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A Peg-in-hole Task Strategy for Holes in Concrete

André Yuji Yasutomi'2, Hiroki Mori? and Tetsuya Ogata®?

Abstract— A method that enables an industrial robot to
accomplish the peg-in-hole task for holes in concrete is pro-
posed. The proposed method involves slightly detaching the
peg from the wall, when moving between search positions,
to avoid the negative influence of the concrete’s high friction
coefficient. It uses a deep neural network (DNN), trained via
reinforcement learning, to effectively find holes with variable
shape and surface finish (due to the brittle nature of concrete)
without analytical modeling or control parameter tuning. The
method uses displacement of the peg toward the wall surface,
in addition to force and torque, as one of the inputs of the
DNN. Since the displacement increases as the peg gets closer to
the hole (due to the chamfered shape of holes in concrete), it
is a useful parameter for inputting in the DNN. The proposed
method was evaluated by training the DNN on a hole 500 times
and attempting to find 12 unknown holes. The results of the
evaluation show the DNN enabled a robot to find the unknown
holes with average success rate of 96.1% and average execution
time of 12.5 seconds. Additional evaluations with random initial
positions and a different type of peg demonstrate the trained
DNN can generalize well to different conditions. Analyses of
the influence of the peg displacement input showed the success
rate of the DNN is increased by utilizing this parameter. These
results validate the proposed method in terms of its effectiveness
and applicability to the construction industry.

I. INTRODUCTION

Anchor-bolt insertion is a widely conducted task in the
construction field. It involves inserting and hammering an-
chor bolts into holes pre-opened in concrete walls or floors to
fix structural and non-structural elements to them [1]. Since
this task is tiresome and conducted in a dangerous, dirty
environment, its automation is highly demanded [2].

Anchor-bolt insertion is similar to the peg-in-hole task,
which has been extensively studied in the robotics field. Like
anchor-bolt insertion, the peg-in-hole task involves inserting
an object, namely, the peg, into a hole with the same size
and shape. However, in the case of the anchor-bolt insertion,
the holes vary considerably in terms of surface finish and
shape due to the brittle nature of the concrete. Moreover, the
typical “press-and-slide” peg-in-hole strategy is difficult to
apply since the high friction of the concrete causes: (i) torque
overload on the robot joints, (ii) detachment of the anchor
bolt from the end effector, and (iii) excessive noise in the
measurements of force and moment. Those characteristics
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of concrete make it challenging to analytically model the
interaction between peg and hole or to manually tune a
control algorithm that can cope with all hole conditions for
an effective task execution. In this paper, we propose a data-
driven peg-in-hole method to solve the above challenges.

A. Related work

Proposed approaches to accomplish the peg-in-hole task
involve analytical modeling [3], [4], blind search [5], [6],
visual servoing [7], [8], and learn-from-demonstration (LfD)
[9]-[11]. Analytical modeling involves deriving force and
geometry models and using centering devices (i.e., remote
center of compliances (RCC’s)) to accomplish the peg-in-
hole task. Blind search involves searching for the hole on
the basis of predetermined trajectories and force/moment
feedback. Visual servoing involves aligning the peg and hole
with vision-based control. And LfD involves teaching robots
to conduct tasks through multiple human demonstrations.
Although these methods achieve high performance in real as-
sembly settings, applying them to search for holes in concrete
is challenging for the following reasons. First, analytical
models, blind search, and LfD often rely on pressing and
sliding the peg around the hole when searching for it, and that
procedure is difficult on the concrete’s high friction surface.
Second, analytical models and LfD rely on the assumption
that the shape and dimensions of the holes vary slightly, but
that assumption is not the case for holes in concrete. Third,
visual servoing and some LfD rely on visual feedback, which
is not reliable in construction sites due to dust and constantly
changing of light conditions.

With the recent popularity of deep reinforcement learn-
ing (DRL) algorithms, some studies have adopted them to
accomplish the peg-in-hole task with robot arms [12]-[14].
In those studies, peg-in-hole tasks were performed with
precision that surpasses the positional repeatability of the
robot arms used. Moreover, superior generalization capability
in regard to different peg and hole sizes was demonstrated.
However, in some studies, the absolute position of the peg
has been used as one of the input parameters of a deep neural
network (DNN) [12], [13]. This parameter might hinder the
capability of the DNN to generalize to holes in different
positions due to the dependency of the DNN on it. To avoid
that problem, some studies use the relative position from a
vision-estimated hole position [14]. Nevertheless, by using
such a position parameter, the DNN might still learn to
search for the hole with only a determined path that ignores
force and moment data, and that outcome would negate
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Fig. 1. Proposed method. Py, is the rough hole position obtained by,
for example, a vision-based detection algorithm; Fy, Fy,, and F. are the
forces on X, Y, Z axes; My and M, are the moments on the X and Y
axes; Dz is peg displacement on the Z axis; and Preqt is the next search
position obtained by the DNN. Subscript th refers to threshold.

the advantage of DNN-based methods compared with blind-
search methods [5].

B. Contributions

In this work, an off-policy, data-driven method that enables
a industrial robot to effectively find holes in concrete to
accomplish the peg-in-hole task is proposed. The main
contributions of this work are:

o A hole-search strategy that involves detaching the peg
from the concrete surface between discrete hole-search
positions to avoid problems related to the high friction
coefficient of concrete;

o The adoption of a DNN trained via reinforcement
learning (RL) to find holes with variable surface finish;

o Improved generalization capabilities of the DNN by
introducing displacement of the peg (in addition to force
and torque) as input for the DNN;

o Capability of finding holes even without peg position
as input so different hole positions can be generalized.

To the best of our knowledge, this is the first research that

targets the performance improvement of peg-in-hole tasks in
high-friction, brittle materials such as concrete. Evaluations
of the method with an experimental setup similar to that
of construction sites demonstrate the effectiveness of the
method and its applicability to real construction sites.

II. METHODS
A. Proposed method

The proposed method is shown in Fig. [T] and an example
of its usage is illustrated in Fig. 2} The holes depicted in Fig.
[ are chamfered in order to illustrate the real condition of
holes opened in concrete (which inevitably become chamfer
shaped due to the brittle nature of concrete). As shown in Fig.
[I] the method consists of: (1) approaching the hole on the
basis of a rough estimation of the hole position (obtained by
vision-based detection); (2) moving the peg toward the wall
to tentatively insert it; (3) detaching the peg from the wall
and moving it to the next position obtained by a DNN if the
peg touches the wall, or (3’) finishing the search if the hole
is found.

The proposed method also involves using the displacement
of the peg toward the wall, in addition to the force and
moment, as input for the DNN. The motivation for using the
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Fig. 2. Usage example of proposed method. Py ;. is initial offset position
from the wall, Dz is peg displacement from Pz ;pns¢, and Dy y is peg
displacement to the next search position in X (left/right) and Y (up/down).

displacement can be understood by comparing displacements
D1 and D, > in Fig. As shown in the figure, D, 5 is
greater than D, ; since in step 1 the peg contacts the wall
outside the chamfer while in step 3 the peg contacts the
chamfer region around the hole. This shows the displacement
increases as the peg approaches the hole, which is a char-
acteristic that makes the displacement a valuable parameter
since it indicates the proximity to the hole.

Finally, the proposed method also involves using a DNN
trained via RL to choose the next search position. A DNN
was used instead of model-based algorithms since modeling
the friction reactions of a brittle material such as concrete
is challenging. Also, DNNs can generalize well to different
system conditions [15], which makes them suitable to cope
with the variable surface finish of holes opened in concrete.

RL was used for training instead of a supervised training
technique to eliminate the cumbersome dataset labeling pro-
cess. Even if an algorithm was used to automatically label
the dataset, acquiring the dataset while judging the actions
with a reward seems to be less time consuming. Moreover,
for the targeted task, a reward algorithm that ensured an
effective training could be easily derived, and the exploring
feature of the RL provides the DNN with more path options
to find the hole under a given condition.

The proposed method focus on the search phase of the peg-
in-hole task. Thus, the following assumptions were made:

e The anchor bolt (also referred to as peg) is already

grasped and positioned perpendicular to the wall;

« Holes were opened perpendicular to the wall surface;

o After the anchor was partially inserted in the hole, the

anchor is hammered to completely insert it into the hole.
These assumptions are in line with real on-site applications
since (i) wall orientation can be measured with, for example,
a laser sensor, (ii) hole drilling can be automated and kept
perpendicular to the wall, and (iii) we observed anchor
hammering and the brittle nature of concrete significantly
reduce anchor jamming caused by orientation misalignments
of peg and hole.

B. Deep reinforcement learning algorithm

As the RL algorithm for training the DNN of the proposed
method (hereinafter “deep RL” or DRL algorithm), deep g-
learning was selected [16]. This algorithm was selected since
its proved success in accomplishing tasks that are discretized
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into a limited number of actions was a good fit to the
discretized search strategy adopted to avoid the concrete’s
friction [16]. Also, the low dimensionality of the input
data did not require a complex algorithm, with laborious
parameter tuning, to be converted into task-effective actions.
The deep g-learning architecture used is shown in detail in
Fig. 3] The agent of the architecture consists of a DNN and
the environment state. The DNN used was the feed-forward
DNN (hyper-parameters in Table [[) since this application
does not have unobservable states; thus, it was assumed
actions could be determined based on only the current state,
not requiring recurrent neural networks. The state observed
consists of the forces in the X, Y, and Z axes, the moments
in the X and Y axes, and the robot displacement D, (s1 =
[Fy, Fy, F,, My, My, D.])). A state that replaces D, with the
moment in the Z axis M, (so = [Fy, Fyy, F,, My, My, M.)]))
was also used in a separate training to analyze the effective-
ness of using D, as the DNN input. The actions output by
the DNN and executed by the robot in the environment were
to move the anchor bolt up (+Y), down (-Y), to the right (-
X) or to the left (+X) by a displacement D,,,. To update the
weights of the deep g-learning network (DQN), the equation
below based on the Belmann equation was used [17]:

0«0+ a(r + v max Qiarget(s’,a’) — Q(s,a))VQ(s, a)
(1)

Here, @ is the q value of the main network, Q:qrget is the
q value of the target network (a copy of the main network
for estimation), s is the current state of the robot, s’ is the
next state, a is the current action, a’ is the next action, «
is the learning rate, r is the reward, ~ is a discount factor,
and V is the gradient function [12]. Boltzmann exploration
[18] was used to enhance environment exploration, which is
given by

exp(Qi(a)/T)

n . b
> iy exp(Qe(i)/7)
where 7 is Boltzmann parameter, and n number of actions.

The reward for each step is 7 = —1 when the RL episode
did not end, and it is given by the equation below otherwise:

P(a) =

2

if hole found,
if d < dy and hole not found, (3)

T foundhole>
r=40,

—7T foundhole * g%(fioo, if d > dj and hole not found,

TABLE I
HYPER-PARAMETERS USED FOR THE DRL ALGORITHM

Optimizer Adam
Batch size 32

Number of hidden layers 3
Neurons per hidden layer 16

Activation hidden layers = ReLU Learning rate (o) 0.001
Activation last layer Linear | Discount factor (v) 0.99
Boltzmann parameter (7) 1 Distance limit (D) 4 mm

Episodes for target network update 100
Reward when hole is found (7 f5undhote) 100
Max. number of steps (kyaz) 100

Force threshold on the Z axis (F, ;;,) 20N
Displacement threshold on the Z axis (D, ;) 6 mm
Displacement in the XY plane (D;,) 1 mm

Here, 7 foundhole is the reward when the hole is found, dj is
the initial distance from the hole, d is the final distance, and
D is the distance limit. The negative reward at the end of
each step makes the DRL algorithm strive to minimize the
number of steps. The final reward at the end of the episode
makes the DRL algorithm strive to approximate the peg to
the hole position in order to avoid the negative reward when
d is greater than dy. Total reward R, which is the sum of
all rewards and an indicative of the performance of the DRL
algorithm in each episode, is less or equal to zero when the
hole is not found, and greater than zero when it is found.

The episode was set to end in case (i) the robot took more
than k4, steps, (ii) the peg trespassed a boundary limit
(d > D), or (iii) the peg was inserted into the hole. Insertion
of the peg was identified as when the force along the Z axis
|F.| was lower than F, ;;, and displacement D, was greater
than D, 4, as presented in Fig. E The values used in the
DRL algorithm are listed in Table [I|

Experience replay [19], a technique that involves updating
the DNN with previous states, actions, and rewards stored in
a buffer, was used with a maximum buffer size of 10,000
experiences to improve the convergence of the DNN.

C. Displacement importance analysis

To analyze the effectiveness of D, as an input parameter
for the network, the evaluation results for input states s;
and sy were compared, and Guided backpropagation [20]
was used to create an input-importance map (hereinafter
“saliency” map) of the inputs. This state-of-the-art saliency
mapping algorithm was used because SmoothGrad [21],
Grad-CAM [22], and Integrated Gradients [23] were con-
sidered unsuitable. This is because SmoothGrad requires an
input with high dimension for its effectiveness, Grad-CAM
is applied to convolutional neural networks, and Integrated
Gradients presented high saliency for input F,, which is a
parameter that varies minutely and, thus, should not generate
high saliency values. Guided backpropagation [20], however,
showed the lowest saliency values for input F, and reason-
able values for the other inputs. Thus, it was considered
suitable to analyze D,.

D. Comparison with model-based approaches

To compare the performance of the hole search with the
DNN and with model-based methods, hole search was also
conducted through a blind search method, based on [5], and
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a moment-feedback-based method. The blind search method
involved moving the peg using a decided spiral trajectory
with steps spaced 1 mm from each other. The moment-
based search method involved moving the peg toward the
maximum force direction, when the peg is inside the chamfer
region, and toward the direction the peg tilts otherwise.
The peg presence inside or outside the chamfer region was
judged by comparing the peg displacement with an initial
peg displacement measured when the peg touches outside
the chamfer. To move between search positions, the peg was
detached from the concrete’s surface in the same way as by
the proposed method.

III. EXPERIMENTAL SETUP AND CONDITIONS
A. Experimental Setup

The setup used to train the DNN and validate the proposed
method is shown in Fig. E A Denso robot (VM-60B1)
was used to search for holes opened in a concrete wall to
insert an anchor bolt into them. Two types of anchor bolt
were available, but only the wedge-type anchor was used for
training and main method evaluations. The holes are 12.7
mm in diameter, while the anchor bolts used are both 12
mm in diameter, so the clearance between the holes and the
anchor bolts is 0.7 mm. To hold each anchor bolt during
the search-and-insertion operation, an air gripper was used.
The gripper was attached to the robot via a force-torque (FT)
sensor, DynPick® WEF-6A1000-30, fixed to the robot flange.

The holes used for training and evaluation are shown
in detail in Fig. B} They were opened into two different
concrete blocks (forming a concrete wall) according to the
conventional procedure used in construction. As shown in

Init. pos. for evaluation Pinit1 = ( 3, 3) mm
Pinit,2 = (=3, 3) mm
Piniez = ( 3,—3) mm
Pinita = (=3,—3) mm
Pinit,s = (=3, 0) mm
Pinite = ( 0,—3) mm
Pinit,7 = (3, 0)mm

Init. Pos. for training
and evaluation

Anchor-bolt size —
Hole Coordinate Frame
Concrete Wall — |

>
Hole $12.7 mm Pinitg =( 0, 3) mm
Fig. 6. Initial peg positions for training and evaluation

the figure, the holes become inevitably chamfered due to the
brittle nature of the concrete.

The initial positions related to the hole center, which were
used for training and evaluation are shown in Fig. [

The initial positions were set 3 mm away from the hole ori-
gin, since that distance is the maximum visual-detection-and-
positioning error estimated for the current setup. Movement
of the robot during training and evaluation was controlled
according to the flow chart shown in Fig. [T} where the forces
and moments were measured by the FT sensor, and D, was
calculated from the XYZ position of the tip of the anchor
bolt obtained through forward kinematics. To compensate for
the gravity, the FT sensor was zeroed right before the hole
search. At the end of each episode, the robot was set to
return to a home position and then move to the next initial
position. The anchor was positioned perpendicularly to the
wall by measuring the wall orientation with a laser sensor
and making the robot flange parallel to it.

B. Training conditions

The DQN was trained on hole 1 by starting the peg from
initial positions 2 t0 8 (Pjpt,2 10 Pinge,g) chosen randomly at
the start of each episode. Initial position 1 (Pjy,;¢,1) was left to
be used for preliminary evaluation (Fig. [). Both input states
s1 and so were used to train separate networks to search for
the hole. Each network was trained for 500 episodes.

Since training was conducted by repeatedly contacting
the hole surroundings with an anchor bolt, the hole borders
would wear down constantly, making them more chamfered
every step. Since a hole overly chamfered due to long
trainings does not reflect the real condition of the hole right
after being opened, over-usage of hole 1 was avoided.

C. Evaluation conditions

The proposed method was evaluated first by attempting
to find hole 1 (used for training) for 50 times, starting from
the unknown initial position P;y;; 1. Once the method proved
effective, it was evaluated by attempting to find the unknown
holes (holes 2 to 13 in Fig. [5), starting from all the initial
positions. For the unknown holes, hole search was attempted
25 times per initial position for holes 2 to 4, and 10 times
per initial position for holes 5 to 13, making a total of
1320 attempts. Both state types s; and s; were used for
the evaluations.

To further assess the generalization capability of the pro-
posed method, the method was evaluated with random peg
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mm from each other. It was also evaluated with the pin-type
anchor bolt, which is different from the one used for training.
Both evaluations covered holes 8 to 11 for 100 episodes each.

IV. RESULTS
A. Training results

The training results are presented in Fig. [/l As shown
in Fig. [Ta] the total reward for s; increases gradually and
converges to a value near the maximum reward of 100 after
about 350 episodes. This result shows the neural network
failed to command the robot to insert the anchor bolt at
first, as indicated by the negative rewards, but it gradually
improved its performance the more it was trained. As for
number of steps, it peaks at about 50 steps within episodes
150 and 250, but it decreases to values up to 10 steps after
about 350 episodes of training. The peaks in number of
steps suggest the DNN learned to avoid leaving the search
boundaries, but it required more data to converge to hole
discovery. These results suggest the neural network learned
to insert the peg after 350 episodes.

The results for input state s, are shown in Fig. For
this input state, the charts indicate convergence was reached
after 100 episodes which is earlier than for input state s;.
Moreover, the number of steps remained low during the
whole training, barely passing 10 steps per episode. This
result suggests the DNN learned to find the hole earlier than
in the case of state s;. However, it also suggests the DNN had
less opportunity to explore and learn from the environment
which limits its generalization capability.

B. Evaluation results

The evaluation results for unknown initial peg position
Pinit1 in hole 1 for input-state types s; and so are listed
in Table [l As indicated in the table, the proposed method
effectively found hole 1 even for an unknown initial position
(100% success rate) for both input-state types, in a relatively
short time (below 7.8 seconds).

The evaluation results for unknown holes 2 to 13 are
also listed in Table As listed, the holes were correctly
found for both input states with high success rates (up
to 96.1%) and low execution time (below 12.5 seconds).
However, as expected, success rate was higher for evaluations
with input state si, namely, 96.1% against 93.4%. This
result demonstrates peg displacement input D, improved the
effectiveness of the DNN. Errors in the search with input
state s occurred mainly in the cases of holes 3 and 4,
particularly for initial peg position Pj,; 1, which was the
initial position that was not used for training in hole 1. This
result suggests input state sy did not provide enough data to
enable the network to learn to find the hole with this initial
position. It is important to note the DNN trained with s;
achieved a longer average execution time per episode due
to the higher execution time required to find the holes in
general. The execution time to find hole 3 and 5 with sg
were exceptionally short because the anchor rapidly crossed
the search boundaries, ending the episode in a few steps.

The evaluation results show the proposed method enables
the robot to find holes independently of hole position,
showing its superiority compared to DRL-based methods that
depend on this parameter.

An example of actions outputted by the DNN are shown
in Fig. [§] As shown in the figure, the predominant actions
for initial position Pj,; 3 (bottom left) were to move up and
right, and for Pj,;; 4 (bottom right), to move up and left.
These results demonstrate the DNN could correctly identify
the actions that lead to the anchor bolt insertion for this two
initial positions. For the remaining holes and initial positions,
similar results were obtained.

Search failures mainly occurred when the DNN estimated
an initial search direction that was away from the hole. In
these cases, we assume the DNN encounters a region that
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does not provide data that enable the prediction of the hole
direction, making the peg to cross the search area limits.

C. Displacement importance analysis

Displacement results obtained during search for three
episodes, starting from initial positions Fj,;; 3 and Pyt 4,
are shown in Fig. 0] In all episodes, the robot successfully
found the hole. As predicted, the displacement increased as
the anchor bolt approached the hole position. This result
demonstrates the displacement input presents useful infor-
mation for accomplishing the hole-search task.

Average saliency obtained for input states s; and so is
shown in Fig. As predicted, average saliency for D, is
higher than that for the other inputs under the same input
state (Fig. [I0a)). Furthermore, when compared to the saliency
of M, under input state s, the saliency of D, is also high,
namely, about double the importance. These results confirm
that D, is an important input for determining the correct
movement to accomplish hole discovery. Also, they explain,
to some extent, the higher success rate when s; is used.

D. Generalization capability assessment

Results of the generalization capability assessment of the
proposed method is shown in Table [l As shown, even
with random initial positions or a different anchor, the
proposed method executes the task with high success rate,
which indicates the method can generalize well to different
conditions. Particularly, for random initial conditions, the

TABLE III
RESULTS OF GENERALIZATION CAPABILITY ASSESSMENT

Random Init. Pos. Pin-type Anchor Bolt
Hole Avg. Avg. Success Avg. Avg. Success
Time [s] Reward rate [%] | Time [s] Reward rate [%]
8 6.1 86.78 90.0 7.5 93.5 97.5
9 7.6 88.68 94.0 7.4 79.0 91.3
10 7.7 92.88 98.0 9.8 80.44 90.0
11 7.7 92.88 98.0 9.0 95.25 98.8
Avg. 7.3 90.30 95.0 8.4 87.03 94.4
TABLE IV
EVALUATION RESULTS FOR MODEL-BASED METHODS
Blind search Moment-based search
Hole Avg. Max. Success Avg. Success
Time [s] Time [s] rate [%] | Time [s] rate [%]
2 44.5 102.5 100 6.3 32
3 37.0 60.0 100 14.0 16
4 58.2 102.5 100 19.6 19
Avg. 46.6 88.3 100 5.3 22

results demonstrate the compliance of the gripper can cope
with submillimeter misalignment of the peg and hole because
step-sizes are 1 mm and initial positions were not exactly 2
or 3 mm away from the hole (e.g., Pj,;: = (2.1,2.8) mm).

E. Comparison with model-based approaches

The evaluation results for search with the model-based
methods are listed in Table As listed, blind search could
find the hole 100% of the times, but the execution time
depended on the starting point, taking up to 102.5 seconds
to find the hole when starting from P,,;; ». Results of search
with the moment-based search showed poor average success
rate of 22%, which was mainly caused by the bias of the
gripper to tilt to the upper direction independently of the
region where the peg contacts the wall border, which was
not predicted by the model. The results obtained by these
two approaches indicate the search with DNNs present a
good trade-off between success rate and execution time.

V. CONCLUSION

An off-policy, data-driven method for training an industrial
robot to accomplish the peg-in-hole task for holes in concrete
was proposed. Results of evaluations of the proposed method
show the method enables the robot to find unknown holes
with 96.1% success rate and average execution time of
12.4 seconds. The results also show the proposed method
generalizes well to different conditions as it enabled a
robot to accomplish the peg-in-hole task with random initial
positions and a different type of anchor bolt. Additionally, the
results show the DNN used by the proposed method is closer
to meeting the requirements of the construction industry,
namely perfect success rate and low execution time, since
the DNN presented better trade-off between success rate and
execution time compared to other two traditional methods.
Even though the proposed method was evaluated with anchor
bolts with diameter of 12 mm, it is presumed the method
can be extended to any cylindrical object with any diameter
to be inserted in chamfered holes opened in high-friction



materials, which can be easily found in the construction and
manufacturing industries.
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