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Legged Robot State Estimation in Slippery Environments Using
Invariant Extended Kalman Filter with Velocity Update

Sangli Teng, Mark Wilfried Mueller, and Koushil Sreenath

Abstract— This paper proposes a state estimator for legged
robots operating in slippery environments. An Invariant Ex-
tended Kalman Filter (InEKF) is implemented to fuse inertial
and velocity measurements from a tracking camera and leg
kinematic constraints. The misalignment between the camera
and the robot-frame is also modeled thus enabling auto-
calibration of camera pose. The leg kinematics based velocity
measurement is formulated as a right-invariant observation.
Nonlinear observability analysis shows that other than the
rotation around the gravity vector and the absolute position, all
states are observable except for some singular cases. Discrete
observability analysis demonstrates that our filter is consistent
with the underlying nonlinear system. An online noise param-
eter tuning method is developed to adapt to the highly time-
varying camera measurement noise. The proposed method is
experimentally validated on a Cassie bipedal robot walking over
slippery terrain. A video for the experiment can be found at
https://youtu.be/VIqJLOcUr7s.

I. INTRODUCTION

For legged robots to navigate complex environments with
slippery and unstable terrain illuminated with poor light,
state estimation becomes important. To enable navigation in
complex environments, state estimators for legged robots that
fuse measurements from a wide range of sensors, such as
inertial, contact and visual information are needed.

Typically, filters such as Unscented Kalman Filter (UKF),
Extended Kalman Filter (EKF) and Invariant Extended
Kalman Filter (InEKF) are used to fuse inertial measure-
ments with leg kinematics for legged robot state estimation
[31, [5], [18], [10]. These methods exhibit good performance
when the contact point is static, as assumed in their system
models. However, the drawback of these results is the de-
graded estimates when the contact point slips due to either
slippery ground or unstable terrain. Potential slippage in
these early research is either treated as noise, see [5], [10],
[12], or the measurement with slippage is considered as
outliers that are rejected in the update, see [3]. If the slippage
is consistent or has a large magnitude, these methods can fail.
Visual-inertial based methods have also been explored for
state estimation. Research in [6] uses optical flow measure-
ment for UKF innovation, where the FAST corner detector,
[17], serves as the underlying algorithm to extract features.
Research in [4] directly integrates the landmarks to the state
space. However, fast lighting changes or loss of texture can

This work was supported in part by National Science Foundation Grants
11S-1834557, CMMI-1944722 and Berkeley Deep Drive.

Sangli Teng is with the Robotics Institute at University of Michigan, MI
48103, USA, sanglit@umich.edu

Mark Wilfried Mueller, and Koushil Sreenath are with the Department of
Mechanical Engineering at University of California, Berkeley, CA 94720,
USA, {mwm, koushils}@berkeley.edu

(0]
ndE
I.\Il'(l&

a,a: Encoder measurements

r.: Leg kinematics

Fig. 1: The Cassie bipedal robot used for the experiment. Orienta-
tion R and position p of robot pelvis (IMU) are represented with
respect to the world frame (W). The tracking camera pose, i.e.
R, and p_ are expressed with respect to the robot-frame (B). The
tracking camera mounted on the robot’s pelvis can provide velocity
v, and rotational rate @, measurements in camera pose frame (C).
greatly influence the quality of landmark extraction, resulting
in bad state estimation.

Research in [11] and [21] use a factor graph based method
that integrates inertial, leg kinematic and visual information
for long range navigation in legged robots. Both researches
reveal that inertial-kinematic-visual methods outperform the
methods with less information fused. However, since the
factor graph based methods use measurements along the
whole trajectories for smoothing, the update-rate is too low
for real-time control purposes.

To address slippery environments, [16] and [19] add force
sensors or accelerometers, respectively, on the stance leg
to detect slip events. However, these sensors are vulnerable
to ground impact. A probabilistic method is used in [15]
for slippage and contact detection. Contact state obtained
by [15] is fused to the filter in [3] for outlier rejection. A
Constraint Kalman Filter is adopted in [20] to include the
linear complementary condition involved in contact modes.
The external forces, friction coefficient and contact states are
determined by nonlinear optimization techniques. However,
information of the terrain is required to parameterize the
external force, e.g. the slope of the ground, which may
restrict the use of the method.

In this paper, we develop a filter-based approach that
addresses the state estimation for legged robot walking over
slippery terrain in a computationally efficient manner. The
key idea is to fuse the vision-based velocity measurement
with inertial and leg kinematics information. In particular,
we use the Intel Realsense T265 tracking camera that can
provide velocity and rotational rate measurements in the
camera frame. The contributions of this paper are:

o Derivation of an InEKF for the inertial-legged-robot-



camera system. Measurements model for legged kine-
matics and tracking camera are presented.

e Auto calibration of camera pose, i.e, estimating the
offset between the camera-frame and the robot-frame
as part of the state estimation.

¢ Online noise parameter tuning to adapt to the time-
varying manner of camera noise due to ground impact.

« Nonlinear and discrete observability analysis. The anal-
ysis demonstrates the consistency of our observer.

« Experimental validation using a 3D bipedal robot over
slippery terrain. Experiment suggests that our method is
robust to significant amount of slippage.

The proposed method builds off the inertial-kinematics
based work in [3] and [10]. However, in comparison to these
priori work, our method is more robust to consistent slippage,
while [10] could diverge and [3] fails to reject all the slippage
outliers thus leading to inaccurate estimation.

The remainder of this paper is organized as follows.
Section II presents system and measurement models. Section
IIT presents the setup of our filter. Observability analysis
is presented in Section IV. Section V presents experimental
result and conclusions are presented in Section VI.

II. SYSTEM AND MEASUREMENTS MODEL

For a legged robot, we wish to estimate the orientation
R € SO(3), velocity v € R? and position p € R? of the robot
pelvis in the world frame via the measurements through
the inertial measurement unit (IMU), leg kinematics and a
tracking camera. The IMU is installed in the robot pelvis and
we assume the IMU frame is aligned with the robot pelvis
frame. In this section we introduce the model of the robot-
camera system and the derive the measurement model. The
robot system and the variables are illustrated in Fig. [T]

A. System Model

The IMU measures the acceleration a and angular velocity
® in robot (IMU) frame. The measurements @ and @ are
corrupted by white Gaussian noise w,, wg, and bias by, by, €
R3:

d=0+by+wy, a=a+b,+w,. (1)
The IMU bias are modeled as random walk, i.e, their
derivatives are white Gaussian noise wj, and wp,, i.e.

bo =wpo, ba=Wpa. 2
Therefore, the dynamics of robot IMU are governed by:
p=v, v=R(@a—b,—w,)+g. 4)

where g is the acceleration due to gravity and (-)* denote a
3 x 3 skew symmetric matrix, s.t x x y =x*y,Vx,y € R3.
The position and orientation of the tracking camera with
respect to the robot-frame could be represented by p. € R?
and R, € SO(3) respectively. We model the camera pose as
constants corrupted by white Gaussian noise w,. and wg:
R.=Rwy., p.=Wwp. )

B. Leg Kinematics Measurements

The legged robot is equipped with encoders in leg joints
that provide us with the corresponding angular position o
and its derivative & := %—‘t’. The corresponding measurements
@& and @ are corrupted by white Gaussian noise. Using leg
kinematics, we can compute the location of the iy, contact
point r;(@) in root frame. Let the position of the iy contact
point in world frame be d;, expressed as:

d,-:p+Rr,-(a). (6)
Taking derivative on both sides, we obtain the velocity of
the iy, contact pqint:

di:v+RJl-(x+Ra)Xr,-(a), (7)
where J; = %. Representing lb in robot-frame, we have:
RTdi:RTerJiaerXri(a). (8)

If we assume the iy contact point remains static to the
world frame (no slip), we obtain the measurement model:
R'd;=0, —J;&@— & ri(@&)=R"v+ny, 9)
where ny is white Gaussian noise. For simplification, the
single parameter ny incorporates the uncertainty in encoder
measurements, kinematic model, the effect of slip and gyro-
scope bias. Similar measurement model, with the gyroscope
bias incorporated, is used in [3] for UKF. However, we will
later show that our model could formulate a right invariant
observation [2].

C. Tracking Camera Measurements

The tracking camera mounted on the top of robot could
provide the measurements of velocity v. and rotational
rate @, in the camera-frame. The velocity of the robot
represented in the camera-frame is:

ve=RIR"™v+ @ R]p.. (10)

We assume the biases of angular velocities and rotational
rate measurement have been eliminated by the tracking cam-
era’s internal visual inertial odometry algorithm. Therefore,
the tracking camera measurements are modeled as solely
corrupted by white Gaussian noise n,. and ny,:

Ve =ve+ Ry, d)c:mc+nwc- (11
The measurements finally becomes:
V. =RIR"WW+ (®. —ny:) Rl p.+ny. (12)

D. Problem Formulation

Based on the system model and measurement model
(O [12), we now formulate the filtering problem. For a legged
robot, with one tracking camera mounted on the pelvis and
leg kinematics constraints, we define the state variables:

x:=(R, v, p, by, by, R, p.). (13)
Our goal is to use the measurements from the IMU, leg
kinematics and tracking camera to estimate x. Note, by
including R, and p, into the state space, we will avoid the
problem requiring an accurate calibration of camera pose and
thus increase the robustness.

III. INVARIANT EXTENDED KALMAN FILTER SETUP

The InEKF exploits the symmetry of a system represented
by a matrix Lie group. We first provide the prerequisite
knowledge of InEKF and then apply it to our system. The
InEKF theory and notation are presented in [2], [10], while



the InEKF augmentation of IMU bias are in [1], [10], and
the system discretization is in [10].

A. Math Prerequisite

Consider a n x n matrix Lie group ¢ and its associated Lie
algebra g, representing the tangent space of ¢ at the identity.
We define the linear map:

()N R" — g, (14)
such that V& € R”, we can associate it with the elements in
the matrix Lie group through the exponential map:

exp(-) i R" =, exp(€) = expm(E),
where expm(-) is the matrix exponential.

For conversion from local to global coordinate, we define
the adjoint map Ady : g — g:

Ady(E")=2&"x"", vxe9. (16)

The introduction of the invariant error is the core of INEKF
theory. Consider a system defined on matrix Lie group ¢4 and
its associate Lie algebra g with input u;:

SH=h @), wEY 1200 ()
Consider trajectories ), and JX,, the right invariant error
between the two trajectories are defined as:
n=xx" (18)
Theorem 1 of [2] suggests that if the system in is group
affine, i.e:

Ju (X122) = fur (X1) X2+ X 1S (X2) — X1.Sue La) X5 (19)

then the error dynamics are independent of state and satisfy:

S, = () = fu (M)~ L) QO)
Linearizing (20) using first order approximation of the ex-
ponential map, we have:

N, =exp(§,) ~I+§;, 1)
gu(exp(€) = (AE) FollE )~ (AE)", @2
where the the Jacobian matrix A, is independent of &,.
Combining 20}22)), we gbtain a linear differential equation:
S =g, 23)
The log-linear property of error propagation [2] suggests
that if the initial error satisfies 1y = exp (&), the linearized
error dynamics can fully represent the nonlinear error
defined in (T8), as:
n,=exp(,), 1>0. (24)
In general, for systems satisfying the group affine property,
by the introduction of the invariant error and the log-linear
property of error propagation, we can use a linear differential
equation (23) to describe the error between two states thus
avoiding problems involved in nonlinear observer design.

15)

B. Estimation Error Dynamics

Based on the system model @}f3), we give the definition
of the error between the estimated states X and the real states
x, where () denotes the estimated states.

The states of IMU (R, v, p) are embedded in the double

direct spatial isometry SE,(3) [2]:

R v p
X=1(01x3 1 O (25)
Oix3 0 1

This matrix is the extension of special Euclidean group
SE(3) with additional spatial vectors. Without bias, the

dynamics of IMU states are group affine. Thus, we define
the right-invariant error of the IMU states and linearize it:
50 —1
n=xx

RRT 9»—RR™v p—RRTp I1+&p &, &,
= |01x3 1 0 ~ | 01«3 1 0],

013 0 1 0,43 0 1
(26)

We define &y, := [&k, &1, &7]T € R°. Using &, we
can formulate the standard InEKF. However, augmenting the
error of IMU biases and camera misalignment will result in
an “imperfect” InEKF [1], i.e, the state matrix of linearized
system becomes state dependent.
The estimation error of R, is defined by:
Ne=RRI —exp(Ep ) ~ 1+ Ep. @7)
For IMU biases and camera position, the estimation error are
calculated by standard vector difference, i.e:
ey =by—by, ey, =by— by, epc:i’c_Pc~ (28)
The linearized estimation error of the entire system could be
expressed as the concatenation of the error in @-@:
& :=[&lvv €l ey Ehereh] T ERT (29)
By system dynamics (2H5) and equation (Z0}22), we could
derive the linearized estimation error dynamics:
°(RRT) = (R(wo 1))
% (f’fkRTV) ~ g &r +R(Wa*eha)
+9Er (Wo — €per) ,

d . ooo v (30)
5 (P—RRTp) ~ &+ P R(wo — epo)
d
Eebw = Whw, Eebw = Wha,
d .
o (ReRY) =wp,, —epc=wp.
Representing (30) in matrix form, we have:
& =AE +B;w, (€2
where, .
0 03 03 —R 03 0356
x 0 0; 9% -R 0
A= | 8 3 3 VX 3%6 , (32)
0; I3 03 —p*R 03 O34
0129 I
) R0, 0
B, — [ OAdx 0;“2 },Adz | —»R R 05|, (33
12x9 12 7IA,XIA€ 03 R
w = vec(Wo, Wa, 03x1, Wi, Wi, Wr., Wp.).  (34)

Note w corresponds to the noise and the system covariance
is P. The dynamics of P is governed by the Ricatti equation
given as follows:

d
aP =AP+PAT+Q, Q=B;Cov(w)B].

C. Propagation Steps

(35)

To apply the filter in discrete time, we assume zero-order
hold to the input and perform Euler integration from time #;
to #¢11. The discrete dynamics becomes:

(@0 b)),
b =9 +R (ax—b, ) Ar+gA
k+1 7 Tk k \ @k a.k + 8At,

o o

(37
P ; I

P = P{ 00 M+ SR (@—byy ) AP+ Jgat, (38)

A — A+ A— A4 A— /\+
dk+1 = dk ’ ba),k+l = bw7k7 ba,k+l = ba,lﬁ (39)



R i1 = Rj,ka P = i’Zk- (40)
where At =1t — tk,(-),‘: denotes the estimated states at time
tr with all measurements until #; are processed and (-),
denotes the state estimated at time f; through propagation.
Given the system matrix at time f, we have discrete state
transformation matrix and discrete-time covariance propaga-
tion equation:

D = expm (AxAL),  Pryy = OP® 4 Oy, 41)
where Q) ~ CIDkab,IAt. We recommend [10] for more details
on the system discretization.

D. Update Steps

The leg kinematics measurement (9) formulates the right-
invariant observation [2], which exploits the geometry prop-
erty of the system:

y=2x"'b+s, (42)

where: .
y:[_ (Jia+&)xri<a)>Ta_]?O]Ta (43)
b=(01.3,~1,0]", s=]n],0,0]" (44)

As the right-invariant observation only contains elements in
X, we first derive the innovation term for ¥ and then expand
it to the full state. The update equation for ) are defined by
matrix multiplication:
¥r=exp(L(Xy-0)% (45)
Nt =exp(L(n b—b+x s))N, (46)
where L is the observation gain matrix. Using the first order
approximation of exponential map, we have:
n* =exp(& ) ~ T+ &)
~(I+Ep) + (LIL(n"b—b+x7s))",
where IT = [I5,035] is an auxiliary matrix to select the first
three rows of the right hand side. Therefore we have the
update equation for &,

Ehw =Emu *L<[03,*13,03}§1_MU - [lesy(knf)T,les}T) .

(47)

(48)
Expand to full state (29), we have:
§+:€_*K(H€_*[lesv(Rnf)T,lels]T), (49)
where the Kalman gain K is given by:
K=PH'S™' with S=HP HT+N, (50)
N =RCov(n;)R", H=1[03,—I3,05,s]. (51
Using the correction term:
8:=(8],,.6],.6],.6%. 6" =KI(Zy—b). (52
we finally have the update equations:
2 =exp(mu) X, (53)
by =b, +8p,, b,=by+ 8,0, (54)
Rl =exp(8re)R., pl=pc+8 (55)
P"=(I-KH)P (I-KH)" +KNKT. (56)

The tracking camera measurements can not be for-
mulated as a right invariant observation. Therefore, the
correction term 8 will be computed by standard vector
addition. A pseudo measurement based InEKF implemen-
tation using a similar update equation has been reported in
[7]. For measurement y = h(x,n), we implement first order
approximation to obtain the linearized observation model:

h(x,0) —h(x,n) =H.E+Gn+h.ot(&n), (57)
where H, and G are Jacobians with respect to the state error
and noise term respectively.

We apply to (I2) to compute the the observation
matrix for the tracking camera measurements:
H.= [o,kaT,ogx%a)jRIi)j +RI(M>X,_@:W] .
(58)
Note that we need to take the derivative w.r.t to error defined
in to obtain (58)). The corresponding covariance matrix
for this measurements takes the form:
N.=RR.Cov(v.)RIR", (59)
Cov(v.) = Cov(ny,e) + (—R!p,)* Cov(nee)(R1p,)*. (60)
Replacing N and H in equations (50-51) with N, and H., we
have the update term for the tracking camera measurements:
6. =K (h(z)—v,.). (61)
It is worth noticing that the observation matrix H (51)) for leg
kinematics measurement is a constant while H, (58) is state
dependent. The state-dependent nature of H. may lead to
inconsistency in observability and thus needs more attention.

E. Parameter Tuning

As an accurate estimation of sensor noise is key to the
implementation of filtering, the covariance of the tracking
camera measurements should be carefully computed. We
define the tracking camera measurement # := [@],¥]]|T and
its covariance W, := [nj,.,n):|T. Since the periodic ground
impact while walking causes highly time-varying camera
noise, we estimate covariance of w,, online rather than using
a fixed value. The covariance of w,, at time #; is denoted by
Cov(wy,),, which is estimated by the empirical covariance
from #;,_, to ty,n € N*:

1 & 1 &
Cov(wp), ~ - Z{)ek,ielii,with e =My, — - Z;)mt*’f' (62)
1= =
To avoid large delays, we tend to use a small nj In the exper-
iment, the filter works well using online tuned Cov(w,,), but
diverges when we use a fixed value. The estimated covariance
is presented in Fig. [3] which is highly time-varying.

IV. OBSERVABILITY ANALYSIS

This section discusses the observability of the filter. As the
leg kinematic measurements forms a right-invariant observa-
tion, we could obtain the unobservable states of the filter
without nonlinear observability analysis [2]. Similar systems
has been thoroughly studied in [3] and [10], thus we only
analyze the filter with tracking camera measurements.

A. Nonlinear Observability Analysis

We employ the notion of locally weak observability de-
picted in [13]. Consider a nonlinear system in the form:
x= f(x7u)7 y= h(x) (63)
Given state x and input «, the observability matrix is spanned
by the gradients of the Lie derivatives:

V.ZPh(x)
O(x,u) = folh(x) (64)
' n—1
ZPh(x) =h(x),... Z}'h(x) = mf, n>1. (65)

We use exponential coordinates to parameterize rotation:

R =exp(9), ¢=R(¢)(D, 9= [‘Px» Oy, ¢Z]Ta (66)



where @ could be interpreted as the rotational rate expressed
in the robot-frame while @ is in the world frame. Similarly,
with R, = exp(¢,), we then represent the system in
robot- centn’c frame to lower the computation burden:
[ ¢ VT7pT bT bT ¢c7pc ]
= [ ¢7, (RTv)T (RTP)T b.bl,. 01.pC |".

As the transformation is mvertlble 'the observability will
not change. The system becomes:

(67)

R®
. oo, | ®@V+a+R'g
x=f(x,u):= @ p+7v . (68)
012x1
h.(x) =R'v+®)R!p,, (69)
®:=0—by, a:=a—b,, u—vec((b a. (70)

Applying (64) to (68] [69) and do row transformation, the
observability matrix could be obtained and simplified as:

0 I 0 0 0 A (Ro)"
RTgX ® 0 v -1 #0,6 0
0 @2 0 #thy —-@° #, 0
O, = #1 @3 0 #34 —@*? e 0 ,
0 @4 0 #a -@° # 0
#41 @5 0 #s 4 —@*4 #46 0
L 0 @C 0 #a @ #s 0 |
' ' _ (71)
#1=0"R'g", #4=00""v/dbe,
A:\_)X-F(RC(DC)XPC, #0,6: (&)X\_’+¢_1+RTgX)X (72)
#o= (@ (@ v+a+ LRI
Without the effect of noise, we also have @ = (R.®.)*

Therefore we could determine the null space of the observ-
ability matrix, i.e. U, s.t. 0.U. = 0:

g" 00 0 0 0 0T
0 071 00 O O

0 0 0 00 0 @7
The first two rows of U suggest that the orientation around
the gravity vector and the position are unobservable. The
position of the camera along the body angular velocity is also
unobservable with only one measurement according to the
last row. Note, the camera position will be fully observable
when multiple different measurements are obtained.

The observability matrix may lose rank with certain robot
motion, see the simulation of camera pose estimation in the
video. We next list the singular cases based on the angular
and linear velocity of robot pelvis. If @ = 0,¥ = 0, the last
2 columns of O, in become O thus rank loss is 5. In
this case, the camera pose becomes fully unobservable. If
® =0,y # 0, the last column of O, becomes zero, while the
rank of the last but one column depends on ¥*. Thus the
total rank loss is 3. In this case, the orientation around the
velocity vector and camera position are unobservable.

Uc= (73)

B. Discrete Observability Analysis

The filter is applied in linearized and discretized version:
Xip1 = Prxg, Y= Hpxy (74)

However, observability of this discrete linear time-varying
system may differ from the underlying nonlinear system
as the linearized points deviate from the real states. This
inconsistency in EKF-SLAM has been analyzed and solved

by Observability Constraint EKF [14]. Similar problems in
EKF design for legged robot navigation are also studied in
[5]. Following the method in [14], we analyze the local
observability matrix [8] at the “standard” operating point,
i.e, linearized at the latest estigated value:

H k+1‘:I>+

0= Hk+2q>k+lq)l_: (75)

By applying (73)), the discrete dbservability matrix could be
obtained and simplified to:

0 RT 0 0 0 #ye R,05R]]
RN #p 0 #4 #s5 # #17
D.e #1 tho 0 #hy #Hs # 7
= #31 #io 0 #H34 s #g #37
#4.1 #io 0 #4a H4s5 Hae #47
#s1 #so 0 #s4 #55 #sg #s57
L #6,1 #eo 0 #ea Hes Heo #6,7 o
#i1 = iR g Ati> 1 #p =R i>1
ta=—R], (VO RE A+ L R A?)
o _RTTVEL (x pt X pt
#ia = R,m. o (VERE A L RE A )~ o
R, (171 1g* R, A% i >2
#,,5:— CORTRE ALi>2#0=R. LR T i>1

k+i"k+j

#i6 = Rk+ivk+i + mc,k+iRc,k+ipc,k+i7l >0
As the third column of g* is always 0, the first column of
the O, suggests that ¢, is always non-observable despite the
discrepancy between the operating point and real state. The
position is also unobservable according to the third column.

When @, is time-varying, the camera position is fully
observable as multiple different measurements are consid-
ered. In this case, the last column of bc has full rank, but
essentially not conflicting with O.. When @, is strictly a non-
zero constant for at least 7 consecutive time steps, the rank of
the last column of O, is greater than O,. As the unobservable
state depends on the real input that is inaccessible, it is
impossible to design the operating points like [5] or [14].
However, this case is very rare as the robot motion is highly
dynamical. Therefore, our filter will stay consistent with the
underlying nonlinear system except for this rare case.

V. EXPERIMENTAL VALIDATION

We launched experiments on the Cassie bipedal robot to
evaluate the proposed filter. The Cassie robot is equipped
with an IMU and 14 encoders. The IMU can provide angular
velocity and linear acceleration in robot-frame at 800 Hz.
The encoders can provide joint angles and their derivatives
are numerically computed at 2000Hz. Contact states are
obtained via spring deflection measured by encoders and
forward kinematics. A Intel Realsense T265 Tracking camera
is mounted on the top of robot to provide velocity and
angular velocity at 200Hz. Motion capture system is setup
to obtain the ground truth.

The robot is walking over slippery terrain for about 4
meters within 35 seconds with the controller from [9] im-
plemented. Snapshots of experiments are presented in Fig.
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Fig. 3: Tracking camera measurements & empirical std. dev. We
use n =15 in equation (62).

Tracking camera measurements and their empirical standard
deviations are presented in Fig. [3] We also plotted the states
estimated by fusion of only inertial and leg kinematics,
denoted by legend “camera off” for comparison. We applied
the outlier detection method [3] in both cases. The kinemat-
ics measurement with Mahalanobis distance greater than a
threshold p, i.e x2=87S"'8 > p will be discarded. As the
slippage persisted for multiple seconds, the estimated value
will diverge if we discard all the slippage when the camera
is off. Thus, we carefully tune the threshold to maintain
convergence while trying to discard as much outliers as
possible. We use p = 30.1.

The estimated robot velocity and orientation in the robot-
frame are presented in Fig. ] and [5] respectively. The velocity
in the robot-frame is observable thus converging fast. Rota-
tion around the gravity axis, i.e, ¢, is not observable, thus
the uncertainty slowly grows. ¢, and ¢, are observable and
converges after a transient state. Due to outliers, the inertial-
kinematics method inaccurately estimated some points but
our method is always consistent with the ground truth.

Fig. [7] presents the estimated Cartesian position. As the
position of robot is unobservable, a discrepancy is seen after
an initial drift. However, the overall horizontal drift is smaller
than 5% over the 3.5 m trajectory. The vertical drift is as
small as 0.07 m, which is satisfactory compared to the InNEKF
in [10]. The orientation and position of camera in the robot-
frame are presented in Fig. [6] All the 6 quantities converge
and the 30 covariance hull overlapped well with the ground
truth. This result is quite satisfactory considering the highly
time-varying camera measurement noise.

VI. CONCLUSIONS

This paper proposed a state estimation approach for legged
robots by fusing inertial, velocity measurements from a
tracking camera as well as from leg kinematics. The obtained
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Fig. 4: Velocity estimation in robot-frame. The RMSE for vy, vy
and v, are 0.0703 m/s, 0.0660 m/s and 0.0513 m/s.
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Fig. 5: Estimated robot orientation. The RMSE of ¢y, ¢y and ¢, are
0.0362 rad, 0.0213 rad and 0.185 rad respectively.
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Fig. 6: Estimated camera pose. The values converge to the calibrated
value after a transient state. The ground truth camera orientation is
calibrated by aligning the robot and camera IMU. The nominal
camera position is obtained by the CAD model of the platform.
information is fused by an invariant extended Kalman filter.
The leg kinematics based velocity estimation is formulated
as right-invariant observation. The misalignment between the
camera and the robot-frame is also modeled thus enables
auto-calibration of the camera pose. An online covariance
tuning method is proposed to handle the highly time-varying
measurement noise from the tracking camera. Nonlinear and
discrete observability analysis suggest that only the rotation
around the gravity vector and the absolute robot position is
not observable, and our proposed filter remains consistent
with the underlying nonlinear system.

Our method is evaluated in legged locomotion experiments
with significant amount of slippage involved. The result
suggests that our method could accurately estimate the robot
inclination and the robot velocity with robustness. Although
absolute velocity and rotation about gravity is unobservable,
their drifts remains small. Camera pose is also successfully
estimated by the filter.
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Fig. 7: Estimated robot position in 3D space. The estimated
trajectory overlapped well with ground truth before the major slip
at x = 1.5m. A shift is seen after the slip but the trajectory did not
diverge. Note that the robot position is unobservable.
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