
An Efficient Closed-Form Method for Optimal Hybrid Force-Velocity
Control

Yifan Hou and Matthew T. Mason Fellow, IEEE

Abstract— This paper derives a closed-form method for
computing hybrid force-velocity control. The key idea is to
maximize the kinematic conditioning of the mechanical system,
which includes a robot, free objects, a rigid environment and
contact constraints. The method is complete, in that it always
produces an optimal/near optimal solution when a solution
exists. It is efficient, since it is in closed form, avoiding the
iterative search of our previous work. We test the method on
78,000 randomly generated test cases. The method outperforms
our previous search-based technique by being from 7 to 40 times
faster, while consistently producing better solutions in the sense
of robustness to kinematic singularity. We also test the method
in several representative manipulation experiments.

I. INTRODUCTION

Contact constraints help human manipulation with im-
proved precision and dexterity. For example, when cutting
a piece of wood with a band saw, we often slide the
wood along a guide rail to position it accurately. Hybrid
Force-Velocity Control (HFVC) naturally suits such tasks.
The velocity control (high-stiffness) can drive the system
precisely, avoiding the need to finely balance the forces.
The force control (low-stiffness) can avoid excessive internal
force and maintain desired contacts. A properly designed
HFVC could keep both advantages.

Under modeling uncertainties, HFVC may become in-
feasible, violating constraints and generating huge forces.
We describe this phenomenon by treating the robot-object-
environment system as a kinematic chain connected by
contact constraints, then use its kinematic conditioning to
evaluate the quality of the HFVC. A well conditioned system
can remain feasible under large modeling errors. Our goal
in this work is to compute a HFVC that maximizes the
kinematic conditioning of the manipulation system.

While kinematic conditioning of a fully-actuated manipu-
lator was well studied [1][2][28], kinematic conditioning of
a system with free objects still needs a clear characterization
[13]. Our previous work [14] approximated the condition
number of the whole system with a polynomial and opti-
mized it in a non-convex optimization. Given enough initial
guesses and sufficient number of iterations, the algorithm
could find a good solution. However, the trade-off between
computation speed and quality of solution is limiting its
applications, especially in industrial applications where both
speed and safety guarantee are required.

*This work was supported under NSF Grant IIS-1813920 and IIS-
1909021.

The authors are with the Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, USA. yifanh@cmu.edu,
mattmason@cmu.edu

This paper aims to solve the speed and optimality prob-
lem. We make three contributions: first, we provide a
precise characterization of the conditioning of a robot-
object-environment system. Second, we present Optimally-
Conditioned Hybrid Servoing (OCHS), an algorithm that
efficiently computes well-conditioned HFVC. OCHS avoids
non-convex optimization, which leads to a 7 to 40 times
speed up comparing with our previous work. Third, we test
our algorithm extensively in randomly generated problems
as well as experiments to demonstrate its computation speed
and quality consistency.

The paper is organized as follows. In the next section we
review the related work. In Section III we introduce the mod-
eling for a manipulation problem under contact constraints.
Then we introduce the problem formulation in Section IV.
Next, we derive the OCHS algorithm in Section V. Sec-
tion VI evaluates the algorithm in randomly generated test
problems, while multiple representative experimental results
are presented in Section VII.

II. RELATED WORK

A. Manipulation with Hybrid Force-Velocity Control

The idea of HFVC was originally introduced in [20],
which provides a framework for identifying force and
velocity-controlled directions in a task frame given a task
description. The framework was then completed and imple-
mented in [26]. For the control of a manipulator subject to
constraints, it was common to align the force and velocity
control directions with the row and null space of the contact
Jacobian [33][35]. The approach has industrial applications
including polishing [24] and peg-in-hole assembly [25].

However, when the system contains one or more free
objects with no attachment to any motor, most previous
work was case by case study, such as [8] and [30]. In
some special cases, it is possible to design a HFVC from
simple heuristics using local contact information, such as
in multi-finger grasping [23] and locomotion [4][10]. Our
previous work [14] proposed the first general algorithm for
manipulation under rigid contacts using HFVC.

Once we have a HFVC, the final step is to implement it
on a robot. HFVC can be implemented by wrapping around
force control [11][17][26][27] or position/velocity control
[18][19]. The choice depends on the type of robot. We
refer the readers to Whitney [34] and De Schutter [7] for
comparisons of different HFVC implementations.

ar
X

iv
:2

01
1.

04
87

2v
2

 [
cs

.R
O

]
 2

4
M

ar
 2

02
1

B. Robustness of Manipulation System under HFVC

There is plenty of work on the stability of a hybrid force-
velocity controlled system under active contact with the
environment. Lagrange dynamics modeling and Lyapunov
stability analysis have been conducted on the whole con-
strained robot system [3][9][16][21]. Much attention was
paid to the stability of the engaging/disengaging process
[15][22][32], which is particularly difficult to stabilize.

Most of these analyses focused on the stability of the
inner control loop, i.e. whether the robot action would
converge, oscillate, or diverge. However, a stable robot may
still fail a manipulation task for two reasons. The first
is ill-conditioning under modeling errors. The second is
unexpected changes of contact modes such as unexpected
slipping or sticking, which may directly cause task failure
or lead to crashing. This work assumes the robot has stable
HFVC and focuses on handling the above two failure cases.

III. MODELING

First we introduce the instantaneous modeling of a ma-
nipulation system subject to contact constraints, which are
mostly consistent with our previous work [14] except for
notational simplifications. Consider a robot and at least one
object in a rigid environment. The robot, object(s), and
the environment has na, nu, and zero degree-of-freedoms
(DOF), respectively. The total DOF of the system is n =
na + nu. The subscript ‘a’ and ‘u’ means ‘actuated’ and
‘unactuated’. Denote v = [vTu vTa]T , f = [fTu fTa]T ∈ Rn
as the generalized velocity and force vectors, where fu is
always zero. The following assumptions are made:

• Motions are quasi-static, i.e. inertia force and Coriolis
force are negligible.

• Object, robot and environment are all rigid.
• Friction follows Coulomb’s Law.

A. Contact Constraints on Velocity

We consider point contact with clearly defined contact
point location and contact normal. This is the case for point-
to-face contacts. Edge-to-edge, edge-to-face, and face-to-
face contacts can be approximated by one or more point
contacts [5]. Point-to-point and point-to-edge contacts are not
considered here due to their rare appearance. We consider
three types of contact modes: sticking, sliding, and sepa-
ration. Both sticking and sliding contacts impose a linear
constraint in the contact normal direction; a sticking contact
also impose constraints in the contact tangential directions.
We consider holonomic constraints imposed by the contacts,
which are bilateral constraints on the system configuration
that are also independent of the system velocity. They are
linear constraints on the system velocity:

Jv = 0, (1)

where J is the contact Jacobian [23]. Equation (1) can
also model any other holonomic constraints, such as the
connection constraint between two links of a robot joint.

B. Goal Description

Users shall provide the control goal, which is an expected
system velocity. The goal at a time instant can be written as
an affine constraint on the generalized velocity:

Gv = bG, (2)

which can be derived from a given trajectory by taking first-
order derivative. We can use six rows to specify the desired
velocity of a rigid body in 3D, or only use three rows to
specify a desired rotational velocity.

The goal specification (2) must not be redundant. For
example, to slide an object on a planar surface in 3D, the
goal should have no more than three rows. It should not
specify the object velocity in the contact normal direction,
which is already limited to zero by the contact constraint.

C. Constraints on force

Denote λ as the vector of contact forces. Using the
principle of virtual work [31], we can write the contribution
of λ to the generalized force space as τ = J ′Tλ. Note the
J ′ here is different from the J in (1), because J ′ may have
more rows that corresponds to sliding friction.

There are two kinds of force constraints. One is the
Newton’s Second Law under quasi-static approximation:

J ′Tλ+ f + F = 0. (3)

The three terms are contact forces, control actions (internal
forces) and external forces, respectively. The external force
F ∈ Rn may include gravity, disturbance forces, etc.

The other force constraint is the condition for staying
in the desired contact mode, we called them the guard
conditions [14]. It’s usually a good practice to make the
guard condition stricter than necessary to encourage conser-
vative actions. We consider guard conditions that are affine
constraints on force variables. Examples are friction cone
constraints and lower/upper bounds on forces.

Λ

[
λ
f

]
≤ bΛ. (4)

Note that (4) has no equality constraints, so we do not
consider sliding friction. This is because applying force
on the friction cone is not a robust way to execute a
sliding contact [13]. A more reliable approach requires model
information beyond the scope of this work [12].

D. Hybrid Force-Velocity Control

Consider a HFVC with nav dimensions of velocity control
and naf dimension of force control, nav+naf = na. We use
matrix T ∈ Rn×n to describe the directions of force/velocity
control. Matrix T is diagonal: T = diag(Iu, Ra), where
Iu ∈ Rnu×nu is an identity matrix, Ra ∈ Rna×na is
an unitary matrix describing the control axes. Here we
assume Ra is orthonormal, so that the force and velocity
controls are reciprocal. Without loss of generality, we assume
the last nav rows of T are velocity-controlled directions,
preceded by naf rows of force-controlled directions. Denote
w = Tv, η = Tf ∈ Rn as the transformed generalized

velocity and the transformed generalized force. We know
w = [wTu wTaf wTav]

T , where wu = vu is the unactuated
velocity, waf ∈ Rnaf is the velocity in the force-controlled
directions, wav ∈ Rnav is the velocity control magnitude.
Similarly, η = [ηTu ηTaf η

T
av]

T , where ηu = fu = 0 is the
unactuated force, ηaf ∈ Rnaf is the force control magnitude,
ηav ∈ Rnav is the force in the velocity-controlled directions.

To fully describe a HFVC, we need to solve for
nav, naf , Ra, wav and ηaf .

IV. THE HYBRID SERVOING PROBLEM

Hybrid servoing [14] is the problem of computing the
best HFVC for a constrained manipulation. In this section
we derive its cost function from kinematic conditioning then
introduce the hybrid servoing problem.

A. Kinematic Conditioning of Manipulation System

In manipulator kinematic analysis, it is well-known that
the condition number of the manipulator Jacobian is an indi-
cator of the kinematic performance of the system [1][2][28].
In a manipulation problem with free objects, the kinematic
constraints includes (5) and the velocity control of HFVC:

Cv = bc, (5)

where C is the last nav rows of T , bC is simply wav . The
combined kinematic system is:[

J
C

]
v =

[
0
bC

]
. (6)

The condition number of its coefficient matrix needs to be
minimized:

min
J,C

cond(

[
J
C

]
). (7)

Throughout this paper, we use the 2-norm condition number,
defined as the following for any matrix A:

cond(A) = ‖A‖2‖A†‖2 =
σmax(A)

σmin(A)
, (8)

which is the ratio between the maximum and minimum
singular values. However, for our system, directly computing
the above condition number makes little sense for two
reasons. First, we only want to evaluate the influence of
control C. The other part of our coefficient matrix, J , is
constant and could already be ill-conditioned if the contact
modeling is redundant. To singulate the influence of C, we
replace J with an orthogonal basis of its rows, so it represents
the same constraint as (1) but has a condition number of one.
Second, the row scaling of C should not affect our criteria,
since scaling both sides of (5) does not change our control.
However, it does change the condition number. This problem
is called artificial ill-condition[29], the typical solution is to
pre-normalize each row of our coefficient matrix. Thus our
final expression of kinematic conditioning is:

min
C

cond(

[
Ĵ

Ĉ

]
), (9)

where rows of Ĵ form an orthonormal basis of rows in J ; Ĉ
is C with each row normalized. Figure 1 shows the condition
number value of several planar examples. When the control
is collinear with constraints, the condition number grows to
infinity and a tiny motion can cause huge internal force.
We have been calling this situation crashing in our previous
work, and introduced a “crashing-avoidance score” in [13]
to evaluating it. However, equation (9) is a more precise
description, we call the cost function the crashing index.

V

2.41

F
V

3.87

F V

inf

F

V

7.10

F
V

10.48

F V

inf

F

Fig. 1. 2D examples of HFVC and their corresponding crashing indexes.
The robot execute 2D HFVC, with 1D force control and 1D velocity control.

B. Problem Formulation
The task of hybrid servoing is to solve for:

1) the dimensions of force-controlled actions and velocity-
controlled actions, naf and nav , and

2) the directions to do force control and velocity control,
described by the matrix T , and

3) the magnitude of force/velocity actions: ηaf and wav ,
so as to minimize the crashing index (9) subject to the
following constraints:
• Any v under the robot action shall satisfy the goal

constraint (2);
• Any f under the robot action shall satisfy the guard

conditions (4).
We use the word ‘any’ because a HFVC usually cannot
uniquely determine v and f .

V. APPROACH
In this section, we use the notation NULL(·) and ROW(·)

to denote the null space and row space of the argument,
respectively; use Null(·) and Row(·) to denote a matrix
whose rows form an orthonormal basis of NULL(·) and
ROW(·), respectively. We use rows(·) to denote the number
of rows in the argument.

Before introducing our algorithm, we need to make some
observations about the nature of the problem. Since the
feasible velocity v under a HFVC may not be unique, the
proper statement of the goal constraint is:

Gv = bG, ∀v ∈ {v | Jv = 0, Cv = bC}, (10)

i.e. we need to ensure all possible solutions satisfy the goal.
This is an inclusion relationship between the solution sets of
two linear equations, which is equivalent to:

1) The null space of G contains the null space of
[
J
C

]
;

2) There exists a common special solution: ∃v∗ : Gv∗ =
bG, Jv

∗ = 0, Cv∗ = bC .
We call them the Goal-Inclusion conditions and will refer to
them repeatedly. Condition 1) is equivalent to

NULL(

[
J
C

]
) ⊆ NULL(

[
J
G

]
), (11)

which further implies

rank(

[
J
C

]
) ≥ rank(

[
J
G

]
). (12)

Due to the orthogonal complement relation between the row
and null space of a matrix, the null space inclusion (11) can
be reformulated as a reverse row space inclusion:

rank

([
J
C

])
= rank

 J
C
G

 . (13)

Our algorithm involves three steps. First, we derive the
control axis directions to satisfy the Goal-Inclusion condition
1) while optimizing conditioning. Second, we compute the
velocity control magnitudes to satisfy the Goal-Inclusion
condition 2). Finally, we solve for the force control mag-
nitudes to satisfy the guard conditions.

A. Pick Control Axes to Optimize Conditioning

The information of the control axes (nav, naf , and T) is
contained in the velocity control coefficient matrix C (5): C
has nav rows; C and its orthogonal complement forms T .

First thing we need to know about the velocity control is
its dimension. We can compute the instantaneous directions
that the system can move without conflicting the contact con-
straints by computing the null space U of contact Jacobian:

U = Null(J). (14)

The last na columns of U , i.e. the actuated part, indicate the
directions in which the robot can move freely. It is a linear
space, a basis of which can be computed as:

Ū = Row(USa), (15)

where Sa ∈ Rn×n is a selection matrix with only ones on
the last na diagonal entries. Any linear combinations of rows
of Ū corresponds to a vector in NULL(J) and is thus a free
robot motion direction. The dimensionality of Ū indicates
the maximum dimension of velocity control we can apply:

nav ≤ rows(Ū) (16)

On the other hand, (12) suggests the minimum dimension of
velocity control required to satisfy the goal (2):

nav ≥ rank(

[
J
G

]
)− rank(J). (17)

Combining (16) and (17), we have a necessary condition for
the feasibility of the problem:

rows(Ū) ≥ rank(

[
J
G

]
)− rank(J). (18)

If equation (18) is not satisfied, the problem has an infeasible
goal. Otherwise, we can choose the dimension of velocity
control within (16)-(17). Sometimes we want more velocity
control so as to increase disturbance rejection ability [12];
sometimes we want less velocity control to have more
compliance in the system [14]. We solve both situations and
leave this choice to the user.

If the maximal velocity control is needed, we can simply
do velocity control in all directions in Ū :

nav = rows(Ū), (19)

C = Ū . (20)

Then we check equation (13) to see if the problem is feasible.
Otherwise, if the minimal velocity control is desired, we take

nav = rank(

[
J
G

]
)− rank(J) (21)

Then the nav rows of velocity controls are linear combina-
tions of rows of Ū :

C = KŪ, (22)

where K ∈ Rnav×rows(Ū). We compute K using the null
space form of Goal-Inclusion condition 1), which implies

CNull(

[
J
G

]
) = KŪNull(

[
J
G

]
) = 0. (23)

Then K is an orthonormal basis of a null space:

K = NullT
(

NullT (

[
J
G

]
)ŪT

)
. (24)

The problem is feasible if K has enough rows:

rows(K) ≥ nav. (25)

If this is true, we keep the first nav rows of K and recover C
from equation (22). The C obtained this way has orthonormal
rows, since it is the product of two orthonormal matrices.

Note that equation (20) and (22) compute the velocity con-
trol direction C in a closed form without explicitly optimize
the crashing index (9), however, they do find optimal solu-
tions. As shown in our numerical experiments, equation (22)
always finds the solution with the minimal crashing index;
equation (20) also always achieves the minimal crashing
index among solutions with the same dimensionality.

After obtaining the velocity-controlled direction C, we
compute the force-controlled direction as its orthogonal com-
plement to make the velocity and force controls reciprocal.
Denote the last na columns of C as RC , we can expand it
into a full rank Ra:

naf = na − nav. (26)

Ra =

[
Null(RC)

T

RC

]
. (27)

Then we have T = diag(Iu,Ra).
We summarize the procedure in line 1 to line 13 in

algorithm 1. Note that the method avoids the non-convex
optimization in [14].

B. Solve for Velocity Control Magnitudes
Next, we use Goal-Inclusion condition 2) to compute bC .

Compute a special solution v∗ from[
J
G

]
v∗ =

[
0
bG

]
(28)

Such v∗ must exist, otherwise the goal itself is infeasible.
Use it to compute the velocity control magnitude:

wav = bC = Cv∗ (29)

This choice of bC satisfies condition 2).

Algorithm 1: Optimally-Conditioned Hybrid Servo-
ing

Input: Contact Jacobian J , Goal description G, bG
Input: Guard condition,
Output: HFVC (naf , nav, Ra, wav, ηaf)
// Solve for velocity control

1 Compute free motion space U under constraint;
2 Compute free robot motion space Ū (15) ;
3 Check necessary feasibility condition (18). ;
4 if Maximal velocity control dimension then
5 Take Ū as velocity-controlled directions (19)(20) ;
6 Check goal feasibility using (13);
7 else
8 Compute the minimal dimension of C from (21) ;
9 Solve for the coefficient matrix K from (24) ;

10 Check goal feasibility using (25) ;
11 Compute the velocity control C from (22);
12 Complete control axes information using (26)-(27). ;
13 Compute the velocity control magnitude (29) using a

special solution to (28). ;
// Solve for Force control

14 Compute the force control magnitude ηaf by solving
the QP defined in Section V-C.;

C. Solve for Force Control Magnitudes
At this point we already know the dimensionality and

directions of force control. The only remaining unknown
variable in a HFVC is the value of the force control mag-
nitude ηaf . we find a solution by minimizing the magnitude
of force variables:

min
λ,η

λTλ+ ηTa ηa (30)

subject to the Newton’s Second Law (3) and the guard
conditions (4), which takes the form of a Quadratic Program-
ming. This is a simplified version of the force magnitude
computation in [14] and it is slightly more efficient.

D. Discussion
An important advantage of this algorithm over the previous

work [14] is its ability to handle underactuated system.

TABLE I
TYPES OF RANDOMLY GENERATED TEST PROBLEMS

Environment Contacts Hand Contacts
Contact
Points

Contact
Modes

Contacts
per finger # Fingers

Planar 1 f,s 1,2 1
2 ss 1,2 1

3D
1 f,s 1,2,3 1,2,3
2 ff,fs,ss 1,2,3 1,2,3
3 ffs,fss,sss 1,2,3 1,2,3

Fig. 2. An underactuated example.

An example is a cube
with one corner stick-
ing on the ground and
one corner sticking on the
robot finger (Figure 2):
the robot has no con-
trol over the rotation of
the cube about the line
between the two contact
points. Still, a control
problem on this object
may still be feasible, e.g. if the goal is to lift the center
of mass of the object. Condition (13) tells us whether this is
the case or not.

VI. EVALUATION

A. Implementation

In this section, we evaluate the performance of the OCHS
algorithm in randomly generated manipulation problems. We
implement OCHS in Matlab and test it on a desktop with an
i7-9700k CPU clocked at 4.7GHz.

B. Test Problems

We consider a rigid object with one to three environmental
contacts and one to three rigid body fingers. Each rigid
body has three DOFs in planar problems, or six DOFs in
3D problems. The settings are listed in Table I, where ‘f’
denotes a fixed (sticking) contact point, ‘s’ denotes a sliding
contact point. Each environment contact point can be sliding
or sticking; finger contacts are all sticking.

We randomly sample 1000 set of contact point locations
and normals for each contact mode setting, making a total of
6000 planar and 72,000 3D test problems. The goal constraint
is sampled randomly for each problem.

The results are summarized in Table II and III, the
difference is that in Table III we give the goal (2) the
maximum possible dimension, so all algorithms must select
the maximum velocity control dimension. OCHS is our algo-
rithm with minimal velocity control, OCHS(M) denotes our
algorithm with maximal velocity control. As a comparison,
we also show the performance of the original hybrid servoing
algorithm [14]. HS3 uses three initial guesses and has a good
computation speed; HS10 uses ten initial guesses to search
the problem excessively. Both run each initial guess for 50
iterations.

TABLE II
TEST RESULTS - MIN VELOCITY CONTROL DIMENSION

Planar (6 DOF) OCHS OCHS(M) HS3 HS10
of
Problems

Total 6000
Solved 5985 5981 5974 5977

Average Crashing Index 15.5 18.4 19.5 19.9
ill-conditioned solutions 15 19 26 23
Velocity
Time(ms)

Average 0.14 0.14 1.74 5.32
Worst 0.63 0.46 2.73 7.40

Force
Time (ms)

Average 0.99 0.94 1.28 1.33
Worst 2.21 2.44 2.09 3.34

3D, (12 to 24 DOF) OCHS OCHS(M) HS3 HS10
of
Problems

Total 72000
Solved 67506 67399 65950 65952

Average Crashing Index 3.98 13.8 5.20 4.68
ill-conditioned solutions 22 136 50 48
Velocity
Time(ms)

Average 0.28 0.28 1.96 5.70
Worst 0.85 0.77 3.82 10.7

Force
Time (ms)

Average 1.09 1.04 1.57 1.61
Worst 3.03 3.13 12.3 11.8

TABLE III
TEST RESULTS - MAX VELOCITY CONTROL DIMENSION

OCHS OCHS(M) HS3 HS10
of
Problems

Total 30000
Solved 27372 27372 22939 22951

Average Crashing Index 8.34 8.34 14.0 12.9
ill-conditioned solutions 55 55 37 31
Velocity
Time(ms)

Average 0.17 0.17 2.35 7.25
Worst 0.54 0.45 3.99 28.39

Force
Time (ms)

Average 1.04 0.98 1.39 1.44
Worst 2.39 2.18 3.76 3.62

C. Results

In all tests, OCHS consistently finds solutions with bet-
ter crashing indexes than HS3 and HS10, achieves lower
average crashing index and fewer ill-conditioned solutions.
OCHS(M) has a larger crashing index in Table II because
it applies more dimensions of control. When all algorithms
selects the same dimension of velocity control, OCHS(M)
also always achieves better crashing indexes than HS3 and
HS10 on every problem.

Both OCHS and OCHS(M) are notably faster than HS3
and HS10. The velocity part of OCHS shows 7 to 13
times speedup comparing with HS3, 20 to 40 times speedup
comparing with HS10. The force part of OCHS has a mild
speed up of 35% due to a simpler problem formulation with
less variables.

VII. EXPERIMENTS

Fig. 3. Robot flipping a block with one fingertip. The experiment runs 100
times with all successes.

We test the quality of our algorithm in several exper-
iments. We implemented hybrid force-velocity control on
a position-controlled ABB IRB 120 industrial robot with
a wrist-mounted ATI Mini-40 force-torque sensor. In all
experiments, we run OCHS off-line on a given motion plan to
obtain a trajectory of HFVC, though the computation speed
of OCHS supports feedback control at hundreds of Hz. In
online execution, HFVC control loop is clocked at 200Hz.
The lowest communication rate between the computer and
the robot position controller is 250Hz with 25ms latency.

To compare with our previous work, we redo the block
tilting experiment [14] with the same setup, as shown in
Figure 3. The block is a wooden cube with length 75mm.
We place a 1.5mm rubber sheet on the table to increase
friction. The robot hand is the same rubber ball as before.
In our previous work, we perform block tilting 50 times and
obtained 47 successes. With OCHS, we obtain a hundred
consecutive successes at 50% higher robot velocity 1. The
result demonstrate the ability of our algorithm to consistently
produce solutions with good quality.

Fig. 4. Two shared grasping tasks executed with OCHS. Top: moving an
object up a stair. Bottom: transporting an object over an obstacle.

OCHS can be used in shared grasping [12] to compute the
control axes and velocity control. We use OCHS as a robust
tracking controller to execute several shared grasping with
motion plans computed using [6], as shown in Figure 4.

VIII. CONCLUSION

In this work, we provide an algorithm to compute a
hybrid force-velocity control for manipulation under contact
constraints. Our algorithm finds the solution that brings the
best kinematic conditioning of the manipulation system. We
demonstrate that our algorithm reliably and quickly finds the
best solutions among all comparisons in extensive tests and
experiments.

The algorithm itself can serve as a robust tracking con-
troller to execute a pre-computed motion plan. It is also
a building block for the more comprehensive contact sta-
bility analysis [12]. Due to our algorithm’s computational
efficiency, it also has the potential to be incorporated into a
planning framework for robust manipulation planning.

1The full 40min video is available at https://www.dropbox.com/
s/ppimywwrgaelbw8/108_Block_tiltings.mp4?dl=0

https://www.dropbox.com/s/ppimywwrgaelbw8/108_Block_tiltings.mp4?dl=0
https://www.dropbox.com/s/ppimywwrgaelbw8/108_Block_tiltings.mp4?dl=0

REFERENCES

[1] Jorge Angeles and Carlos S López-Cajún. Kinematic isotropy and the
conditioning index of serial robotic manipulators. The International
Journal of Robotics Research, 11(6):560–571, 1992.

[2] Jorge Angeles, Farzam Ranjbaran, and Rajnikant V Patel. On the
design of the kinematic structure of seven-axes redundant manipulators
for maximum conditioning. In Proceedings 1992 IEEE International
Conference on Robotics and Automation, pages 494–495. IEEE Com-
puter Society, 1992.

[3] Bernard Brogliato, S-I Niculescu, and Pascal Orhant. On the control
of finite-dimensional mechanical systems with unilateral constraints.
IEEE Transactions on Automatic Control, 42(2):200–215, 1997.

[4] Thomas Buschmann, Sebastian Lohmeier, and Heinz Ulbrich. Biped
walking control based on hybrid position/force control. pages 3019–
3024, 2009.

[5] Nikhil Chavan-Dafle and Alberto Rodriguez. Prehensile pushing: In-
hand manipulation with push-primitives. In 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 6215–
6222, 2015.

[6] Xianyi Cheng, Eric Huang, Yifan Hou, and Matthew T Mason. Con-
tact mode guided sampling-based planningfor quasistatic dexterous
manipulation in 2d. Under Review, 2020.

[7] Joris De Schutter, Herman Bruyninckx, Wen-Hong Zhu, and Mark W
Spong. Force control: a bird’s eye view. In Control Problems in
Robotics and Automation, pages 1–17. Springer, 1998.

[8] Niels Dehio, Joshua Smith, Dennis Leroy Wigand, Guiyang Xin, Hsiu-
Chin Lin, Jochen J Steil, and Michael Mistry. Modeling and control
of multi-arm and multi-leg robots: Compensating for object dynamics
during grasping. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 294–301. IEEE, 2018.

[9] Steven Eppinger and W Seering. Introduction to dynamic models
for robot force control. IEEE Control Systems Magazine, 7(2):48–52,
1987.

[10] Yasutaka Fujimoto and Atsuo Kawamura. Proposal of biped walking
control based on robust hybrid position/force control. In Proceed-
ings of IEEE International Conference on Robotics and Automation,
volume 3, pages 2724–2730. IEEE, 1996.

[11] Neville Hogan. Impedance control: An approach to manipulation: Part
ii—implementation. Journal of dynamic systems, measurement, and
control, 107(1):8–16, 1985.

[12] Yifan Hou, Zhenzhong Jia, and Matthew T Mason. Manipulation with
shared grasping. Robotics: Science and Systems, 2020.

[13] Yifan Hou and Matthew T Mason. Criteria for maintaining desired
contacts for quasi-static systems. In Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, November
2019.

[14] Yifan Hou and Matthew T Mason. Robust execution of contact-
rich motion plans by hybrid force-velocity control. In International
Conference on Robotics and Automation (ICRA) 2019. IEEE Robotics
and Automation Society (RAS), May 2019.

[15] Hiroshi Ishikawa, Chihiro Sawada, K Kawasa, and Masayuki Takata.
Stable compliance control and its implementation for a 6 dof manipu-
lator. In Proceedings, 1989 International Conference on Robotics and
Automation, pages 98–103. IEEE, 1989.

[16] H Kazerooni, BJ Waibel, and S Kim. On the stability of robot
compliant motion control: theory and experiments. Journal of Dynamic
Systems, Measurement, and Control, 112(3):417–426, 1990.

[17] Oussama Khatib. A unified approach for motion and force control of
robot manipulators: The operational space formulation. IEEE Journal
on Robotics and Automation, 3(1):43–53, 1987.

[18] António Lopes and Fernando Almeida. A force–impedance controlled
industrial robot using an active robotic auxiliary device. Robotics and
Computer-Integrated Manufacturing, 24(3):299–309, 2008.

[19] J. Maples and J. Becker. Experiments in force control of robotic
manipulators. In Proceedings. 1986 IEEE International Conference
on Robotics and Automation, volume 3, pages 695–702, Apr 1986.

[20] Matthew T Mason. Compliance and force control for computer
controlled manipulators. IEEE Transactions on Systems, Man, and
Cybernetics, 11(6):418–432, 1981.

[21] N Harris McClamroch and Danwei Wang. Feedback stabilization
and tracking of constrained robots. IEEE Transactions on Automatic
Control, 33(5):419–426, 1988.

[22] James K Mills and David M Lokhorst. Control of robotic manipulators
during general task execution: A discontinuous control approach. The
International Journal of Robotics Research, 12(2):146–163, 1993.

[23] Richard M Murray, Zexiang Li, and S. Shankar Sastry. A Mathematical
Introduction to Robotic Manipulation. CRC Press, Inc., USA, 1st
edition, 1994.

[24] Fusaomi Nagata, Tetsuo Hase, Zenku Haga, Masaaki Omoto, and
Keigo Watanabe. Cad/cam-based position/force controller for a mold
polishing robot. Mechatronics, 17(4-5):207–216, 2007.

[25] Hyeonjun Park, Jaeheung Park, Dong-Hyuk Lee, Jae-Han Park, Moon-
Hong Baeg, and Ji-Hun Bae. Compliance-based robotic peg-in-hole
assembly strategy without force feedback. IEEE Transactions on
Industrial Electronics, 64(8):6299–6309, 2017.

[26] Marc H Raibert and John J Craig. Hybrid position/force control
of manipulators. Journal of Dynamic Systems, Measurement, and
Control, 103(2):126–133, 1981.

[27] J Kenneth Salisbury. Active stiffness control of a manipulator in carte-
sian coordinates. In Decision and Control including the Symposium
on Adaptive Processes, 1980 19th IEEE Conference on, volume 19,
pages 95–100. IEEE, 1980.

[28] J Kenneth Salisbury and John J Craig. Articulated hands: Force control
and kinematic issues. The International journal of Robotics research,
1(1):4–17, 1982.

[29] G. W. Stewart. Collinearity and least squares regression. Statistical
Science, 2(1):68–84, 1987.

[30] Masaru Uchiyama and Pierre Dauchez. A symmetric hybrid posi-
tion/force control scheme for the coordination of two robots. In
Robotics and Automation, 1988. Proceedings., 1988 IEEE Interna-
tional Conference on, pages 350–356. IEEE, 1988.

[31] Luigi Villani and Joris De Schutter. Force control. In Springer
handbook of robotics, pages 161–185. Springer, 2008.

[32] Richard Volpe and Pradeep Khosla. A theoretical and experimental
investigation of impact control for manipulators. The International
Journal of Robotics Research, 12(4):351–365, 1993.

[33] Harry West and Haruhiko Asada. A method for the design of hybrid
position/force controllers for manipulators constrained by contact with
the environment. In Proceedings. 1985 IEEE International Conference
on Robotics and Automation, volume 2, pages 251–259. IEEE, 1985.

[34] Daniel E Whitney. Historical perspective and state of the art in robot
force control. The International Journal of Robotics Research, 6(1):3–
14, 1987.

[35] Tsuneo Yoshikawa. Dynamic hybrid position/force control of robot
manipulators–description of hand constraints and calculation of joint
driving force. IEEE Journal on Robotics and Automation, 3(5):386–
392, 1987.

	I INTRODUCTION
	II RELATED WORK
	II-A Manipulation with Hybrid Force-Velocity Control
	II-B Robustness of Manipulation System under HFVC

	III MODELING
	III-A Contact Constraints on Velocity
	III-B Goal Description
	III-C Constraints on force
	III-D Hybrid Force-Velocity Control

	IV THE HYBRID SERVOING PROBLEM
	IV-A Kinematic Conditioning of Manipulation System
	IV-B Problem Formulation

	V APPROACH
	V-A Pick Control Axes to Optimize Conditioning
	V-B Solve for Velocity Control Magnitudes
	V-C Solve for Force Control Magnitudes
	V-D Discussion

	VI Evaluation
	VI-A Implementation
	VI-B Test Problems
	VI-C Results

	VII EXPERIMENTS
	VIII CONCLUSION
	References

