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Abstract— We investigate improving Monte Carlo Tree
Search based solvers for Partially Observable Markov Deci-
sion Processes (POMDPs), when applied to adaptive sampling
problems. We propose improvements in rollout allocation, the
action exploration algorithm, and plan commitment. The first
allocates a different number of rollouts depending on how
many actions the agent has taken in an episode. We find that
rollouts are more valuable after some initial information is
gained about the environment. Thus, a linear increase in the
number of rollouts, i.e. allocating a fixed number at each step, is
not appropriate for adaptive sampling tasks. The second alters
which actions the agent chooses to explore when building the
planning tree. We find that by using knowledge of the number of
rollouts allocated, the agent can more effectively choose actions
to explore. The third improvement is in determining how many
actions the agent should take from one plan. Typically, an agent
will plan to take the first action from the planning tree and
then call the planner again from the new state. Using statistical
techniques, we show that it is possible to greatly reduce the
number of rollouts by increasing the number of actions taken
from a single planning tree without affecting the agent’s final
reward. Finally, we demonstrate experimentally, on simulated
and real aquatic data from an underwater robot, that these
improvements can be combined, leading to better adaptive
sampling. The code for this work is available at https:
//github.com/uscresl/AdaptiveSamplingPOMCP.

I. INTRODUCTION

Adaptive sampling is the process of intelligently sampling
the environment by an agent, such as an underwater or aerial
robot. The robot does this by creating an internal model
and selecting sampling positions that improve the model [1].
Adaptive sampling is often preferred to full workspace
coverage plans when either a. the robot cannot cover the
entire workspace due to a constrained time or energy budget,
or b. an approximate model of the workspace is acceptable.
Adaptive sampling can also make use of domain-specific
information when it is available. For example, researchers
in the area of algal bloom monitoring in aquatic ecosystems
find areas of high chlorophyll concentration more valuable
to study. Such use-cases naturally lend themselves to the in-
tegration of Bayesian optimization in adaptive sampling [2].

Solving adaptive sampling problems exactly is known to
be NP-hard [3]. However, these problems can be solved
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Fig. 1: Fig. a shows an agent’s trajectories on a hyperspectral orthomosaic
collected in Clearlake, California. Blue is low value, red is high value.
The baseline trajectory overlaps with itself (wasted time), goes outside
the bounds of the orthomosaic (no reward outside workspace), and mostly
samples near the starting position. The trajectory from our proposed method
avoids such behavior and samples regions further away. Fig. b shows
POMDP planning with the POMCP planner. Portions in grey are areas we
study and improve in this work.

using exact solvers [4], sampling-based planners [5] or
Monte Carlo tree search (MCTS)-based solvers which sample
random trajectories from the final reward distribution [6],
[7]. Here we focus on using MCTS-based solvers to effec-
tively sample complex environments. These iterative solvers
generally use rollouts to sample a reward value for a given
state by following trajectories from that state. The process
of sampling from a final reward distribution using a random
trajectory from a state at the leaf of the planning tree is
called a rollout. Rollouts are used in local planners, such as
POMCP [8], to sample discounted rewards over trajectories,
from an unknown reward distribution.

In adaptive sampling, this reward distribution is defined
by some objective function over samples. Typically, rollouts
are used to build an estimate of the mean reward for an
action. By performing more rollouts, the planner improves its
estimate of the expected reward for a particular sequence of
actions. Often, planning for adaptive sampling is done online.
A fixed number of environment steps (typically one) are
enacted after planning for a fixed number of iterations. This
process is repeated until the finite budget (e.g., path length
or energy [5]) is exhausted. Here, we verify that this process

ar
X

iv
:2

10
9.

11
59

5v
1 

 [
cs

.R
O

] 
 2

3 
Se

p 
20

21

https://github.com/uscresl/AdaptiveSamplingPOMCP
https://github.com/uscresl/AdaptiveSamplingPOMCP


of committing to a fixed number of steps and rollouts at
each invocation of the planner can be modified to reduce the
total number of rollouts needed over the entire episode. We
find that, in information gathering problems, there is a period
when the information gathered is sufficient to predict the field
accurately enough to make more useful plans. The intuition
behind our result is that this period should be allocated more
rollouts than the period when less information is known, or
when gathering more samples does not result in as much
reward. Additionally, more environment steps can be enacted
from a single POMCP planning tree because the reward for
future actions can be accurately predicted.

We cast the adaptive sampling problem as a Partially
Observable Markov Decision Process (POMDP) which is
solved using a local solver that updates the expected rewards
for action sequences by sampling some reward distribution
in an iterative fashion using rollouts. Specifically, we in-
vestigate minimizing the number of rollouts performed to
achieve comparable accumulated reward by altering three
parameters: the number of rollouts to perform, the choice of
which actions to take in the planning tree during a planning
iteration, and how many steps of the planned trajectory to
follow. Fig. 1a shows a sample trajectory of a drone for
a lake dataset performed by our method and the baseline
POMCP solver in this work.

II. BACKGROUND

Gaussian Processes are widely used modeling tools for
adaptive sampling because of their non-parametric and con-
tinuous representation of the sensed quantity with uncertainty
quantification [5], [9], [6]. Gaussian processes approximate
an unknown function from its known outputs by computing
the similarity between points from a kernel function [10].
Gaussian Processes are specifically useful for modeling the
belief distribution of the underlying function from obser-
vations in the POMDP formulation of Bayesian optimiza-
tion [11].

Online Adaptive Sampling consists of constructing an
optimal path by alternating between planning and action.
A plan is developed which attempts to maximize some
objective function f by taking the actions describe by partial
trajectory p. The partial trajectory is executed and samples
are added to the model of the environment. These partial
trajectories are concatenated to form full trajectory P . The
plan and act iterations are iteratively interleaved until the cost
c(P ) exceeds some budget B. Formally this is described by
Eq. (1).

P ∗ = argmax
P∈Φ

f(P )|c(P ) ≤ B (1)

where Φ is the space of full trajectories, and P ∗ is the optimal
trajectory [5].

Typically, f is an objective function describing the quality
of the model of the environment sampled by P is. In this
work, the objective function is µx + cσx, where µx is
the Gaussian process estimate of the underlying function
value at x and σ2

x is the variance of the Gaussian process
estimate at x. This objective function is commonly used

POMDP Adaptive Sampling
States Robot position xt, Underlying unknown function g

Actions Neighboring search point xt+1

Observations Robot position xt, Sampled value yt = g(xt)
Belief Gaussian Process GP (y1:t|x1:t)

Rewards f(xt) = µxt + c ∗ σxt
TABLE I: Adaptive Sampling as a POMDP [11]

in Bayesian adaptive sampling with a c parameter to trade
off between exploration and exploitation. The exploration
term of the objective function, σ(x), exhibits submodularity
characteristics [12]. Formally a function, F , is submodular
if ∀A ⊂ B ⊂ V and ∀s ∈ V \ B, we have that
F ({s}∪A)−F (A) ≥ F ({s}∪B)−F (B) [3]. This naturally
describes diminishing returns exhibited in many adaptive
sampling problems where taking a sample provides more
information if you have taken fewer samples before this.

Partially Observable Markov Decision Processes
(POMDPs) are a framework for solving estimation problems
when observations do not fully describe the state. It has been
shown that formulating observations as samples from the
underlying world state and representing the robot’s model of
the underlying function as a belief state can be formulated
as a Bayesian Search Game [11], a framework for solving
Bayesian optimization problems. In this game, an agent has
to select points in the domain X that maximize the value of
an unknown g(x). Samples from g(x) constitute observations
which are partially observable components of the overall
state g. If this state is augmented with the state of the
robot, x, and constrained to locally feasible robot actions, this
formulation can easily be extended to adaptive sampling [6].
To represent the underlying belief b at each state, a Gaussian
process may be used. We formulate the adaptive sampling
problem as a POMDP as shown in Table I.

Partially Observable Monte Carlo Planning (POMCP):
POMDPs have been used for adaptive sampling and in-
formative path planners in many situations [13], [14], [6],
[15]. Many of these use a traditional dynamic programming
solution to solve the underlying POMDP. This is infeasible
for large state spaces or complex belief representations that
are typically present in many common adaptive sampling
problems. Recently, attention has focused to solvers which
are locally accurate using probabilistic rollout updates [6].
A state of the art algorithm for solving large POMDPs
online is the Partially Observable Monte-Carlo Planning
solver (POMCP) [8]. POMCP uses a Monte Carlo tree
search (MCTS) which propagates reward information from
simulated rollouts in the environment. At every iteration
in the planner, the agent performs a search through the
generated tree T to choose actions, using Upper-Confidence
Tree (UCT) [16] exploration for partially observable envi-
ronments, until it reaches a leaf node L of T . From node
L, the planner performs a rollout using a pre-defined policy
(usually a random policy) until the agent reaches the planning
horizon. The reward the agent collects while simulating this
trajectory is then backpropagated up through the visited
states. Finally, the first node the agent visited from the rollout
is added as a child of L, and the tree is expanded. Once the
specified number of iterations (rollouts) are completed, the



tree is considered adequate for planning. The action from
the root node that gives the highest expected reward is then
chosen, and the agent executes the action in the environment.
At each observation node of T , the observation is estimated
with µx, where x is the agent’s position at that node. To
update the belief b, the state-observation pair is integrated
into the Gaussian Process.

Multi-Armed Bandits (MAB) are a family of problems
in which K actions are available and each action has an
unknown associated reward distribution, Dk. At each time
step, the agent chooses an action k ∈ K and receives
a reward drawn from Dk. The goal of the agent is to
maximize the cumulative reward over time or minimize
risk, which is defined as the difference between the agent’s
cumulative reward and some optimal policy. There is a nat-
ural exploration-exploitation trade-off in the MAB problem
because at each step the agent receives more information
about the distribution of one of the actions by sampling
the reward [17]. This framework provides the mechanism
for action selection in a variety of rollout-based algorithms,
including POMCP [8], and is used when each rollout can be
viewed as a draw from the reward distribution conditioned
on the currently selected actions.

In contrast to optimal action selection algorithms, there
is a family of algorithms which seek to identify the best
action in terms of mean reward. These algorithms work in
two settings: fixed-budget and fixed-confidence. In the fixed-
budget setting, the agent finds the best action from a fixed
number of samples. In the fixed-confidence setting, the agent
finds the best arm having P [risk > ε] < δ, in the fewest
number of samples [18].

III. FORMULATION AND APPROACH

Most online informative planning pathfinders use the same
planning duration at all points in the planning sequence.
We propose to modify the POMCP [8] planner, an online,
rollout-based POMDP-planner, given the knowledge about
the underlying problem. Our method selects how many
rollout iterations to use at each environment interaction and
which actions should be tried in the planner. Using this
tree, it also adaptively selects how much of the tree can be
incorporated into the executed plan, based on the rewards
received during these rollouts. We show that we can produce
similar models of the environment in fewer overall iterations
of the (expensive) rollout sequence. An overview of how our
improvements fit into the planning and action pipeline with
POMCP is in Fig. 1b.

A. Rollout Allocation

The first improvement we propose is to alter how the
overall rollout budget is handled. Typically, the total rollout
budget is divided evenly and a fixed number of rollouts
are allocated each time the planner is called to compute a
new partial trajectory. This results in a linear increase in the
number of rollouts used as the number of environment steps
increases. We propose that this rollout allocation method
should take advantage of three key ideas: cold-starting,

submodularity, and starvation. The idea of cold-starting is
well studied in adaptive sampling [9] and captures the notion
that the planner can not make useful decisions with little
information to plan on. Planning with little information is
futile since far away points will generally return to the
global mean with high variance. Typically, this is handled
by having the robot perform a pre-determined pilot survey
to gather initial information about the workspace [9]. This
strategy wastes sampling time if too many pre-programmed
samples are taken. The lack of information manifests itself
in another problem when planning for adaptive sampling:
submodularity of the objective function which necessitates
effective sampling early on in the episode, since early sam-
ples provide the largest benefit. Additionally, because this
information is used in planning later on, the importance of
good early information gathering is compounded. There is,
of course, a trade-off to allocating rollouts early on: plans
which allocate too many rollouts early on could suffer from
the problem of starvation of rollouts at later stages. This can
cause the planner to make poor decisions when there is rich
information to plan on and the areas of interest are well-
known and understood. This rollout allocation trade-off in
planning is an instance of the exploration-exploitation trade-
off which is common in information gathering tasks.

B. Exploration Algorithm

MCTS-based planners, such as POMCP, treat each action
at each layer in the tree as an MAB problem. In the
usual MCTS algorithm, the objective is to optimally explore
possible trajectories by choosing an action at each layer
according to some optimal action selection criterion [8]. We
propose using optimal arm identification algorithms instead
of optimal exploration algorithms because the final goal of
the POMCP is to choose and execute the action with the
highest mean reward, not to maximize the cumulative reward
during searching.

Shifting from the cumulative-reward setting to the fixed-
budget setting allows the exploration algorithm to decide
the exploration-exploitation trade-off based on the number
of allocated rollouts at each planning step. When many
rollouts are allowed, the algorithm can be more explorative
and consider each action for longer, while with fewer rollouts
the algorithm typically becomes more exploitative. A fixed-
budget action selection algorithm can only be used for the
first action in the tree as these actions are the only ones for
which the total number of combined rollouts is fixed.

In this work, we investigate three exploration algorithms.
The first, Upper Confidence Tree (UCT), is an optimal
exploration algorithm and is the default choice for most
MCTS-based solvers, including POMCP [8]. UCT provides a
trade-off between exploration and exploitation by adding an
exploration bonus to each action using the number of times
the parent and child have been explored. UCT does not take
into account a budget, but instead tries to maximize the sum
of the reward samples during planning. Because of this, UCT
may tend to be highly explorative [19].



The remaining two algorithms are fixed-budget algorithms
that explicitly incorporate the amount of rollouts allotted and
attempt to maximize the probability that the chosen action is,
in fact, the best action. The first algorithm, UGapEb, uses an
upper bound on the simple regret of the actions to choose the
action which is most likely to switch to become the best one
to exploit [18]. This algorithm incorporates the total budget
into the confidence interval to make the most efficient use
of the provided budget. It contains a (difficult to estimate)
parameter, Hε, which requires the gap between actions to be
known ahead of time.

Both UCT and UGapEb additionally depend on a (difficult
to estimate) parameter, b, which is multiplied by the bound to
create the exploration-exploitation trade-off. In this work, we
use the difference between the highest and lowest discounted
rewards ever seen, but this may not be the optimal bound and
requires the agent to know these values before exploring the
workspace.

The final exploration algorithm is Successive Rejects. This
algorithm is unique in that it does not attempt to use a
confidence bound like UCT and UGapEb. Instead, it chooses
each action a number of times in successive rounds and
eliminates an action in each round until a single action is
found [19]. This algorithm is preferable in some situations
because it is parameter-free, while UCT and UGapEb have
hard to tune parameters. However it may waste some rollouts
when an action is obviously inferior.

C. Plan Commitment

Each call to the POMCP planner produces a planning
tree of estimated rewards for action sequences. Typically,
the agent executes the first action with the highest expected
reward and replans with the part of the tree it went down.
Since an adaptive sampling agent is approximating the
underlying function using an initial belief, the generative
model is different after each call to POMCP planner. This
is because every time the agent takes an action in the
environment and receives new samples, the initial belief for
the underlying POMDP changes. Hence, the tree must be
discarded and completely replanned after incorporating the
observation from the environment into the initial belief state.
We propose to take more than one action from the tree when
there is certainty at lower levels about the optimality of the
action. In order for the agent’s performance to be unaffected
by taking further actions, there are two considerations it
must have. The first consideration is of the quality of the
estimate of the reward from an action. If rollouts are spread
evenly, the number of rollouts performed for lower actions
(deeper in the tree) will be exponentially less than higher
actions (closer to the root), causing the estimate of their
reward to be poor. The second consideration is the quality
of the estimate of the observation at locations further away.
The initial belief greatly affects the quality of observation
estimates. Trajectories further away from what the agent
has seen will generally have worse estimates for what their
observations will likely be.

With these two considerations the agent may be able
to extract more than one plan step from the tree without
significant deterioration in the accumulated reward.

The simplest method is to take a fixed number of actions
from the MCTS and execute them. This does not take into
account any considerations of the quality of estimates of the
reward for actions. With this method, the agent may have
an inadequate understanding of the underlying world state at
some point, but still take actions from the tree.

If the agent accounts for the statistics of the samples for
the reward for actions, more complex methods can be used.
We use a method based on UGapEc, a fixed-confidence MAB
scheme [18]. UGapEc determines if there is an action that has
a mean reward higher than all other actions with probability
1 − δ. This algorithm can be used to verify if a fixed-
confidence threshold is met by checking if the algorithm
would not choose to explore further.

Another method which uses a statistical test similar to
UGapEc is a two tailed Welch’s t-test [20]. This test assumes
the distributions the samples are from are Gaussian but does
not assume the standard deviations are known or equal.
Since the error in the estimate of standard deviation is
quadratic in the number of samples, our estimate of the
standard deviation deteriorates much faster than our estimate
of the mean. Because of this, a more complex test must be
used than a simple Gaussian confidence interval test since it
may underestimate the sample standard deviation [21]. The
unequal variances two tailed t-test tests the null hypothesis
that the reward distributions for two actions have identical
expected values. This method returns an estimate of the
probability (p-value) that the means are equal. A threshold
is set and if the p-value of the null hypothesis is below the
threshold, the action is considered safe to take. This method
is statistically robust. It causes the action to not be chosen in
two cases. The first case is that there are not enough samples
of each action and the second is that the means are too close
to distinguish with the number of samples gathered. This
method uses a Student’s t-distribution [22] and calculates
the t statistic and the v value with Eq. (2) which can be used
to compute the p-value with a Student’s t-distribution.

t =
µ̄1 − µ̄2√
σ̄2
1

N1
+

σ̄2
2

N2

v ≈
(
σ̄2
1

N1
+

σ̄2
2

N2
)2

σ̄4
1

N2
1 (N1−1)

+
σ̄4
1

N2
2 (N2−1)

(2)

where µ̄i is the sample mean reward for distribution i, σ̄i
is the sample standard deviation for distribution i, and Ni
is the sample size for distribution i. We compare the reward
distributions of the top two actions, with highest expected
reward, to determine the p-value. We ignore other actions
because of the asymmetrical nature of an MCTS tree causing
the worst actions to have very few rollouts.

IV. EXPERIMENTS

We assess the performance of our improvements on three
environments. The first environment is a test function for
testing the effectiveness of sequential Bayesian Optimization
using POMCP [6]. We use a dynamic (time-varying) two
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Fig. 2: Results from a grid search over possible rollout curves. Fig. 2a
presents the curves that were searched over. Fig. 2b shows the three
most optimal curves and a linear allocation curve, colored by their mean
accumulated reward at the end of the episode.

dimensional function as the underlying ground truth for
testing our individual improvements. It corresponds to a
Gaussian curve circling a fixed point twelve times.

g(x, y, t) = e−(
x−2−1.5sin(24πt)

0.7 )2e−(
y−2−1.5cos(24πt)

0.7 )2 (3)

where x ∈ [0, 5], y ∈ [0, 5], t ∈ [0, 1]. In this environment
the agent starts out at the bottom-center of the time box
and progresses towards the top, choosing actions in the x-
y plane. A subsampled image of this environment (points
below g(x, y, t) < 0.6 removed for clarity) can be seen in
Fig. 6.

In the other two environments, called Validation Environ-
ment 1 (Fig. 5a) and Validation Environment 2 (Fig. 5d),
we use chlorophyll concentration data collected from a YSI
Ecomapper robot as input data. These datasets are 186m
by 210m, by 15m deep. We interpolate this with a Gaussian
process to create the underlying function to estimate. In these
scenarios the robot travels 3m between each sample and can
freely travel in any direction at any point. The robot starts
at the center of the environment at 0 depth.

For all environments, the agent is allowed to take 200
environment steps and is assumed to have a point motion
model that can move to neighboring locations. We use the
objective function µx + cσx and use c = 10 for the dynamic
function and c = 100 for the validation environments. All
experiments are run for five seeds each.

A. Grid Search for Rollout Allocation

To find the proper form of the rollout allocation and test
the assertion that different parts of the POMDP planning
process need different number of rollouts we perform a grid
search over different curves that describe the rollout alloca-
tion. For each curve, if it would allocate less than one rollout
per action, we allow the planner to perform a single rollout
per action. We parameterize these curves by cumulative beta
distributions because of their flexibility in representing many
different kinds of curves. These curves are parametrized
by an α and β parameter which determine the exact form
of the curve. We search over α = [.75, 1, 2, 3, 4, 5, 6] and
β = [.75, 1, 2, 3, 4, 5, 6]. These curves can be seen in Fig. 2a.

The results of this experiment are shown in Fig. 2b, which
indicate that an exponential increase in the rollout allocations
is desirable and a very flat curve is undesirable. We find that

the best curve for the dynamic function to be α = 6, β =
1. We empirically find that this curve does worse on the
validation environments, possibly due to overfitting, and that
a curve with α = 4, β = 4 works best. We use this for tests
involving a curved rollout allocation with them.

B. Comparison of Exploration Algorithms

We test the effectiveness of alternative exploration algo-
rithms to UCT and the interaction between the rollout alloca-
tion method and exploration algorithm. We test three explo-
ration algorithms described in Section III-B: UGapEb, UCT,
and Successive-Rejects on three environments. In Fig. 3a all
beta curve-based methods outperform the fixed method and
all allocators work almost equally well, with UCT having a
slight performance boost. In Fig. 3b, UGapEb and Successive
Rejects with curved rollout allocation perform approximately
equally but out-perform UCT with both a fixed and curved
rollout allocation. In Fig. 3c all three curved allocators are
out-performed by a fixed rollout allocation curve. This is
likely because the rollout curve is poorly chosen for this
environment due to not being chosen by grid search. UGapEb
outperforms all curved allocators by a significant margin.

C. Comparison of Plan Commitment Algorithms

We test the methods described in Section III-C for de-
termining how many steps to take once the MCTS tree is
generated. We test the unequal variances t-test and UGapEc
methods with different parameters against a baseline method,
which takes only the first action, across 5 seeds. Fig. 3d
and Fig. 3e shows the comparison of all these combinations
against the baseline. UGapEc and the baseline largely overlap
because UGapEc cannot confidently predict whether the
chosen action is the best action with such few rollouts
and a larger epsilon does not make sense for the scale
of the rewards. We believe that UGapEc may be of use
for complex environments where the agent cannot make
strong assumptions about the underlying reward distributions
and many more rollouts will be required for the POMCP
algorithm. The unequal variances t-test performs the best
amongst the options. Within the t-test parameters, the p-
value of 0.1 requires slightly fewer rollouts than a p-value
of 0.05 for similar reward. However, choosing 0.1 implies
riskier behavior which can have a negative effect in complex
environments and real-world datasets, such as our validation
environments. Hence, we choose the unequal variance t-test
with p = 0.05 as our best choice for plan commitment. Fig. 3d
shows the accumulated reward for a trajectory execution
between the baseline and our choice. In Fig. 3e it is clear
that each of the algorithms take vastly different amounts of
rollouts for obtaining this result. Hence, we see that the plan
commitment t-test algorithm helps to significantly reduce the
rollouts needed to solve the adaptive sampling problem.

D. Comparison of Baseline with Combined Improvements

Fig. 4 shows the combined effect of all improvements from
the preceding experiments: using a curved rollout allocation,
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Fig. 3: Comparison of Exploration Algorithms (a, b, and c) and Plan Commitment Algorithms (d and e). UCT, Fixed is the baseline which evenly splits the
rollouts at each step and uses the UCT exploration algorithm (the default for MCTS). Other results use a curved rollout allocation. For plan commitment,
Fig. 3d shows the reward accumulation and Fig. 3e shows the number of rollouts used in all POMCP calls for the whole episode. A small offset value is
added to methods which overlap.
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Fig. 4: Comparison of the combined proposed improvements (Proposed
Method) against the baseline for all environments. Fig. 4a and Fig. 4b are
the reward and number of rollouts used by the agent in the dynamic function
environment. Fig. 4c and Fig. 4d are the reward and number of rollouts used
by the agent in Validation Environment 1, Fig. 4e and Fig. 4f are the reward
and number of rollouts used by the agent in Validation Environment 2.

using the UGapEb exploration algorithm and using the t-test
plan commitment algorithm. We compare against a baseline
which uses an equal number of rollouts at each step, uses
the UCT exploration algorithm and takes only one action
before replanning. We compare our method and this baseline
for each environment. Fig. 4a and Fig. 4b show that the
combined features achieve a much higher reward in fewer
rollouts on the dynamic environment. Fig. 4c and Fig. 4f
show that again the agent receives a higher reward in many
fewer rollouts than the baseline method. Fig. 4e and Fig. 4f
indicate that our method is comparable to the baseline in
terms of reward but achieves this reward in fewer rollouts.

0 25 50 75 100 125 150 175 0

50

100
150

200

2
4
6
8
10
12
14
16
18

(a)

0 25 50 75 100 125 150 175 0
25

50
75

100
125

150
175

200

4
6
8
10
12
14
16
18

(b)

0 25 50 75 100 125 150 175 0
25

50
75

100
125

150
175

200

4
6
8
10
12
14
16
18

(c)

0 25 50 75 100 125 150 175 0

50
100

150
200

2
4
6
8
10
12
14
16
18

(d)

0 25 50 75 100 125 150 175 0
25

50
75

100
125

150
175

200

2
4
6
8
10
12
14
16

(e)

0 25 50 75 100 125 150 175 0
25

50
75

100
125

150
175

200

2
4
6
8
10
12
14
16

(f)

Fig. 5: Fig. 5a shows a dataset collected with an underwater robot, and
Fig. 5b and Fig. 5c show example trajectories from a baseline implementa-
tion and our proposed implementation respectively. Fig. 5d shows another,
more complex, dataset collected in the same location, Fig. 5e and Fig. 5f
show example trajectories from a baseline implementation and our proposed
implementation respectively.

V. CONCLUSION

We present improvements for online adaptive sampling
with a Monte Carlo-based POMDP solver which uses spe-
cific knowledge of the adaptive sampling problem structure.
This allows the agent to estimate a non-parametric function
by taking samples of the underlying phenomenon such as the
concentration of chlorophyll in a body of water.

First, we show that by changing the amount of rollouts that
are allocated to more heavily favor later stages in planning,
a better overall model of the environment can be created. We
believe this is due to later stages having more information
to plan on and therefore able to develop better and longer
plans. We show that searching for an optimal curve can lead
to high performance increases and that reasonable curves
chosen can lead to increased performance. Second, we show
that the agent’s total reward can increase by changing the
action exploration algorithm to one that explicitly incor-
porates knowledge of the number of rollouts allocated for
each planning step. This works with the rollout allocation to
improve selection when few rollouts are allocated. We also
show that by modifying the amount of steps the agent takes
from a planning tree, the overall planning can be made more
efficient. We show a statistical test can be used to determine if
an action can be confidently determined to be the best action.
With this test we are able to reduce the number of rollouts



needed to reach a comparable accumulated reward. Finally,
we show that these improvements are synergistic and when
used together can greatly improve the planning over a fixed-
step, optimal exploration, fixed-rollout allocation planner.
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planning. In European conference on machine learning, pages 282–
293. Springer, 2006.

[17] Djallel Bouneffouf, Irina Rish, and Charu Aggarwal. Survey on
Applications of Multi-Armed and Contextual Bandits. In 2020 IEEE
Congress on Evolutionary Computation (CEC), pages 1–8, July 2020.

[18] Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric.
Best Arm Identification: A Unified Approach to Fixed Budget and
Fixed Confidence. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 3212–3220. Curran Associates, Inc., 2012.
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VI. APPENDIX

A. Comparison of time saving to baseline

Because our proposed method reduces the number of
rollouts, the time to compute a plan is reduced. Additionally,
rollouts from later environment steps are cheaper to compute
because the remaining budget is lower. This causes our
method to finish the episode faster because it allocates
more rollouts to later environment steps. These two effects
combine to produce a saving in wall-clock time for the entire
episode, as shown in Table II. Experiments were run on a
server with 2 Intel Xeon Gold processors and 256GB RAM.

Method Dynamic
Function

Validation
Environment 1

Validation
Environment 2

Baseline 2061.84 2687.73 3542.72
Proposed
Method

1371.77 2497.36 3120.90

TABLE II: Wall-clock time (seconds) required to complete five episodes.

B. Visualization of Dynamic Function

We present a visualization of the dynamic function used
for testing. The function can be seen in Fig. 6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1
0.2

0.3
0.4

0.5
0.6

0.7

0.0
0.2
0.4
0.6
0.8
1.0

Dynamic Function

Fig. 6: The dynamic (time-varying) two dimensional function used for
testing the effectiveness of our method, described by Eq. (3). Note that
this is a subsampled image, only showing values above g(x, y, t) ≥ 0.6,
for clarity.

C. Future Work

Currently the rollout allocation algorithm either requires
an expensive grid search or an a-priori guess. We would like
to determine the correct rollout curve online and adapt to the
information the agent has seen.

Future directions may also include environments where
the underlying reward distributions are farther away from a
Gaussian distribution. In this case, methods like uGapEc or
other MAB methods that do not make assumptions about the
underlying distributions may perform better.
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