
Optimized 3D path planner for steerable catheters with deductive
reasoning

Alice Segato1, Valentina Corbetta1, Jessica Zangari2, Simona Perri2, Francesco Calimeri2 and Elena De Momi1

Abstract— Keyhole neurosurgery is challenging, due to the
complex anatomy of the brain and the inherent risk of dam-
aging vital structures while reaching the surgical target. This
paper presents a path planner for safe and effective neurosur-
gical interventions. The strengths of the proposed framework
lay in the integration of multiple risk structures combined
into a deductive method for fast and intuitive user interaction,
and a modular architecture. The tool is intended to support
neurosurgeons at quickly determining the most appropriate
surgical trajectory through the brain matter with minimized
risk; the user interface guides the user through the decision
making process and helps save planning time of neurosurgical
interventions. Risk structures and trajectories can be visualized
in an intuitive way, thanks to a 3D brain surgery simulator
developed with Unity. A qualitative evaluation with clinical
experts shows the practical relevance, while a quantitative
performance and functionality analysis proves the robustness
and effectiveness of the system with respect to literature.

I. INTRODUCTION

Minimally invasive procedures are the gold standard in
brain surgery due to the brain’s sensitivity and the associated
high risk [1]. Straight surgical tools are inserted into intrac-
erebral structures; a carefully planned trajectory is crucial
for the fast and safe performance of neurosurgical procedures
and for minimizing injuries to nearby tissues inside the brain.
Moreover, target can be difficult to reach by traditional rigid
needles, without damaging the adjacent tissues. Steerable
needles represent a breakthrough in neurosurgery, as they
grant access to sensitive destinations [2]. Over the last two
decades, different research groups have focused their efforts
on the development on needles able to steer inside the
tissue [3]. These needles can perform curvilinear trajectories
planned in order to maximize the distance from sensitive
anatomical structures to be avoided and reach targets that
results to be inaccessible via rectilinear insertion paths;
different steerable needle designs and approaches have been
proposed in literature [4].

Planning a keyhole surgical operation in the brain can
be a very difficult task, even for experienced surgeons. The
challenge arises from the human brain’s complex morphol-
ogy and the requirement to avoid various risk structures and
eloquent areas in the brain.

*This project has received funding from the European Union Horizon
2020 research and innovation program under grant agreement No 688279.

1Department of Electronics, Information and Bioengineering, Politecnico
di Milano, Italy alice.segato@polimi.it

2Department of Mathematics and Computer Science, University of Ca-
labria, Italy

In the current standard of care, trajectory planning is man-
ually performed and often relies on the surgeon’s experience.
To verify the chosen trajectory and estimate the treatment
risk, the surgeon must consider every slice of a Magnetic
Resonance Imaging (MRI) or Computed Tomography (CT)
scan along the trajectory when planning the operation. This
is a complicated and time-consuming task [5]. Procedural
complexity is added during the planning of a surgical trajec-
tory by taking into account additional non-linear trajectories
and different risk structures. Differently from conventional
needles, for which the insertion path can be planned and
performed by the clinician on the basis of the target location
and the patient anatomy, the complex kinematics of steerable
needles make the path planning unbearable requiring the aid
of automatic or semi-automatic path planning solutions. As a
result, surgeons need adequate automated planning systems
for planning brain interventions assisting in the process.

Computing the optimal trajectory in the preoperative phase
can be modeled as a path planning problem [6]. Realization
of a digital access plan requires to calculate the risk of a
trajectory penetrating certain risk structures, which must be
correctly segmented prior to planning.

The goal of this work is to develop an optimization-
based path planner, able to pre-operatively assist the surgeon
and estimate optimal curvilinear trajectories. The proposed
method solved the path planning problem with a deductive
learning approach applied to the expert manual planning and
assists neurosurgeons by providing a tool for efficient and
straightforward volumetric risk structure visualization and
faster planning of neurosurgical interventions. The proposed
system supports the surgeon in choosing the most suitable
curvilinear trajectory, as well as avoiding vital structures, and
minimizing potential trauma to healthy tissue.

II. RELATED WORK

In the context of path planning, a variety of approaches
has been proposed in the literature and can be divided into
four main categories:

A. Optimization-Based methods

In Schulman et at. [7], the path optimization problem
is solved via sequential convex optimization. Although the
method does not guarantee to find a solution if it exists, it
can provide locally optimal collision-free paths. Duindam et
al. [8] proposed an explicit solution to inverse kinematics.

The method showed a high speed in the path computation
but with limited obstacle avoidance capabilities. Potential
field methods, based on the idea originally introduced
by Khatib [9], compute a potential field similar to the
one generated by electrical charges. This approach has
the drawback of generating local minima. To address this
problem, Li et al. [10] proposed an artificial potential
field method. The clearance from anatomical obstacles was
achieved but, as such, the method does not comply with
other requirements as the optimization of the total path
length or the compliance with catheter’s kinematics.

B. Graph-based methods

Graph-search methods are based on the discrete
approximation of the planning problem. They are resolution
complete as they can determine in a finite time whether a
solution exists, and resolution optimal as they can estimate
the best path given a specific resolution. Likhachev et al. [11]
proposed the incremental A* solution for 2D applications.
These methodologies show high computational time as the
discretization of the environment becomes finer. Leibrandt
et al. [12] reported a method that builds an undirected graph
of possible transition of needle configurations and queries
the graph using A* search to extract the shortest path
between the current and the desired tip pose. The search
is confined in a subset of configurations close the current one.

C. Sampling-based methods

Sampling-based planners are a type of path planner that
generate the robot’s path by sampling sequentially different
points in robot’s workspace and gradually construct a data
structure that represent collision-free paths. They feature
a probabilistic completeness, i.e. if a solution to the path
planning problem exists, they will eventually find it.
A combination of RRT and a reachability-guided sampling
heuristic (RG-RRT) was used in the work of Patil et al.
[13] to compute motion plans. These solutions can be
used in real-time applications, but performance have been
assessed only in simplified workspaces. A neurosurgical 2D
implementation of RG-RRT was proposed by Caborni et al.
in [14]. Patil et al. [15] proposed a solution confining the
search on the subset of points in the workspace that meet the
kinematic constraints of the needle allows a re-planning of
the path suitable for online procedures, ensuring a clinically
acceptable error. Gammell at al. [16] proposed the Batch
Informed Tree (BIT*) algorithm. In our previous work [17],
a RRT* approach has been implemented for developing a
path. Additionally, the path optimization was hindered by
the intrinsically limited flexibility of cardinal splines used
for the path interpolation.

D. Learning-based methods

Graph-based and sampling-based methods, considered the
standard approaches for path planning, are limited in the

context of KN with flexible catheters, by the impossibility,
unless using further steps, to directly optimize the trajectory
in terms of obstacle clearance and kinematic constraints. In
our previous work [18], made use of the DRL approach to a
grid path planning problem with promising results on small
environments.

E. Reasoning-based methods

Path Planning for robotic steerable needle can be tackled
exploiting classical methods, such as graph-based, search-
based and learning-based approaches. However these tech-
niques present some limitations: the first two require a trade-
off between completeness and efficiency, while the latter
needs large datasets to successfully train models.

Interestingly, reasoning-based approaches for path plan-
ning have been successfully designed, providing high-level
reasoning methods like in [19]. [20] successfully solved the
path planning problem.

Reasoning-based approaches have increased capability of
explicitly represent domain knowledge; however, a path
planning system for complex environments based only on
a deductive reasoning-based method or similar approaches
might be insufficient, as current implementations cannot han-
dle an excessive increase of the search space and generalise
on different environments [21]. In order to overcome these
drawbacks, we propose to model the path planning problem
for steerable needle in neurosurgery combining surgeon
manual planning with deductive optimization method. In
particular our system, exploits Answer Set Programming
(ASP) semantics to model the brain environment and thus
implement an artificial intelligent agent able to move within
it, satisfying requirements, which can be customized depend-
ing on the specific application and based on the preferences
expressed by domain experts, as surgeons and clinicians.

III. MATERIALS AND METHODS

As briefly mentioned in Section I, the goal of the proposed
system is to help neurosurgeons to detect an optimal trajec-
tory from an entry point (EP) to a target structure (TS)
inside the human brain using a steerable needle. The criteria
that make a trajectory “the best” one are several and their
importance depends on the application (e.g. they vary from
Deep Brain Stimulation (DBS) and Convection Enhanced
Delivery (CED), which are two relevant applications of
steerable needles in keyhole neurosurgery). The main criteria
to consider a trajectory as viable is that it must not hit an
obstacle, meaning that it must avoid the sensitive structures,
and that it must hit the target. Another important aspect is
that the trajectory must respect the kinematic constraints of
the moving agent. These criteria apply to any neurosurgery
scenario, while depending on the use case, the clinician might
prefer to privilege shortness of path, minimization of the
curvature or maximization of the distance from obstacles. A
planning tool is implemented in 3D Unity [22] that visualizes
the 3D segmented risk structures of the brain of the patient
derived from that data. First of all the surgeon is asked to
input in the neurosurgical simulator the kinematic limitations

Fig. 1. Architecture of the proposed system, displaying the basic workflow and the user interactions.

of the needle he/she intends to use, which are the curvature,
Kmax, and outer diameter, OD, and the parameters he wants
to prioritize in the selection of the best trajectory, wdtot

,
wdmin and wcmax , used either to minimize or to maximize
the rule expression. A surgeon can then select a target in the
brain (TS), e.g. the tumor and and an entry point EP , on
the brain cortex.

Then, starting from the EP the surgeon is asked to
manually draw a trajectory, defined as:

T (T = {t0, t1, .., tn−1}) (1)

where t0 = EP and tn−1 = TS.
Each of these paths is the input of an optimization pro-

cedure followed by a classification procedure, which will
provide the optimal trajectory, TOpt.

All system components and the workflow of the surgical
trajectory planning tool are depicted in Figure 1, presenting
an overview of the proposed system.

A. Answer Set Programming (ASP)
As already mentioned in Section I, the optimization

and selection of the most suitable trajectory is achieved
via deductive reasoning, implemented through ASP [23],
a declarative programming paradigm born in the field of
logic programming and non-monotonic reasoning. Thanks
to its declarative approach, its high expressivity and the
ability to deal with incomplete knowledge, ASP is very
popular in AI and represents an effective tool for Knowledge
Representation and Reasoning (KRR). With ASP a problem
is modeled by means of a logic program composed by
a collection of rules; intended models of such a program
are called answer sets, and correspond one-to-one to a
solution of the modeled problem; indeed, in general, an ASP
program can feature none, one or multiple answer sets. In
case the input program has no answer sets, the encoded
problem has no solutions. Thanks to years of work in the
the scientific community, several efficient and reliable ASP
systems are currently available, supporting the ASP language
and semantics and hence capable of computing answer sets of
an input program, such as DLV/DLV2 [24] and Clingo [25].

With respect to imperative languages, ASP presents several
benefits. Rather than focusing on coding algorithms and thus
on how to solve the computational problem at hand, the
declarative nature of ASP allows one to focus on how to
describe such computational problem, completely avoiding
the need for explicitly designing the steps to be executed.
In turn, as there is no need for algorithm design or coding,
explicit updates in the problem specification can be more
easily incorporated and this enables different advantages
such as fast prototyping, quick error detection and mod-
ularity. Besides, a clean model-theoretic semantics grants
correctness; intuitively, an ASP program can be seen as a
formal yet executable description of the problem. The basic
construct of ASP is a rule, that has form Head ← Body,
where the Body is a logic conjunction in which negation
may appear, and Head can be either an atomic formula
or a logic disjunction. A rule is interpreted according to
common sense principles: roughly, its intuitive semantics
corresponds to an implication. Hereafter, we briefly recall
the main concepts of ASP syntax, necessary to understand
the proposed methodology. For further details on ASP, its
features and applications, we refer the reader to the vast
literature, starting from [26] and [27].

If t1,...,tk are terms (either constants or variables)
and p is a predicate symbol of arity k, then p(t1,...,tk)
is an atom. A literal l is of the form a or not a, where a is
an atom; in the former case l is positive, negative otherwise.
A rule is of the following form:

a0|. . .|ah:-b1,. . .,bn not bn+1,. . .,bm. (2)

On the left, the symbol “|” connects atoms that are part of
a disjuction in the head, whereas comma separated literals
in the right side, i.e., the body, are part of a conjuction. A
fact is a rule with one single atom in the head and an empty
body and represents a certainly true information. A constraint
is a rule with empty head; hard (“strong” or “classical”)
and soft (“weak”) constraints can be specified in order to
cut out undesired models and express preferences in case
of optimization problems, respectively. Weak constraints are

Fig. 2. A shows an example of search space built around two points tj and tj+1 of manual trajectory T (T = {t0, t1, ..., tn−1}). B shows the comparison
between manual trajectory T (T = {t0, t1, ..., tn−1}) and optimized trajectory T (T = {t0, t1, ..., tn−1}) from EP = t0 = t0 to TS = tn−1 = tn−1.

expressed with the symbol :∼ instead of :- as it is the case
for hard constraints. These latter are conditions that must be
satisfied, whereas soft constraints represent conditions that
should be full-filled; intuitively, when a solution violates
a soft constraint it pays a cost; this induces an ordering
among solutions that allows one to express minimization
or maximization criteria. Such criteria that can equivalently
be expressed via #minimize and #maximize statements.
Moreover, ASP features choice rules, that are compact ways
for expressing disjunction of atoms that must adhere to some
cardinality conditions.

B. Search Space Definition

Starting from the manual trajectory, T , a new search space
is built in which ASP is used to look for alternative paths.

First of all, around each point tj ∈ T , excluding the entry
point and target position, we create a set of concentric circles
of radius 0 ≤ r ≤ 5mm. Then, for each circle, we sample tj
points equally spaced on its circumference by applying the
formulas in Equation 3. Given the coordinates xtj , ytj and
ztj of the center of the circle, θtj values of angles uniformly
distributed between 0° and 360° and the value of the radius r
of the desired circle, the formulas in Equation 3 allow to pass
from polar to cartesian coordinates. This way, we obtain the
x, y and z coordinates of each point tj on its circumference.

xtj = r × cos(θtj) + xtj

ytj = r × sin(θtj) + ytj

ztj = ztj

(3)

From the newly generated set of available points tj , we
create a search graph: each point constitutes a node in the
graph. Considering point tj in the input path T , each point
tj , in the concentric circles around it, is connected by an
edge to the corresponding point tj+1, on the concentric circle
having the same radius, built around point tj+1; tj is also
connected by an edge with the immediately adjacent points
to tj+1. The entry point t1 and the target position tn−1 are
the same of the original trajectory T . Figure 2A shows an
example of search space built around two points tj and tj+1

of the trajectory T .

C. ASP Trajectory Optimization

The search graph is encoded by facts of form edge(X,
Y) expressing that there is an edge between points X and
Y. Moreover, facts start(X) and finish(X) encode
EP and TS, respectively. Eventually, possible steps are
represented as facts of the form step(X). These facts are
the input to an ASP program constituted by the logic rules
described next. First, we define that at the step 0 the needle
must be placed in the start position EP by means of this
rule:

needle at(0, P) :- start(P). (4)

Then, we guess for each step S > 0 different from TS the
points the needle should visit in order to obtain a possible
path. More in detail, the needle can move from point P1 at
step S-1 to point P2 at step S only if the needle visited
P1 at step S-1, P1 and P2 are connected by an edge and
the target structure TS has not been reached yet. Moreover,
we ensure that the needle cannot visit two or more points at
the same time and that it cannot move to positions already
visited. This is encoded by the following choice rule:

0 <= {needle at(S, P2) : edge(P1, P2),

needle at(S-1, P1),

not finish(P2)} <= 1 :- step(S).
(5)

Lastly, we check that guessed paths reach the target
structure TS and discard paths that do not satisfy such
condition via an integrity constraint:

finished :- needle at(S, P),

step(S), finish(P).
(6)

:- not finished. (7)

Figure 2B shows a comparison between manual trajectory
T (T = {t0, t1, ..., tn−1}) and optimized trajectory T (T =
{t0, t1, ..., tn−1}) from EP = t0 = t0 to TS = tn−1 =
tn−1. As it can be seen from the figure, the optimized

trajectory allows to keep a higher distance from the obstacles,
which is the most critical parameter according to the surgeon,
as it is explained in the following paragraph.

D. Parameters Extraction

For each path T found by the optimization procedure
carried out via the above ASP logic program, the following
parameters are computed:

• the length of the path (dtot),
• the average distance from the set of obstacles (davg),
• the minimum distance from the set of obstacles (dmin),
• the maximum curvature of the path (cmax).
These parameters are used in the final step of our work-

flow, which is the classification of the trajectories.

E. ASP Classification of trajectories

The classification part of our methodology chooses the
best trajectory among the ones created by the clinician and
the ones generated in the optimization step. In this phase,
we guess a path to choose among all trajectories, encoded
by facts of form trajectory(X):

1 <= choose(X): trajectory(X) <= 1 (8)

The guessed path is then checked against some require-
ments. In particular, a domain expert contributed with the
knowledge necessary to define the hard and soft constraints
used to select the optimal path, which we have encoded in
ASP rules. We now describe more in detail these constraints.

First of all, the main hard constraint guarantees the respect
of the kinematic limitations Kmax and OD. The ASP rea-
soner must discard a trajectory X if the maximum curvature
cmax of X (modeled by a fact of form maxCurve(X,
cmax)) is bigger than Kmax:

:- choose(X), curvature(cmax),

maxCurve(X, Kmax), Kmax < cmax.
(9)

Furthermore, a path X cannot be chosen if it approaches
the delicate structures at a minimum distance dmin (encoded
by a fact of form distObst(X, dmin)), which is smaller
than the radius of the needle r = OD

2 (expressed by the fact
radius(r)):

:- choose(X), radius(r),

distObst(X, dmin), dmin < r.
(10)

An anticipated, in keyhole neurosurgery the characteristics
which make a path optimal can vary among different use
cases. The integration of ASP in our tool allows the flexibility
and generalizability necessary to implement these desiderata.
Indeed, from the expert’s knowledge, we selected some soft
constraints which can be prioritized by the surgeon: when
inserting the inputs in the simulator, he can select all, some
or none of these rules and also their priority, by assigning a
weight to each of them. We show below the implementation
of these preferences in the ASP program.

1) Minimization of the path length dtot (expressed by
facts of form length(X, dtot)), as this caution
helps to minimize risks in the motion of the needle:

#minimize{dtot@wdtot, X: choose(X),

length(X, dtot)}.
(11)

2) Maximization of the distance from obstacles, to miti-
gate the damage of possible mistakes in the motion of
the needle:
#maximize{dmin@wdmin

, X: choose(X),

distObst(X, dmin)}.
(12)

3) Minimization of the curvature performed by the needle:

#minimize{cmax@wcmax, X: choose(X),

maxCurve(X, cmax)}.
(13)

Essentially, the facts length(X, dtot),
distObst(X, dmin) and maxCurve(X, cmax)
respectively couple dtot, dmin and cmax to the corresponding
trajectory X. wdtot , wdmin and cmax are the weights for
each constraint set by the user; the higher the weight, the
higher the priority.

F. Hardware Specification

Experiments were performed on a Linux machine
equipped with a 6-core i7 CPU, 16GB of RAM and 1
NVIDIA Titan XP GPU with 12GB of VRAM.

Fig. 3. The system takes in input the Entry points, EPj (with 1 ≤ j ≤
10), the target structure, TS, the weights, wcmax , wdmin

, wdtot and the
kinematic constraints of the moving agent, OD and Kmax. k experiments,
EXPk (with 1 ≤ k ≤ 5), were conducted for each approach, Manual and
ASP, and for each the optimal one, pathk , is selected.

Fig. 4. A Shows expert’s rules, and catheter kinematic constraints. B Shows a comparison between Manual and Optimized approach in CED environment.
The results for both considered scenarios and used approaches are reported in terms of the minimum (dmin) and the mean (davg) distance from the
critical obstacles, the total path length (dtot) and the curvature (cmax) calculated over the five best paths for each approach. P-values were calculated
using Wilcoxon matched-pairs signed-rank test.

G. Statistical analysis

All the performance metrics, extracted from the path,
were analysed employing Matlab (The MathWorks, Natick,
Massachusetts, R2020a). Lilliefors test has been initially
applied for data normality. Due to the non-normality of data
distribution, pairwise comparison was performed with the
Wilcoxon matched-pairs signed-rank test. Differences were
considered statistically significant at p-value < 0.05.

H. Experimental Protocol

The surgical procedure considered is the CED, the target
is the tumor (surrounded by different essential structures
where vessels represent the extensive obstacles). 3-D brain
structures were identified on two datasets: 1) Time-of-Flight
(ToF) Magnetic Resonance (MR) for vessels visualisation,
2) T1 for brain cortex, skull surface, arterial blood vessels,
ventricles and all the relevant deep grey matter structures
visualisation, segmented through FreeSurfer Software [28]
and 3-D Slicer [29]. The catheter considered is the bio-
inspired, multi-segment programmable bevel-tip needle
(PBN), currently under development as core technology of
the EDEN2020(*) project [30].

As shown in Figure 3 to evaluate the optimal path found by
the ASP planner, we compared it with the manual trajectories
computed by the expert surgeon. The expert surgeon (age:
37, performed surgical procedures: 2440) was asked to
select 10 entry points, EPi, on the brain cortex, a target
structure TS and the weights, wcmax , wdmin , wdtot for the
rules prioritization. k experiments, EXPk (with 1 ≤ k ≤ 5),
were conducted. For each EXPk, the surgeon was asked to
generate a pool of trajectories, {Tj} (with 1 ≤ j ≤ 10), and
choose the optimal one, TManual, based on his expertise.
The same pool of surgical paths generated in the manual
approach,{Tj}, was used for the optimization procedure and
the optimal one, {TOpt}, was selected, using rules, weights

and kinematic constraints given in input by the surgeon as
reported in Figure 4A.

IV. RESULTS

Figure 4B shows a comparison between the Manual and
Optimized approaches in terms of dmin, davg , cmax and
dtot calculated over the best path of left hemisphere. The
Optimized approach keeps lower dtot and significantly lower
cmax (p-value < 0.01) of the path than the Manual approach.
While it keeps a significantly greater dmin (p-value < 0.01)
and davg (p-value < 0.01) following the rules dictated by the
expert who gives more importance to these two parameters
in this case.

V. DISCUSSION AND CONCLUSION

In this work we presented a novel approach to model
the problem of path planning in the context of keyhole
neurosurgery using deductive reasoning. The presented tool
was planned and implemented to supplement the surgical
workflow and potentially accelerate the required time for
safely planning a trajectory, and thus increasing the outcome
for both the neurosurgeon and the patient. ASP allowed us
to model in a purely declarative fashion the environment
and the steerable needle which moves in it using a set of
logic rules, hence creating a flexible methodology which
can be customized by surgeons depending on the single
patient. Results show the viability of our approach and the
effectiveness of the framework that, thanks to the use of ASP,
allows one to find the minimum number of steps to reach the
target while easily customize priorities.

ACKNOWLEDGMENTS

We thank Eden2020 project consortium partners for pre-
cious advice during the project activities. We thank M. Riva
for providing the dataset and the manual trajectories for the
CED environment simulation.

REFERENCES

[1] T. Liu, Y. Tai, C. Zhao, L. Wei, J. Zhang, J. Pan, and J. Shi,
“Augmented reality in neurosurgical navigation: A survey,” The Inter-
national Journal of Medical Robotics and Computer Assisted Surgery,
p. e2160, 2020.

[2] A. Segato, V. Pieri, A. Favaro, M. Riva, A. Falini, E. D. Momi, and
A. Castellano, “Automated steerable path planning for deep brain
stimulation safeguarding fiber tracts and deep gray matter nuclei,”
Front. Robotics and AI, vol. 2019, 2019.

[3] M. Scali, T. P. Pusch, P. Breedveld, and D. Dodou, “Needle-like
instruments for steering through solid organs: A review of the scientific
and patent literature,” Proceedings of the Institution of Mechanical
Engineers, Part H: Journal of Engineering in Medicine, vol. 231, no. 3,
pp. 250–265, 2017.

[4] N. J. Cowan, K. Goldberg, G. S. Chirikjian, G. Fichtinger, R. Al-
terovitz, K. B. Reed, V. Kallem, W. Park, S. Misra, and A. M.
Okamura, Robotic Needle Steering: Design, Modeling, Planning, and
Image Guidance. Boston, MA: Springer US, 2011, pp. 557–582.

[5] M. Trope, R. R. Shamir, L. Joskowicz, Z. Medress, G. Rosenthal,
A. Mayer, N. Levin, A. Bick, and Y. Shoshan, “The role of automatic
computer-aided surgical trajectory planning in improving the expected
safety of stereotactic neurosurgery,” International journal of computer
assisted radiology and surgery, vol. 10, no. 7, pp. 1127–1140, 2015.

[6] M. A. Audette, S. P. Bordas, and J. E. Blatt, “Robotically steered
needles: A survey of neurosurgical applications and technical innova-
tions,” Robotic Surgery: Research and Reviews, vol. 7, p. 1, 2020.

[7] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[8] V. Duindam, J. Xu, R. Alterovitz, S. Sastry, and K. Goldberg,
“Three-dimensional motion planning algorithms for steerable needles
using inverse kinematics,” International Journal of Robotics Research,
vol. 29, no. 7, pp. 789–800, 6 2010.

[9] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots,” in Autonomous Robot Vehicles, I. J. Cox and G. T.
Wilfong, Eds. New York, NY: Springer New York, 1986, pp. 396–
404.

[10] P. Li, S. Jiang, J. Yang, and Z. Yang, “A combination method of
artificial potential field and improved conjugate gradient for trajectory
planning for needle insertion into soft tissue,” Journal of Medical and
Biological Engineering, vol. 34, no. 6, pp. 568–573, 2014.

[11] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime Dynamic A*: An Anytime, Replanning Algorithm.” in
ICAPS, 2005, pp. 262–271.

[12] K. Leibrandt, C. Bergeles, and G.-Z. Yang, “Concentric Tube Robots:
Rapid, Stable Path-Planning and Guidance for Surgical Use,” IEEE
Robotics & Automation Magazine, vol. 24, no. 2, pp. 42–53, 6 2017.

[13] S. Patil and R. Alterovitz, “Interactive motion planning for steerable
needles in 3D environments with obstacles,” 2010 3rd IEEE RAS
and EMBS International Conference on Biomedical Robotics and
Biomechatronics, BioRob 2010, pp. 893–899, 9 2010.

[14] C. Caborni, S. Y. Ko, E. De Momi, G. Ferrigno, and F. R. y Baena,
“Risk-based path planning for a steerable flexible probe for neuro-
surgical intervention,” in 2012 4th IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob).
IEEE, 6 2012, pp. 866–871.

[15] S. Patil, J. Burgner, R. J. Webster, and R. Alterovitz, “Needle steering
in 3-D Via rapid replanning,” IEEE Transactions on Robotics, vol. 30,
no. 4, pp. 853–864, 2014.

[16] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch Informed
Trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” Proceedings
- IEEE International Conference on Robotics and Automation, vol.
2015-June, no. June, pp. 3067–3074, 5 2015.

[17] A. Segato, V. Pieri, A. Favaro, M. Riva, A. Falini, E. De Momi,
and A. Castellano, “Automated steerable path planning for deep brain
stimulation safeguarding fiber tracts and deep grey matter nuclei,”
Frontiers in Robotics and AI, vol. 6, p. 70, 2019.

[18] A. Segato, L. Sestini, A. Castellano, and E. De Momi, “Ga3c reinforce-
ment learning for surgical steerable catheter path planning,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 2429–2435.

[19] V. Lifschitz, “Answer set programming and plan generation,” Artificial
Intelligence, vol. 138, no. 1-2, pp. 39–54, 2002.

[20] J. J. Portillo, C. L. Garcia-Mata, P. R. Márquez-Gutiérrez, and
R. Baray-Arana, “Robot platform motion planning using answer set
programming.” in LA-NMR, 2011, pp. 35–44.

[21] E. Erdem, E. Aker, and V. Patoglu, “Answer set programming for
collaborative housekeeping robotics: representation, reasoning, and
execution,” Intelligent Service Robotics, vol. 5, no. 4, pp. 275–291,
2012.

[22] W. Goldstone, Unity game development essentials. Packt Publishing
Ltd, 2009.

[23] M. Gelfond and V. Lifschitz, “Classical negation in logic programs and
disjunctive databases,” New generation computing, vol. 9, no. 3-4, pp.
365–385, 1991.

[24] W. T. Adrian, M. Alviano, F. Calimeri, B. Cuteri, C. Dodaro, W. Faber,
D. Fuscà, N. Leone, M. Manna, S. Perri et al., “The asp system dlv:
advancements and applications,” KI-Künstliche Intelligenz, vol. 32, no.
2-3, pp. 177–179, 2018.

[25] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Multi-shot
asp solving with clingo,” Theory and Practice of Logic Programming,
vol. 19, no. 1, pp. 27–82, 2019.

[26] V. Lifschitz, Answer set programming. Springer, 2019.
[27] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Kren-

nwallner, N. Leone, M. Maratea, F. Ricca, and T. Schaub, “Asp-core-2
input language format,” Theory and Practice of Logic Programming,
vol. 20, no. 2, pp. 294–309, 2020.

[28] B. Fischl, “Freesurfer,” Neuroimage, vol. 62, no. 2, pp. 774–781, 2012.
[29] S. Pieper, M. Halle, and R. Kikinis, “3d slicer,” in 2004 2nd IEEE

international symposium on biomedical imaging: nano to macro (IEEE
Cat No. 04EX821). IEEE, 2004, pp. 632–635.

[30] R. Secoli and F. Rodriguez y Baena, “Adaptive path-
following control for bio-inspired steerable needles,” in 2016
6th IEEE International Conference on Biomedical Robotics and
Biomechatronics (BioRob). IEEE, 6 2016, pp. 87–93. [Online].
Available: http://ieeexplore.ieee.org/document/7523603/

