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Abstract— We carry out a structural and algorithmic study
of a mobile sensor coverage optimization problem targeting 2D
surfaces embedded in a 3D workspace. The investigated settings
model multiple important applications including camera net-
work deployment for surveillance, geological monitoring/survey
of 3D terrains, and UVC-based surface disinfection for the
prevention of the spread of disease agents (e.g., SARS-CoV-
2). Under a unified general “sensor coverage” problem, three
concrete formulations are examined, focusing on optimizing
visibility, single-best coverage quality, and cumulative quality,
respectively. After demonstrating the computational intractabil-
ity of all these formulations, we describe approximation schemes
and mathematical programming models for near-optimally
solving them. The effectiveness of our methods is thoroughly
evaluated under realistic and practical scenarios.

I. INTRODUCTION

We perform a systematic study of a class of mobile sensor1

deployment optimization problems targeting the coverage
of 2D surfaces embedded in 3D domains, applicable to a
broad set of practical settings, for example: (1) the selection
of surveillance camera locations for maximizing the joint
coverage of an art museum, (2) the deployment of mobile
robots with range-based sensing apparatus for the monitoring
of complex 3D terrains with quality assurances, and (3) the
optimization of UVC light source locations for disinfecting
interior surfaces of public indoor spaces, e.g., airplanes,
buses, hospital rooms, and schools (Fig. 1), which is of key
relevance to the ongoing COVID-19 pandemic. Despite the
problems’ apparent differences, the above-mentioned tasks
fall under the general problem of placing mobile sensors for
optimizing some form of coverage. This work is devoted
to providing such a unifying problem formulation, under-
standing its rich structural properties, and delivering effec-
tive computational methods for readily solving the multiple
variations, which all have high application potentials.

As a summary of the research and its contributions, under
a general formulation, three coverage optimization problems
are examined that are based on visibility, best quality, and
cumulative quality, respectively. The visibility model only
takes into account line-of-sight sensing. In the best quality
model, the coverage quality of a point in the environment is
determined by the closest visible sensor, i.e., the quality is
determined by distance. A max-min optimization over this
quantity is performed. In the cumulative quality model, the
coverage of a point is the sum of coverage by all visible
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Fig. 1: [left] The 3D model of an intensive care unit (ICU) in a
hospital. [right] A near-optimal coverage of the ICU using three
UVC light sources deployed on the ceiling of the room (shown
as red discs) where a minimum level of exposure dose can be
guaranteed. Each color (orange, green, pink) marks the covered
surface locations of a given UVC source. Areas with insufficient
exposure are also readily shown as scattered white regions, which
can be eliminated through adding more UVC sources.

“sensors”. For this model, the area over which a minimum
quality can be guaranteed is maximized. Even in simpler 2D
settings, these formulations, are known to induce significant
computational challenges. They are frequently NP-hard and
sometimes hard to approximate, which we briefly discuss. On
the algorithmic side, we show how some of these problems
can be approximately solved in polynomial time and then
develop general integer programming methods, assisted with
local improvements, for quickly computing high quality
(i.e., (1 + ε)-optimal) solutions. Extensive evaluations are
performed over multiple realistic application scenarios, con-
firming the effectiveness of our algorithmic solutions.

The general formulation and specific models investigated
in this work have their origins in two main lines of research:
Art Gallery [1]–[3] and studies on mobile sensor networks,
e.g., [4]–[9]. Our visibility-based model has deep roots in
Art Gallery problems [1]–[3], which commonly assume a
sensor model based on line-of-sight visibility [10]; a main
task is to guard every point in the interior of a bounded 2D
regions (a point is guarded when it is visible to at least one
of the guards). Depending on the exact formulation, guards
may be placed on boundaries, corners, or the interior of the
region. Not surprisingly, Art Gallery problems are typically
NP-hard [11]. Other than Art Gallery, 2D coverage problems
with other sensing models, e.g., disc-based, have also been
considered [5], [12]–[16]. Some formulations prevent the
overlapping of individual sensing ranges [12], [13] while
others seek to ensure a full coverage which often require
overlapping sensor coverage.

In an influential body of work [5], [6], a gradient-based
iterative method was devised that drives multiple mobile
sensors to a locally optimal coverage configuration, with
convergence guarantees. Whereas [5], [6] assume availability
of gradients a priori, such information can also be learned
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[8]. Subsequently, the method is further extended to allow the
coverage of non-convex and disjoint 2D domains [17] and
to work for mobile robots with heterogeneous capabilities
[16]. In contrast to these iterative local interaction-based
methods, this work emphasizes the direct computation of
globally optimal solutions under challenging 3D settings.

Distributed sensor coverage [5], [8] builds on the study of
facility location problems [14], [18] examining the selection
of facility (e.g., warehouses) locations that minimize the cost
of delivery of goods to spatially distributed customers. These
are known (e.g., in operations research and computer science)
as clustering problems [19], with many variations depending
on the cost structure. Our investigation benefits from the vast
literature on clustering and related problems, e.g., [20]–[24].
Clustering problems are in turn related to packing [13], tiling
[12], and Art Gallery problems [1], [2].

This work is a continuation of our systematic effort [25]–
[27] at tackling sensor coverage problems. Our earlier studies
focus on 1D/2D sensors models covering 1D/2D domains,
which are significantly less complicated than the 3D settings
examined in the current study.

The rest of the paper is organized as follows. In Section II,
we provide an umbrella problem statement and detail the
three coverage models. Computational complexity of the
formulations is briefly discussed. In Section III, we describe
effective algorithmic solutions for solving these sensor cov-
erage problems. Extensive evaluation results are provided in
Section IV containing multiple realistic application settings.
We conclude the work in Section V.

II. PRELIMINARIES

A. Sensor Placement for Optimal Coverage: Formulations

Let E ⊂ R3 be a bounded three-dimensional workspace
that is path-connected, e.g., a hilly terrain or an intensive
care unit (ICU) in a hospital. We consider the problem of
deploying k “mobile sensors”, c1, . . . , ck, to guard a critical
subset S embedded in the surface of E , i.e., S ⊂ ∂E where
∂ is the boundary operator. For example, if E is a hospital
ICU, S may be a part of its interior surface. The sensors
are to be deployed to achieve a globally optimal coverage of
S satisfying some prescribed objective, to be made more
precise as the problems are further grounded for specific
sensor models. We denote this broad class of problems as
Sensor Placement for Optimal Coverage (SPOC).

The terms mobile sensor and coverage are used in a
broad sense. Beyond traditional sensors that only collect
information, we are interested in mobile robots with means to
effect the environment as well. For example, a mobile robot
may be equipped with a disinfecting light source (e.g., UVC)
for eradicating harmful microbes (e.g., viruses and bacteria).
Nevertheless, such settings can be nicely captured under a
general sensor coverage formulation.

In this study, we explore two common types of coverage
models: visibility-based and quality-based. In a visibility-
based sensor coverage model, as the term suggests, a point
p ∈ S is considered covered by a sensor c if p is visible
from c. When there are more than one sensor, a point p is

covered if it is visible from any sensor ci ∈ {c1, . . . , ck}. In
a quality-based model, the coverage quality of a point p ∈ S
is captured by some function that potentially depends on the
sensors, the point p, and its neighborhood in S. For example,
one type of quality measurement can be based on the inverse
of the distance between a point p and its closest sensor c.

Formally, we capture the different sensor models under a
unified function f(c1, . . . , ck, p, E) whose co-domain is non-
negative reals, i.e., f : R3k+3 × E → R+ ∪ {0}. In what
follows, E is omitted but understood to be part of the input to
f . In this paper, the following instantiations are considered:
• Let vis(p, c) = 1 if the point p is visible to the sensor
c. Otherwise, vis(p, c) = 0. For example, an omni-
directional visibility model would have vis(p, c) = 1 if
the open line segment between p and c does not intersect
E . In a model based purely on visibility,

f(c1, . . . , ck, p) := max
1≤i≤k

vis(p, ci). (1)

• Let the coverage quality of a point p by a sensor ci be
represented as a function φ(p, ci) ∈ R+∪{0}. In a quality
maximization sensor model, the coverage quality for a
point p is determined by a single best sensor:

f(c1, . . . , ck, p) := max
1≤i≤k

φ(p, ci)vis(p, ci). (2)

• In a cumulative quality sensor model, the overall quality
of coverage at a point p is the sum of the effects of all
visible sensors:

f(c1, . . . , ck, p) :=
∑

1≤i≤k

φ(p, ci)vis(p, ci). (3)

All above models have direct and practical applications. A
visibility model is applicable to the deployment of a network
of 360◦ cameras for monitoring. Letting φ(p, ci) = ‖pci‖−1
(‖pci‖ denotes the distance between p and ci), the quality
maximization model becomes the k-center problem [18]
if we optimize minp f(c1, . . . , ck, p), a broadly applicable
problem. For the cumulative quality model, when the “sen-
sors” are UVC lights, one may ask the question of how to
optimally place these lights to ensure the highest percentage
of S can be exposed to sufficient UVC light for eradicating
SARS-CoV-2 and other microbes. Here, a cumulative quality
model clearly makes sense.

To fully ground the discussion that follows, we formulate
three concrete optimization problems, one for each of the
above-mentioned sensor models.

Problem II.1 (Visibility Maximization). Given S ⊂ ∂E with
E ⊂ R3, ci ∈ R3, 1 ≤ i ≤ k, and f(c1, . . . , ck, p) from
(1), determine a placement of c1, . . . , ck that maximizes the
support of f , i.e.,

supp(f) = {p ∈ S | max
1≤i≤k

vis(p, ci) > 0}.

Problem II.2 (Quality Maximization). Given S ⊂ ∂E with
E ⊂ R3, ci ∈ R3, 1 ≤ i ≤ k, and f(c1, . . . , ck, p) from (2)
with φ(p, ci) = ‖pci‖−1, determine a placement of c1, . . . , ck
that maximizes the minimum coverage quality, i.e.,

min
p∈S

max
1≤i≤k

vis(p, ci)

‖pci‖
.



Problem II.3 (Cumulative Quality). Given S ⊂ ∂E with E ⊂
R3, ci ∈ R3, 1 ≤ i ≤ k, and f(c1, . . . , ck, p) from (3) with
φ(p, ci) = ‖pci‖−2〈n̂p, n̂pci〉 where n̂p is the unit normal of
S at p and n̂pci is the unit vector in the direction from p to
ci, determine a placement of c1, . . . , ck that maximizes the
coverage area where f is above a given threshold Φ > 0,

supp(f − Φ) = {p ∈ S |
∑

1≤i≤k

vis(p, ci)〈n̂p, n̂pci〉
‖pci‖2

> Φ}.

Fig. 2: For a point with the
normal shown as the arrow,
light sources on the same
dotted curve provide same
level of exposure.

An implicit assumption for
Problem II.2 to be meaningful
is that an arbitrary p ∈ S
is visible to the closest sensor,
which limits the choice of S.
Problem II.2 is a suitable model
for, e.g., surveillance applica-
tions that cannot tolerate any
blind spots. A generalization
with less limitation can require
a certain percentage of S, e.g.,
80%, to have optimized coverage. Problem II.3, which com-
putes coverage quality using the formula 〈n̂p, n̂pci〉‖pci‖−2,
takes after a standard light exposure model that depends on
the inverse of the squared distance and incoming light angle
with respect to a local surface region (see Fig. 2).

A 2D illustration of the three models is given in Fig. 3.

Fig. 3: Illustration of the effects of two sensors (or light sources)
under three different models. Only a 2D slice of a simple ICU
with a bed and a counter is shown for clarity. [left] A visibility-
based sensing model where the green segments show the visible
surfaces. [middle] A quality maximization model where the dotted
lines show the equal-quality level sets. φ(p, ci) = ‖pci‖−1 [right]
A cumulative quality model with φ(p, ci) = ‖pci‖−2〈n̂p, n̂pci〉.
Again, the dotted lines show the additive quality. The impact of the
surface normal is not displayed in the figure.

Problems II.1-II.3 allow sensor locations to be anywhere
in E . In practice, sensor locations are often limited to a 2D
surface. For example, in a museum or a bus, cameras are
mounted on walls and ceilings. For drones surveying an area,
there is often a preferred height to fly at. With this in mind,
whereas algorithms we develop are general, the evaluation is
mainly focused on practical settings where sensors locations
are confined to some 2D surface.

B. Computational Complexity
As the computation of 3D visibility is a well-known

hard problem [28] Problems II.1-II.3 are all computationally
intractable because they all involve, as part of the solu-
tion, computation of 3D visibility sets. The involvement
of multiple robots/sensors introduces additional sources of
computational complexity, which we briefly discuss.

Problem II.1 may be viewed as an Art Gallery [1] problem
in 3D. The basic 2D Art Gallery problem, which asks
the question that how many guards with omnidirectional

visibility are needed to ensure that every point in a simply-
connected (2D) polygon is visible to at least one guard, is
shown to be NP-hard [11]. Problem II.1 is then also NP-hard
through reducing the 2D Art Gallery problem to a 3D one
by creating a third dimension that is very “thin”.

Our recent work [27] shows that a 2D version of Prob-
lem II.2, called Optimal Set Guarding (OSG), is NP-hard
to approximate within a factor of 1.152. Similarly, we may
reduce OSG to Problem II.2 by adding a thin third dimension.
Therefore, through this route, we know that optimal solutions
to Problem II.2 is hard to approximate within a factor of
1.152, even when the surface S is a simple polygon.

From an instance of Problem II.2, reduced from an in-
stance of OSG, we can add further 3D structures to obtain
an instance of Problem II.3 such that cumulative effect from
multiple sensors are limited. That is, when sensors are forced
to have no interactions, a version of Problem II.3 that is
similar to Problem II.2 is obtained, which is again NP-hard.

We summarize the discussion in Theorem II.1. Full proofs
of these complexity results, which are too lengthy to be
included here and are not as essential in comparison to the
problem formulations and the algorithmic results, will be
detailed in an extended version of this work.
Theorem II.1. Problems II.1-II.3 are NP-hard.

III. FAST COMPUTATION OF HIGH-QUALITY SOLUTIONS

In this section, we first describe a polynomial time approx-
imation algorithm for a restricted version of Problem II.2.
Then, we describe a general integer linear programming
framework for solving Problems II.1-II.3, and local improve-
ment techniques for enhancing solution quality.

A. Polynomial Time Approximation Algorithm
In their general forms, Problems II.1-II.3 require the

computation of 3D visibility, a hard task on its own. Due
to this reason, a polynomial time algorithm with guaranteed
good approximation ratio for these problems appear difficult
to come by. It is an interesting question to ask whether
some form of approximation scheme can be derived. Here,
we show that for Problem II.2, if one relax the visibility
requirement, i.e. letting vis(·, ·) ≡ 1, then a polynomial time
(2 + ε)-approximation algorithm can be obtained.

Taking Problem II.2, we examine a setup assuming that
each point p ∈ S has good visibility, i.e., p is always
visible to the nearest sensor. Such scenarios happen when
the 3D domain does not have large curvatures that would
easily block sensors’ view, e.g., covering the earth with GPS
satellites or using drones to survey a vineyard. To drive a
specific approximation bound, we further assume that sensors
have spherical range sensing and are in a plane of some fixed
height h from the ground, which
may be relaxed. Denote this sur-
face as HC . The figure on the
right provides an illustration of
the target environment setting.

The main idea is to first obtain a dense sample of S and
then adapt 2-approximation algorithms for the correspond-
ing 2D setting, which requires some non-trivial reasoning.



Two well-known approximation algorithms for k-center like
problem in 2D are based on farthest point clustering [22] and
dominating set [21], [29]. Both of these approaches work for
our purpose; we show how to work with the former.

Let a uniformly sampled set of point of S be SN =
{o1, . . . , oN}. We apply farthest point clustering [22] on SN
as follows. As the name suggest, it picks farthest sensor
locations until the number of sensors are exhausted. In
the original approach, the points to be clustered are also
sensor locations, which is not true here. Instead, we perform
clustering in the set SN and project the selected samples
to HC gradually. The relatively straightforward process is
given in Algorithm 1 ((d(·, ·) denotes the distance between
the inputs, one or both of which may be sets).

Algorithm 1: Farthest Point Clustering

Input : SN={o1, . . . , oN}: N sampled points on the
surface S ⊂ ∂E ; k: number of sensors;
HC : a plane with a fixed height

Output: C: sensor location set
1 C ← {o1’s vertical projection onto HC}
2 for i← 1 to k do
3 for o ∈ SN do
4 compute the distance d(o, C) between o and C
5 o← point v ∈ SN with the largest d(v, C)
6 C ← C ∪ {o’s projection onto HC}
7 return C

To prove the claimed (2+ε)-approximation bound, denote
the optimal sensor location set and the sensor location set
derived by Algorithm 1 as COPT and C, respectively. Since
these are centers of spherical sensing ranges, we call them
center set for short. Denote the minimum coverage radius in
the spherical sensing model as rOPT . Let h be the minimum
distance between surface S and sensor space HC , i.e. h :=
d(S,HC). rOPT and rC are defined as follows:

rOPT := max
o∈SN

d(o, COPT ) (4)

rC := max
o∈SN

d(o, C) (5)

Proposition III.1. The center set obtained by Algorithm 1
achieves coverage radius of at most

√
4r2OPT − 3h2.

Proof. Denote the center set generated at the ith round as Ci,
and ri as the cluster radius ri := maxoτ mincj∈Ci d(oτ , cj).
It is straightforward to observe that rk ≤ rk−1 ≤ · · · ≤
r1. Consider the relationship between the optimal center set
COPT and the center set obtained by Algorithm 1, we have
the following 2 cases.

Case 1: For each sphere Bc centered at a point c ∈ COPT
with radius of rOPT , the projection of Bc

⋂
S onto the sensor

space HC contains exactly one point of Ck.
In this case, let v be an arbitrary point in S. Let cα be

the nearest center to v in COPT and cβ be the point in Ck
whose projection on S is inside Bcα . Therefore, we have:

d(v, cβ) ≤
√

4r2OPT − 3h2 (6)

Case 2: There exists a sphere Bc centered at a point c ∈
COPT with radius of rOPT , the projection of Bc

⋂
S onto

the sensor space HC contains at least 2 points of Ck. In this

case, denote the two centers by ci and cj (i < j), and their
projections on S are in the same sphere Bc. As cj is added
after ci, then,

rC = rk ≤ rj ≤ d(ci, cj’s projection on S)

≤
√

4r2OPT − 3h2
(7)

Summarizing the two cases proves Proposition III.1.
B. Integer Programming-Based Algorithmic Framework

With Problems II.1-II.3 being computationally intractable,
a natural algorithmic alternative is mathematical program-
ming. In [27], an integer linear programming (ILP) model
was shown to be effective for a 2D setting. For our 3D
problems, visibility constraints must be effectively handled.
We pre-compute pairwise visibility at a given sample gran-
ularity. The information is then fed to an ILP model. As the
discretization granularity gets smaller, we can then realize
globally optimal (1±ε)-approximations (depending whether
it is a maximization or a minimization).

As a first step to building the ILP model, visibility infor-
mation must be computed. We work with two discretizations,
the surface S to be covered and the space where the sensors
may be deployed (as discussed in Section II, this is a
3D space though in practice it is frequently a 2D subset).
For each pair of samples, we use a collision checker [30]
to determine whether the line segments between the two
samples intersects E . During the process, we also compute
for each sample p ∈ S its normal n̂p.

With the visibility pre-computation performed, we are
ready to construct the fully ILP models. For all three
problems, recall that we have SN = {o1, . . . , oN} for
discretizing the surface S through grid-based sampling. We
use boolean variable yi to indicate whether sample oi is
covered. Candidate sensor locations are also discretized to
obtain a sample set {c1, . . . , cM}, from which k locations
would be selected with zi indicating whether ci is selected.
The ILP model for For Problem II.1 is

yi ≤
∑

j s.t. vis(oi,cj)=1

zj for each oi (8)

∑
j

zj ≤ k (9)

max y1 + · · ·+ yN (10)
The cumulative quality case (Problem II.3) is similar.

Denoting the sensing quality between sensor location cj and
surface point p as φ(p, cj) = vis(p, cj) · (n̂p, n̂pcj )/||pcj ||2,
the ILP model may be constructed as

yi · Φ ≤
∑
j

φ(oi, cj) · zj for each oi (11)∑
j

zj ≤ k (12)

max y1 + · · ·+ yN (13)
For quality maximization (Problem II.2), the objective is

to maximize the minimum distance of a sampled point on the
surface to its nearest sensor location. For a required coverage
ratio ρ and radius r, we can verify whether it is possible to



put k sensors and cover Nρ discretized points by checking
the feasibility of the following model:

yi ≤
∑

j s.t. ||cj−oi||≤r

zj for each oi (14)

∑
j

zj ≤ k (15)

Nρ ≤
∑
i

yi (16)

A subsequent binary search can be applied to find the
smallest feasible r.

C. Local Enhancement of Coverage Quality

Whereas the ILP models for Problems II.1-II.3 support
arbitrary precision, given that these problems are all com-
putationally intractable, it can be expected that a pure ILP-
based solution will only be scalable up to a certain point
before an exorbitant amount computation time is needed.
Inspired by the iterative update approach form [5], we
propose a two-phase optimization pipeline of using ILP (or
the approximation algorithm for Problem II.2) as the first
phase with a good level of global optimality guarantee and
follow that with local improvements that can be quickly
computed to enhance the initial solution. We note that, as
the local improvement is enhancing a solution with a level of
global optimality guarantee, the enhancement is also global
in effect. For example, in Problem II.2, if we start with a 2-
approximation solution and obtain an initial coverage quality
r and subsequent local improvement reduce that to 0.75r,
then the final solution is a globally 1.5-optimal solution.

We develop two such routines. The first is generally appli-
cable and straightforward to implement: as the discretization
level increases, we move the set of initial sensor locations
(computed by Algorithm 1 or ILP) locally, one at a time.
More formally, given an initial solution C = {c1, . . . , ck},
denote Sj ⊂ S as the region covered (possibly partially
when working with Problem II.3) by the sensor deployed at
cj . For each Sj , we try improving the quality of the solution
by finding a better location for cj to cover Sj at a finer
resolution. Subsequently, Sj can be updated based on the
new cj . The process may be repeated until convergence.

The second local improvement routine is via solving a “1-
cener” like problem and is applicable to Problem II.2 and
Problem II.3. Due to limited space, we omit the lengthy
algorithmic details and give a high-level description. For
Problem II.2, a sensor located at cj is “responsible” for
visible points of S that falls within a ball B(cj , r). Our
improvement routine examines S ∩ B(cj , r) and attempts
to compute a new ball with a smaller radius that covers all
of S ∩ B(cj , r). The routine uses the ideas from Welzl’s
algorithm for computing minimum enclosing discs [31], [32]
and take time that is expected linear with respect to the
number of samples that falls within B(cj , r), which is fairly
fast. This method can be readily extended to Problem II.3
where the spheres become “distorted” (Fig. 2).

IV. EXPERIMENTAL EVALUATION

For each of Problems II.1-II.3, extensive experimental
evaluations were carried out to evaluate our proposed algo-
rithmic solutions. Here, we present representative evaluation
demonstrating the effectiveness of our methods, with a focus
on three realistic settings (the ICU model from Fig. 1, bus
and subway car models shown in Fig. 4). For all environ-
ments, the surface S is selected to be all visible surfaces not
facing downward. Due to limited space, result on the (2+ε)-
approximation algorithm (Algorithm 1) is omitted (as shown
in [27], such methods are fast but are quite sub-optimal).
The experiments were carried out on a median-end quad-
core Intel i7 processor with 16GiB RAM. Algorithms were
implemented in C++. Gurobi [33] was used as the Integer
Programming solver. Source code is available at https:

//github.com/rutgers-arc-lab/3d_coverage.

Fig. 4: Realistic 3D environments used in our evaluation in addition
to the ICU model from Fig. 1. [left] A 40-foot large bus model and
its interior. [right] A subway car and its interior.

Results on Problem II.1, using ILP, is given in Fig. 5. For
each model, 600 candidate sensor locations and 20, 000 cov-
erage surface points are sampled using grids. As expected,
the surface coverage ratios increase as the number of sensors
increase, approaching full coverage. We note that certain
surface region is not visible, e.g., ground underneath seats in
subway cars, leading to plateaus below 100% coverage. The
computation time is very reasonable for offline computations.
The spikes in the middle of the computation time plot
correspond to hard cases when the visibility coverage is
about to plateau. We also observe that subway < ICU <
bus in terms of computation time, which may be explained
by the interior complexity of these environments. This aspect
is different across the three problems.
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Fig. 5: Coverage quality and computation time for Problem II.1 for
the three environments as the number of sensors change.

In evaluating Problem II.2, we first
examine a case where mobile sensors
(e.g., camera drones) are deployed to
cover a synthetic terrain with rela-
tively small curvature, i.e., vis(·, ·) ≡
1. An illustration of the setting is
given in the figure on the right, where
the color indicates the height of the terrain. The sensors (8
red triangles in the figure) are placed at a fixed height above



the terrain and must guard the region enclosed in the black
curve. Spherical range sensing is assumed. For the setup (600
sensor locations and 20, 000 surface points), computation
time and solution quality as the number of sensors changes
are listed in the table. Computation time decreases as the
number of sensors increases, indicating the problem is harder
when sensors are too few to provide a good coverage. It also
shows that the ILP running time does not depend positively
on sensor quantity. The quality (smaller is better) increase
becomes minimal as sensor quantity reaches 10.
#Sensors 2 4 6 8 10 12 14 16
Time (s) 42.9 25.4 18.5 12.7 13.1 11.3 7.64 6.70
Radius 5.10 3.31 2.76 2.43 2.27 2.16 2.07 1.99

In a second evaluation of Problem II.2, visibility is con-
sidered with the optimization coverage ratio set to 80%.
That is, at least 80% of the maximum visible target surface
(for a given k) will be guaranteed the achieved coverage
quality. The result, summarized in Fig. 6, again demonstrates
a negative correlation between the computational time and
the number of sensors. Here, however, the computational
time is 20+ times more than when having full visibility.
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Fig. 6: Coverage quality (lower is better) and computation time for
Problem II.2 for the three environments, as sensors increase.

Our last benchmark on Problem II.2 tests the effectiveness
of the local improvement following the resolution of a
coarsely generated ILP, at 60 candidate sensor locations and
1000 surface samples (Fig. 7). The right figure shows much
faster computation time. The left figure shows that the faster
method does a decent job for the bus environment (other
environments have similar outcomes). The result suggests
which method to use would depend on whether computa-
tional time or solution optimality is more important to the
task at hand. We note that the local improvement method
does not help improve the ILP result at the higher resolution.
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Fig. 7: [left] Solution quality (lower is better) for the bus environ-
ment. The first curve (Bus) is the same as that from Fig. 6. [right]
Computation time using coarse ILP + local improvement.

For Problem II.3, computation becomes more demanding.
At the specified discretization level, most ILP models did not
complete the optimization process in 10 minutes. The inter-
mediate quality result is given in Fig. 8, on the left (the same
threshold, selected to make the computation challenging, is
used for all three environments), where the lines corresponds
to the coverage ratio returned by the ILP model and the
attached vertical bars show the reported optimality gap. The

crosses show the updated ratio after local improvement is
carried out (the triangles will be explained shortly). The
subway data was shifted to the left to improve readability.
For the bus, we see that the local improvement does help
improve solution optimality, suggesting it is the most difficult
problem. For the other two, it appears that the solution by the
ILP model is already quite optimal, but the ILP solver still
needs time to close the gap from the above. The subway case
has worse coverage by the same number of sensors because it
is larger. If we run a coarse ILP model (60 sensor candidates,
1000 surface sample) for one minute and then do local
improvement, we get coverage ratios shown as the triangles
in Fig. 8, left. Fig. 8, right shows the total computation time
used. We observe that except for the challenging bus model,
the faster method achieves essentially identical optimality as
running ILP at higher resolutions. Subway costs most time
here because it is the largest.
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Fig. 8: [left] Coverage ratio (lines) for Problem II.3 returned by
multiple methods. [right] Computation time used by running a
coarse ILP plus local improvements.

Lastly, we provide some additional visualization to help
further demonstrate the structure of the problems. Fig. 9
shows that Problems II.2 and II.3 induce different optimal
distribution of sensors. Generally, Problems II.2 tends to
cause the sensors to be evenly spaced out. On the other hand,
Problem II.3 tends to balance between spacing out sensors
and provide good cumulative coverage, which may require
sensors to aggregate, which can be observed in Fig. 10.

Fig. 9: 4 sensor ICU result for Problems II.2 (left) and II.3(right).

Fig. 10: The coverage of bus (see through model on the left) using 3
to 5 sensors under Problem II.3. Aggregation of sensors at the front
of the bus, which is structurally more complex, can be observed.

V. CONCLUSION

We have formulated a general Sensor Placement for Op-
timal Coverage (SPOC) problem with three concrete in-
stantiations, each with distinct practical applications. We
provide near-optimal methods for solving these challenging
optimization problems and demonstrated their effectiveness
with extensive evaluations. We are currently exploring real-
world applications of our methods.
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