the closed-loop control system

M̄ :q ` C̄ 9q “ PJTKpe´ PJ
TKdJ 9q. (16)

Choosing a Lyapunov function

V “
1

2
9qTM̄ 9q `

1

2
eTKpe, (17)

we substitute (16) to its time derivative
9V “ 9qTM̄ :q `

1

2
9qT 9̄M 9q ` eTKp 9e

“
1

2
9qT p 9̄M ´ 2C̄q 9q ` 9qTJTKpe´ 9qTJTKdJ 9q

´ 9qTJTKpe “ ´ 9qTJTKdJ 9q ď 0,

(18)

where (12) is used. Equation (18) shows that V decreases
for any 9q ‰ 0 and the system will reach an equilibrium
posture. Substituting 9q “ :q “ 0 into (16) can determine the
equilibrium posture as

PJTKpe “ J
TKpe “ 0.

Only e “ 0 satisfies this equilibrium posture as JTKp is
full rank. In other words, the controller (15) can stabilize the
manipulator to a desired task xd.

2) Inverse Dynamics Controller: The goal is to design a
controller such that the end-effector of the manipulator can
track a desired trajectory xdptq. To this end, we pre-multiply
both sides of (14) by JM̄´1,

J:q ` JM̄
´1
C̄ 9q “ JM̄

´1
Pτ osc, (19)

and then we substitute (13) and τ osc “ JTF ,
Λ:x`ΛpJM̄

´1
C̄ ´ 9Jq 9q “ F ,

where Λ “ pJM̄
´1
PJT q´1 “ pJM̄

´1
JT q´1 and F is

the force at the end-effector. Inspired by [14], the controller
is designed as

τ osc “ J
TF ` pI ´ JTJT

#
qτ 0. (20)

where
F “ Λp:xd `Kd 9e`Kpeq `ΛpJM̄

´1
C̄ ´ 9Jq 9q,

JT
#
“ pJM̄

´1
PJT q´1JM̄

´1
P ,

eptq “ xdptq ´ xptq, and an arbitrary joint force vector τ 0

does not affect the end-effector. The term pI ´ JTJT
#
qτ 0

is the joint force corresponding to a null space operational
force vector if there is redundancy. Note that τ 0 is trivial if
m “ N ´ 1. In this case, substituting (20) into (19) yields
the tracking error dynamics

:e`Kd 9e`Kpe “ 0, (21)
which shows that the control can achieve asymptotic oper-
ational space tracking. Moreover, this controller also works
for stabilization tasks.

The design of τ 0 can be driven by many purposes,
such as limiting the joint range and avoiding singularities.
Specifically, based on (14), we have

τ 0 “ M̄ :q0 ` C̄ 9q, :q0 “
d

dt
9q0, (22)

where 9q0 is typically chosen as 9q0 “ ´k0p
BHpqq
Bq qT , k0 ą 0,

and Hpqq ě 0 is a secondary objective function of joint
variables. To demonstrate the effectiveness of the secondary

task, we present an example, i.e., limiting joint ranges,

Hpqq “
1

2n

n
ÿ

i“1

p
qi ´ q̄i

qM,i ´ qm,i
q2, (23)

where q̄i “
qM,i`qm,i

2 and qi P rqm,i, qM,is [25]. This renders
that we can expect a desired configuration at the end of the
main task, especially for a large N .

B. QP-based Controller
With a desired control law τ osc, the goal is to determine

the control input u in the original dynamics that can exactly
reproduce τ osc. Mathematically, if we relax the equality
relation to an optimization problem, such a goal can be
illustrated as

u˚ “ arg min
uminďuďumax

||Bu´ τ osc||
2, (24)

where umin and umax are the lower bound and upper bound
of actuator torques. Due to underactuation, the manipulator
cannot exactly implement the desired torque commands even
if we remove the actuation constraint. Similar issues have
been reported in [22] and they decomposed the error norm
into task-space and self-motion space norms. It was because
they enforced the system to comply with a user-defined
task constraint Φpq, tq “ 0. Thus, the task-space norm was
corresponding to the range space of Γ while the self-motion
space norm was corresponding to the null space of Γ, where
Γ “ BΦ{Bq. Inspired by [22], we can decompose (24) as
||Bu´ τ osc||

2 “ ||Bu´ τ osc||
2
P ` ||Bu´ τ osc||

2
I´P .

(25)
In our case, the manipulator is inherently enforced by a first-
order nonholonomic constraint Apqq 9q “ 0, which implies
that all admissible motions should be in the null space of A
(or, equivalently, in the range space of P ). Since the design
of τ osc is based on the constrained dynamics, the resulting
τ osc is in the null space of the constraint. ||Bu ´ τ osc||2P
can be effective to minimize the total error ||Bu´ τ osc||2,
however, ||Bu ´ τ osc||2I´P would increase the total error
for any u˚. To minimize the error in (24) effectively, a QP-
based formulation with additionally introducing a damping
term (e.g., uTu) is designed as

min
uminďuďumax

1

2
||u||2 ` r||Bu´ τ osc||

2
P (26)

where r ą 0. Note that τ osc is calculated based on the con-
strained dynamics encoded by the nonholonomic constraint,
instead of the original dynamics. Equation (26) specifically
minimizes the total error in the range space of P , which
emphasizes the importance of orthogonal projection.

IV. SIMULATIONS

In this section, planar PA2 and PA3 manipulators are used
to demonstrate the effectiveness of the proposed operational
space control formulation. For comparison, the model pa-
rameters of the manipulators, the initial configurations, and
the desired tasks are chosen from [8] (PA2) and [12] (PA3).
For all simulations, the original dynamics (2) was applied.

A. Planar PA2 Manipulator
1) Stabilization Task: The initial configuration was set as

q0 “ r1.6, 0.9, 0.5sT and the initial angular velocity was



(a) (b) (c) (d)

Fig. 2: Simulation results of the planar PA2 manipulator on the stabilization task using the control (15) and (26). (a) Position of the
end-effector; (b) Joint angles of the manipulator; (c) Torque profiles of the active joints; (d) Stabilization error of the end-effector.

(a) (b) (c) (d)

Fig. 3: Simulation results of the planar PA2 manipulator on the tracking task using the control (20) and (26). (a) Position of the end-effector;
(b) Joint angles of the manipulator; (c) Torque profiles of the active joints; (d) Tracking error of the end-effector.

(a) (b) (c) (d)

Fig. 4: Simulation results of the planar PA3 manipulator on the stabilization task using the control (20) and (26). (a) Position of the
end-effector; (b) Joint angles of the manipulator; (c) Torque profiles of the active joints; (d) Stabilization error of the end-effector.

(a) (b) (c) (d)

Fig. 5: Simulation results of the planar PA3 manipulator on the tracking task using the control (20) and (26). (a) Position of the end-effector;
(b) Joint angles of the manipulator; (c) Torque profiles of the active joints; (d) Tracking error of the end-effector.

zero. The task was to stabilize the position of the end-effector
px, yq to pxd, ydq “ p1.7,´1.2qm. In simulations, we first
used the controller (15) to calculate the desired operational
space control command τ osc, where Kp “ 50I2ˆ2 and
Kd “ 50I2ˆ2. Then at each step, the calculated τ osc was
fed to the QP computation (26) with r “ 1. As shown
in Fig. 2 (a), the desired task was achieved and the end-
effector was stabilized to the desired position with a steady-
state error norm less than 2.6 ˆ 10´5m. As expected, the
motor torque evolved within the limitation (r´10, 10sNm).
We noticed that the same task had been manipulated based on
the same manipulator in [8], however, they used an off-line
searching method to determine the desired joint configuration

and control gains given initial configurations and desired
task variables. Although [8] achieved the task, our method
showed significant advantages on control design (no search-
ing was included) and realization (real time implementation
was feasible).

2) Tracking Task: The initial configuration was arbitrarily
set as q0 “ r1000, 500, 200sT and the initial angular velocity
was zero. The end-effector was expected to track a trajectory
r´1, 0.2 sinpπtq´1.5sTm. The controller (20) was used with
Kp “ 100I2ˆ2, Kd “ 100I2ˆ2, and τ 0 “ 0. The resulting
torque command was used in (26) with r “ 50. The tracking
task with limited torque output was achieved with an error
bound of 2.69ˆ 10´4m, as shown in Fig. 3.



(a) (b) (c) (d)

Fig. 6: Experimental results of the planar PA2 manipulator on the stabilization task using the control (15) and (26). (a)-(c): Evolution of
one trial; (d) Stabilization errors of 20 trials (||xd ´ x||2).
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Fig. 7: Planar PA2 underactuated robot.

B. Planar PA3 Manipulator

1) Stabilization Task: The initial configuration was set
as q0 “ rπ2 , π,

π
8 ,

π
8 s
T and the initial angular velocity was

zero. Here we used the controller (20) to stabilize the end-
effector position px, yq to pxd, ydq “ p1.5, 2qm, where Kp “

10I2ˆ2, Kd “ 3I2ˆ2. The secondary task will be included
in this manipulator since the planar PA3 manipulator is
redundant with respect to the task variable. Specifically, (22)
and (23) were used with k0 “ 10, qm,1 “ qm,3 “ qm,4 “
´π, and qM,1 “ qM,3 “ qM,4 “ π. No limitation was
enforced to the second joint. The resulting torque command
was used in (26) with r “ 1.5. Again, we repeated the same
simulation as [12] did by using our controllers. Fig. 4 shows
the manipulator can be stabilized to the desired position with
constrained torques and expected joint ranges (steady-state
error norm: ă 4.64ˆ 10´4m). Note that trajectories without
oscillations can be achieved if no secondary task is involved.
However, [12] reduced a four-link manipulator to a three-
link one and applied a discontinuous two-stage control with
a searching algorithm, which was more complex and lack of
using redundancy.

2) Tracking Task: The initial configuration was arbitrarily
set as q0 “ r1000, 500, 200, 300sT and the initial angular
velocity was zero. The end-effector was expected to track
a trajectory r´1.5, 0.2 sinpπtq ´ 2sTm. The controller (20)
was used withKp “ 200I2ˆ2,Kd “ 200I2ˆ2, and τ 0 “ 0.
The resulting torque command was used in (26) with r “ 10.
Fig. 5 shows that the tracking task with limited torques was
achieved (error bound: ă 5.84ˆ 10´4m).

V. INITIAL EXPERIMENTS

A planar PA2 robot was designed, as shown in Fig. 7.
The first joint was connected to a revolute bearing which
was attached to a base, while the rest of two joints were

actuated by brushless DC motors (T-motor: MN4006). To
alleviate the deformation of linkages and reduce the effect
of gravity, a support with a universal wheel was designed,
although this support would introduce unavoidable frictions
between the wheel and oiled ground. The joint angles were
measured by using AS5047D magnetic encoders and VESC
was used for motor control. A wireless network was used
to transfer the data between a remote computer and a single
board computer (Raspberry Pi).

Here we will show the results of stabilization tasks and
the tracking validation is subject of future work. Figs. 6 (a-c)
show one trial evolution, where Kp “ diagpr45, 60sq, Kd “

30I2ˆ2 were used. The torque limitations for the second and
third joint were 0.3Nm and 0.1Nm, respectively. The end-
effector position was estimated by forward kinematics. The
robot converged but with a steady-state error („ 0.003m),
which may be caused by the friction between the support and
ground since it became dominant when the end-effector was
close to the desired position. Fig. 6 (d) shows the stabilization
errors of 20 trials (error bound: ă 0.018m) with various
initial positions and desired positions, further demonstrating
the effectiveness of the proposed control formulation.

VI. DISCUSSION AND CONCLUSION

In the simulations, stabilization or tracking errors could
be observed, but they were in a small scale. The errors
can be further reduced if we tune down the tolerance in
the numerical solver. The method assumes that the total
angular momentum is zero, but the experiments show that
the proposed controller can still achieve acceptable results in
practice even in the presence of the small non-zero angular
momentum injected by the friction with the ground and by
the power cable.

In this paper, we presented an operational space con-
trol formulation for a class of underactuated manipulators,
planar PAN´1 underactuated manipulators. By using the
techniques of orthogonal projection and QP, we provided
a simple control solution, which showed advantages over
those solutions in previous work in terms of design efforts,
real-time realization, and exploiting available redundancy.
In the future, we will devote to extending the proposed
formulation to the case of non-zero angular momentum. The
experimental setup will be improved to remove the friction
caused by the support. Moreover, we desire to generalize
the proposed formulation to a large class systems with a
conserved quantity like free-floating space robots [17], [30].
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