
Learning robust driving policies without online exploration

Daniel Graves1, Nhat M. Nguyen1, Kimia Hassanzadeh1, Jun Jin1, Jun Luo1

Abstract— We propose a multi-time-scale predictive repre-
sentation learning method to efficiently learn robust driving
policies in an offline manner that generalize well to novel road
geometries, and damaged and distracting lane conditions which
are not covered in the offline training data. We show that
our proposed representation learning method can be applied
easily in an offline (batch) reinforcement learning setting demon-
strating the ability to generalize well and efficiently under
novel conditions compared to standard batch RL methods.
Our proposed method utilizes training data collected entirely
offline in the real-world which removes the need of intensive
online explorations that impede applying deep reinforcement
learning on real-world robot training. Various experiments were
conducted in both simulator and real-world scenarios for the
purpose of evaluation and analysis of our proposed claims.

I. INTRODUCTION

Learning to drive is a challenging problem that is a long-
standing goal in robotics and autonomous driving. In the
early days of autonomous driving, a popular approach to
staying within a lane was based on lane marking detection
[1]. However, a significant challenge with this approach is
the lack of robustness to missing, occluded or damaged lane
markings [2] where most roads in the US are not marked with
reliable lane markings on either side of the road [3]. Modern
approaches mitigate some of these issues by constructing
high definition maps and developing accurate localization
techniques [4], [5], [6], [7]. However, scaling both the map
and localization approaches globally in a constantly changing
world is still very challenging for autonomous driving and
robotic navigation [4].

Recently, there have been a growing number of successes
in AI applied to robotics and autonomous driving [8], [9],
[10], [11], [12], [3]. These data-driven approaches can be
divided into two categories: (1) behavior cloning, and (2)
reinforcement learning (RL). Behavior cloning suffers from
generalization challenges since valuable negative experiences
are rarely collected; in addition they cannot offer performance
better than the behavior being cloned [8], [13], [12]. RL on the
other-hand is a promising direction for vision-based control
[14]; however, RL is usually not practical because it requires
extensive online exploration in the environment to find the
best policy that maximizes the cumulative reward [11], [15],
[16]. Moreover, the success in game environments like Go
[17] doesn’t always transfer well to success in the real-world
where an agent is expected to learn policies that generalize
well [18], [16]. A key challenge is that RL overfits to the
training environment where learned policies tend to perform

1Noah’s Ark Lab, Huawei Technologies Canada {daniel.graves,
minh.nhat.nguyen, kima.hassanzadeh, jun.jin1,
jun.luo1}@huawei.com

Fig. 1: Lane keeping of a Jackal Robot using vision-based
counterfactual predictions of the future lane centeredness over
multiple time scales to represent the state of the agent in RL

poorly on novel situations not seen during training [19], [20],
[21], [22]. We aim to address the issues of learning both
practical and general driving policies in the real-world by
combining a novel representation learning approach with
offline RL without any online exploration.

Offline RL, or learning RL policies from data without
exploration [23], could potentially address many of the
practicality issues with applying standard online RL in
the real-world. Unfortunately, deep offline RL struggles to
generalize to data not in the training set [24], [25]. Our
approach applies novel representation learning based on
counterfactual predictions [26], [27], [25], shown in Figure
1, to address the generalization issue. We learn predictions
of future lane centeredness and road angle from offline data
safely collected in the environment using noisy localization
sources during training, eliminating the need for expensive, on-
vehicle, high accuracy localization sensors during deployment.
State-of-the-art offline RL [23] is then applied using these
counterfactual predictions as a low dimensional representation
of the state to learn a policy to drive the vehicle. These
counterfactual predictions are motivated in psychology [28],
[29] where we find predictions aid in an agent’s understanding
of the world, particularly in driving [30]. Similar works in
classical control have shown how anticipation of the future
is important for driving at the limits of stability through feed-
forward [31] and model predictive control [32]. Our work is
motivated by the predictive state hypothesis [33], [34] that
claims counterfactual predictions help an agent generalize
and adapt quickly to new problems [35].

The significance of our approach is that it demonstrates
practical value in autonomous driving and real-world RL with-
out requiring extensive maps, robust localization techniques or
robust lane marking and curb detection. We demonstrate that

ar
X

iv
:2

10
3.

08
07

0v
1

 [
cs

.R
O

]
 1

5
M

ar
 2

02
1

our approach generalizes to never-before seen roads including
those with damaged and distracting lane markings. The novel
contributions of this work are summarized as follows: (1) an
algorithm for learning counterfactual predictions from real-
world driving data with behavior distribution estimation, (2) an
investigation into the importance of predictive representations
for learning good driving policies that generalize well to
new roads and damaged lane markings, and (3) the first
demonstration of deep RL applied to autonomous driving
with real-world data without any online exploration.

II. RELATED WORKS

Deep learning approaches to driving: There have been
many attempts to apply deep learning to driving including
deep RL and imitation learning [11]; however generalization
is a key challenge. ChaufferNet [36] used a combination of
imitation learning and predictive models to synthesize the
worst case scenarios but more work is needed to improve
the policy to achieve performance competitive with modern
motion planners. Another approach trained the agent entirely
in the simulator where transfer to the real-world could be chal-
lenging to achieve [11]. DeepDriving [37] learned affordance
predictions of road angle from an image for multi-lane driving
in simulation using offline data collected by human drivers.
However, in contrast with our proposed method, DeepDriving
used heuristics and rules to control the vehicle instead of
learning a policy with RL. Moreover, DeepDriving learned
predictions of the current lane centeredness and current road
angle rather than long-term counterfactual predictions of the
future.

Offline RL in real-world robot training: There are many
prior arts in offline (batch) RL [38], [24]. However, most
prior arts in offline RL have challenges learning good policies
in the deep setting [24]. The current state of the art in offline
RL is batch constrained Q-learning (BCQ) [23], [24] where
success is demonstrated in simulation environments such as
Atari but the results still perform badly in comparison to
online learning. The greatest challenge with offline RL is the
difficulty in covering the state-action space of the environment
resulting in holes in the training data where extrapolation
is necessary. [39] applied a novel offline RL approach to
playing soccer with a real-world robot by exploiting the
episodic nature of the problem. Our work overcomes these
challenges and is, to the best of our knowledge, the first
successful real-world robotic application of batch RL with
deep learning.

Counterfactual prediction learning: Learning counterfac-
tual predictions as representation of the state of the agent
has been proposed before in the real-world [40], [41]. Other
approaches demonstrate counterfactual predictions but don’t
provide a way to use them [26], [42], [27]. While experiments
with counterfactual predictions show a lot of promise for
improving learning and generalization, most experiments are
in simple tabular domains [33], [34], [35]. Auxiliary tasks
and similar prediction problems have been applied to deep
RL task in simulation but assume the policy is the same

Fig. 2: Overall architecture of the RL system involved learns
a predictive representation ψ to represent the state of the
agent. Camera is the only environment sensor at test time.

as the policy being learned and thus are not counterfactual
predictions [43], [44], [29], [45].

III. PREDICTIVE CONTROL FOR AUTONOMOUS DRIVING

Let us consider the usual setting of an MDP described by a
set of states S, a set of actions A, and transition dynamics with
probability P (s′|s, a) of transitioning to next state s′ after
taking action a from state s, and a reward r. The objective
of an MDP is to learn a policy π that maximizes the future
discounted sum of rewards in a given state. Obtaining the state
of the agent in an MDP environment is not trivial especially
with deep RL where the policy is changing because the target
is moving [46]. Our approach is to learn an intermediate
representation mapping sensor readings s to a limited number
of counterfactual predictions φ as a representation of the state
for deep RL. This has the advantage of pushing the heavy
burden of deep feature representation learning in RL to the
easier problem of prediction learning [47], [48], [49], [43].

The overall architecture of the system is depicted in Figure
2. The proposal is to represent the state of the agent as a
vector ψ which is the concatenation of a limited number
of the predictions φ, the current speed of the vehicle vt
and the previous action taken at−1. The predictions φ are
counterfactual predictions, also called general value functions
[26]. The previous action taken is needed due to the nature
of the predictions which are relative to the last action.

Learning a policy π(ψ) could provide substantial benefits
over learning π from image observations: (1) improving
learning performance and speed, (2) enabling batch RL from
offline data, and (3) improving generalization of the driving
policy. Our approach is to learn a value function Q(s, a) and a
deterministic policy π(ψ) that maximizes that value function
using batch constrained Q-learning (BCQ) [23]. While the
networks can be modelled as one computational graph, the
gradients from the policy and value function network are not
back-propagated through the prediction network to decouple
the representation learning when learning from the offline
data. Thus, training happens in two phases: (1) learning the
prediction network, (2) learning the policy and value function.

During the first phase of training, a low-accuracy localiza-
tion algorithm, based on 2D lidar scan matching, produces
the lane centeredness α and relative road angle β of the
vehicle, depicted in Figure 3, that are used to train the
prediction network. The prediction network is a single network
that predicts the lane centeredness and relative road angle
over multiple temporal horizons depicted in Figure 4: these

(a) Lane centeredness α (b) Road angle β

Fig. 3: An illustration of (a) lane centeredness position α,
and (b) the road angle β which is the angle between the
direction of the vehicle and the direction of the road.

Fig. 4: An illustration of the multiple temporal horizons of
the predictions φ.

are predictions of the future lane centeredness and relative
road angle rather than the current estimates returned by the
localization algorithm. They are chosen because they represent
both present and future lane centeredness information needed
to steer [30]. These predictions are discounted sums of future
lane centeredness and relative road angle respectively that
are learned with GVFs [26]:

φ(s) = Eτ [

∞∑
i=0

γict+i+1|st = s] (1)

where ct+i+1 is the cumulant vector consisting of the current
lane centeredness α and current relative road angle β. It
is important to understand that φ(s) predicts the sum of
all future lane centeredness and road angle values collected
under some policy τ . The policy τ is counterfactual in the
sense that it is different from the behavior policy µ used
to collect the data and the learned policy π. Formally, the
policy τ(at|st, at1) = N (at−1,Σ) where Σ = 0.0025I is
a diagonal covariance matrix. The meaning of this policy
is to “keep doing what you are doing”, similar to the one
used in [32] for making counterfactual predictions. Therefore,
φ(s) predicts the discounted sum of future lane centeredness
and road angle if the vehicle takes similar actions to its last
action. Moreover, φ(s) can be interpreted as predictions of the
deviation from the desired lane centeredness and road angle.
Counterfactual predictions can be thought of as anticipated
future "errors" that allow controllers to take corrective actions
before the errors occur. The discount factor γ controls the
temporal horizon of the prediction. It is critical to learn φ(s)
for different values of γ in order to control both steering and
speed. The details for learning φ(s) are provided in the next
section.

During the second stage of training, the localization
algorithm is no longer needed; it was used to provide
the labels for training the predictive representation in the
first stage. Instead, the counterfactual predictions φ are
concatenated with the vehicle speed vt and last action at−1 to
form a predictive representation ψ. The RL agent receives ψ
as the state of the agent in the environment which is used to

predict the value and produce the next action at as depicted
in Figure 2. In our offline learning approach, we used the
state of the art batch RL BCQ [23][24] to train the policy.

Note that the same architecture can also be applied online
where the counterfactual prediction, policy and value networks
are all learned online simultaneously with deep deterministic
policy gradient (DDPG) [50] but the details are left in the
appendix.

IV. PREDICTIVE LEARNING

The counterfactual predictions given in Equation (1) are
general value functions (GVFs) [26] that are learned with a
novel combination of different approaches including (1) off-
policy, or counterfactual, prediction learning with importance
resampling [47], and (2) behavior estimation with the density
ratio trick [51].

A. Counterfactual Predictions

To ask a counterfactual predictive question, we use the
GVF framework, where one must define a cumulant ct =
c(st, at, st+1), a.k.a. pseudo-reward, a policy distribution
τ(a|s) and continuation function γt = γ(st, at, st+1). The
answer to the predictive question is the expectation of the
return φt, when following policy τ , defined by

φτ (s) = Eτ [

∞∑
k=0

(

k−1∏
j=0

γt+j+1)ct+k+1|st = s, at = a] (2)

where the cumulant is ct and 0 ≤ γt ≤ 1 [26]. This is
the more general form for learning a prediction than the
one given in Equation (1) where the only difference is
that γ is replaced by a continuation function which allows
for predictions that predict the sum of cumulants until an
episodic event occurs such as going out of lane. The agent
usually collects experience under a different behavior policy
µ(a|s). When τ is different from both the behavior policy
µ and the policy being learned π, the predictive question
is a counterfactual prediction1. Cumulants are often scaled
by a factor of 1 − γ when γ is a constant in non-episodic
predictions. The counterfactual prediction φτ (s) is a general
value function (GVF) is approximated by a deep neural
network parameterized by θ to learn (2). The parameters θ
are optimized with gradient descent minimizing the following
loss function

L(θ) = Eµ[ρδ2] (3)

where δ = φτ (s; θ) − y is the TD error and ρ = τ(a|s)
µ(a|s) is

the importance sampling ratio to correct for the difference
between the policy distribution τ and behavior distribution µ.
Note that only the behavior policy distribution is corrected;
but the expectation is still over the state visitation distribution
under the policy µ. In practice, this is usually not an issue

1Some literature call this an off-policy prediction

[47]. The target y is produced by bootstrapping a prediction
of the value of the next state [52] under policy τ

y = Est+1∼P [ct+1 + γφτ (st+1; θ̂)|st = s, at = a] (4)

where y is a bootstrapped prediction using the most recent
parameters θ̂ that are assumed constant in the gradient
computation. Learning a counterfactual prediction with a fixed
policy τ tends to be very stable when minimizing L(θ) using
gradient descent approaches and therefore doesn’t require
target networks originally used in [46] to stabilize DQN.

The gradient of the loss function (3) is given by

∇θL(θ) = Eµ[ρδ∇θφτ (s; θ)] (5)

However, updates with importance sampling ratios are known
to have high variance which may negatively impact learning;
instead we use the importance resampling technique to reduce
the variance of the updates [47]. With importance resampling,
a replay buffer D of size N is required and the gradient is
estimated from a mini-batch and multiplied with the average
importance sampling ratio of the samples in the buffer ρ̄ =∑N

i=1 ρi
N .
The gradient with importance resampling is given by

∇θL(θ) = Es,a∼Dρ [ρ̄δ∇θv̂τ (s; θ)] (6)

where Dρ is a distribution of the transitions in the replay
buffer proportional to the importance sampling ratio. The
probability for transition i = 1...N is given by Di = ρi∑N

j=1 ρj

where the importance sampling ratio is ρi = τ(ai|si)
µ(ai|si) . An

efficient data structure for the replay buffer is the SumTree
used in prioritized experience replay [53].

B. Behavior Estimation

When learning predictions from real-world driving data,
one needs to know the behavior policy distribution µ(a|s);
however, in practice this is rarely known. Instead we estimate
it using the density ratio trick [51] where the ratio of
two probability densities can be expressed as a ratio of
discriminator class probabilities that distinguish samples from
the two distributions. Let us define an intermediate probability
density function η(a|s) such as the uniform distribution;
this will be compared to the behavior distribution µ(a|s)
which we desire to estimate. The class labels y = +1 and
y = −1 are labels given to samples from µ(a|s) and η(a|s). A
discriminator g(a, s) is learned that distinguishes state action
pairs from the two distributions using the cross-entropy loss.
The ratio of the densities can be computed using only the
discriminator g(a, s).

µ(a|s)
η(a|s)

=
p(a|s, y = +1)

p(a|s, y = −1)
=
p(y = +1|a, s)/p(y = +1)

p(y = −1|a, s)/p(y = −1)

=
p(y = +1|a, s)
p(y = −1|a, s)

=
g(a, s)

1− g(a, s)
(7)

Here we assume that p(y = +1) = p(y = −1). From this
result, we can estimate µ(a|s) with µ̂(a|s) as follows

µ̂(a|s) =
g(a, s)

1− g(a, s)
η(a|s) (8)

where η(a|s) is a known distribution over action conditioned
on state. Choosing η(a|s) to be the uniform distribution
ensures that the discriminator is well trained against all
possible actions in a given state; thus good performance
is achieved with sufficient coverage of the state space
rather than the state-action space. Alternatively, one can
estimate the importance sampling ratio without defining an
additional distribution η by replacing the distribution η with
τ ; however, defining η to be a uniform distribution ensures
the discriminator is learned effectively across the entire action
space. The combined algorithms for training counterfactual
predictions with an unknown behavior distribution are given
in the Appendix for both the online and offline RL settings.

V. EXPERIMENTS

Our approach to learning counterfactual predictions for
representing the state used in RL to learn a driving policy is
applied to two different domains. The first set of experiments
is conducted on a Jackal robot in the real-world where we
demonstrate the practicality of our approach and its robustness
to damaged and distracting lane markings. The second set of
experiments is conducted in the TORCS simulator where we
conduct an ablation study to understand the effect different
counterfactual predictive representations have on performance
and comfort. Refer to the Appendix2 for more details in the
experimental setup and training.

A. Jackal Robot

The proposed solution for learning to drive the Jackal
robot in the real-world is called GVF-BCQ since it combines
our novel method of learning GVF predictions with BCQ
[23]. Two baselines are compared with our method: (1) a
classical controller using model predictive control (MPC),
and (2) batch-constrained Q-learning that trains end-to-end
(E2E-BCQ). The MPC uses a map and 2D laser scanner
for localization from pre-existing ROS packages. The E2E-
BCQ is the current state-of-the-art in offline deep RL [24].
Comparing to online RL was impractical for safety concerns
and the need to recharge the robot’s battery every 4 hours.

The training data consisted of 6 training roads in both
counter clock-wise (CCW) and clock-wise (CW) directions
and 3 test roads where each of the 3 test roads had damaged
variants. All training data was flipped to simulate travelling
in the reverse direction and balance the data set in terms of
direction. The training data was collected using a diverse set
of drivers including human drivers by remote control and a
pure pursuit controller with safe exploration; thus, the training
data was not suitable for imitation learning. The test roads
were different from the training data: (1) a rectangle-shaped
road with rounded outer corners, (2) an oval-shaped road,

2Appendix is at https://bit.ly/3mIDScp

TABLE I: Comparison of GVF-BCQ (our method) and E2E-
BCQ (baseline) on Rectangle test road with 0.4 m/s target
speed in both the CW and CCW directions. GVF-BCQ
exceeds performance of E2E-BCQ in all respects with higher
overall speed, and far fewer out of lane events. E2E-BCQ
was deemed unsafe for further experiments.

Method Dir. r/s
↑

Speed
↑

Off-
center
↓

Off-
angle
↓

Out of
Lane ↓

GVF-BCQ CCW 2.68 0.32 0.14 0.13 0.0%
E2E-BCQ CCW 1.26 0.18 0.26 0.24 3.8%
GVF-BCQ CW 2.29 0.31 0.22 0.16 0.0%
E2E-BCQ3 CW -0.13 0.17 0.99 0.30 54.2%

TABLE II: Effect of damaged lanes on GVF-BCQ perfor-
mance in CCW direction with 0.4 m/s target speed where R,
O, and C are the Rectangle, Oval and Complex road shapes
respectively. GVF-BCQ demonstrates robustness to damaged
and distracting lanes.

Damage r/s ↑
Off-

center
↓

Off-
angle
↓

Out of
Lane ↓

Speed
Jerk
↓

Steer
Jerk
↓

R No 2.68 0.13 0.13 0.0% 0.036 0.23
Yes 2.74 0.14 0.14 0.0% -0.038 0.23

O No 2.40 0.28 0.21 1.5% 0.035 0.22
Yes 2.07 0.33 0.21 7.19% 0.033 0.21

C No 2.35 0.22 0.18 0.0% 0.034 0.23
Yes 2.11 0.31 0.24 9.42% 0.044 0.29

and (3) a complex road loop with many turns significantly
different from anything observed by the agent during training.
In addition, the test roads included variants with damaged
lane markings. The reward is given by rt = vt(cosβt + |αt|)
where vt is the speed of the vehicle in km/h, βt is the angle
between the road direction and the vehicle direction, and αt
is the lane centeredness.

A comparison of the learned approaches is given in Table
I where GVF-BCQ approach exceeds the performance of
E2E-BCQ in all respects demonstrating better performance at
nearly double the speed. Both GVF-BCQ and E2E-BCQ were
trained with the same data sets and given 10M updates each
for a fair comparison. For GVF-BCQ, the first 5M updates
were used for learning the counterfactual predictions and the
second 5M updates were used for learning the policy from the
predictive representation with BCQ. They both received the
same observations consisting of two stacked images, current
vehicle speed, and last action and produced desired steering
angle and speed.

GVF-BCQ was tested on roads with damaged and dis-
tracting lane markings as shown in Table III. The damaged
and distracting lane markings for the complex test road loop
are shown in Figure 1. These results demonstrate robustness
because the training data did not include roads with damaged
or distracting lane markings.

GVF-BCQ was also compared to MPC in Table III where
GVF-BCQ was found to produce superior performance in

3E2E-BCQ failed to recover after undershooting the first turn in the
clock-wise (CW) direction; it was not safe for testing on the other roads.

TABLE III: Comparison of GVF-BCQ (our method) and
MPC (baseline) in CCW direction with 0.4 m/s target speed
where R, O, and C are the Rectangle, Oval and Complex
road shapes respectively.

Method r/s
↑

Off-
center
↓

Off-
angle
↓

Out of
Lane ↓

Speed
Jerk
↓

Steer
Jerk
↓

R GVF-BCQ 2.68 0.13 0.13 0.0% 0.036 0.23
MPC 0.97 0.53 0.19 20.4% 0.083 1.25

O GVF-BCQ 2.40 0.28 0.21 1.45% 0.035 0.22
MPC 0.89/s 0.53 0.20 22.7% 0.103 1.41

C GVF-BCQ 2.35 0.22 0.18 0.0% 0.034 0.23
MPC 0.72 0.64 0.21 38.9% -0.063 -1.21

nearly all metrics at a high target speed of 0.4 m/s. The
MPC performed poorly since it was difficult to tune for 0.4
m/s; performance was more similar at 0.25 m/s speeds where
results are in the Appendix. A clear advantage of GVF-BCQ
is the stability and smoothness of control achieved at the
higher speeds.

B. Ablation Study in TORCS

In order to understand the role of counterfactual predictions
in representing the state of the agent, we conduct an ablation
study in the TORCS simulator. We compare representations
consisting of future predictions at multiple time scale, future
predictions at a single time scale and predictions with super-
vised regression of the current (non-future) lane centeredness
and relative road angle. These experiments were conducted
with online RL using deep deterministic policy gradient
(DDPG) [50] in order to more easily understand the impact
of the different state representations on the learning process.

Our method is called GVF-DDPG and uses multiple time
scales specified by the values γ = [0.0, 0.5, 0.9, 0.95, 0.97].
Two variants of our method called GVF-0.95-DDPG and
GVF-0.0-DDPG were defined to investigate the impact of
different temporal horizons on performance, where γ = 0.95
and γ = 0.0 respectively. It is worth pointing out that when
γ = 0, the prediction is myopic meaning that it reduces to
a standard supervised regression problem equivalent to the
predictions learned in [37]. These methods receive a history
of two images, velocity and last action and produce desired
steering angle and vehicle speed action commands.

Some additional baselines include a kinematic-based steer-
ing approach based on [54] and two variants of DDPG with
slightly different state representations. The kinematic-based
steering approach is treated as a "ground truth" controller
since it has access to perfect localization information to steer
the vehicle; unlike our approach, the speed is controlled
independently. The variants of DDPG are called (1) DDPG-
Image and (2) DDPG-LowDim. DDPG-Image is given a
history of two images, velocity and last action while DDPG-
LowDim is given a history of two images, velocity, last
action, current lane centeredness α and relative road angle β
in the observation. Both DDPG-Image and DDPG-LowDim
output steering angle and vehicle speed action commands. The
performance of DDPG-LowDim serves as an ideal learned

Fig. 5: Ablation study of GVF-DDPG (our method) of
test scores (accumulated reward) over different time scale
selections (left) and raw image-based state representations
(right). Test scores were evaluated every 1000 steps during
training for dirt-dirt-4, evo-evo-2 and road-spring which were
not part of the training set. Results show our proposed
predictive representation with multiple time scales achieves
the best performance.

controller since it learns from both images and the perfect
localization information.

The learned agents were trained on 85% of 40 tracks
available in TORCS. The rest of the tracks were used for
testing (6 in total) to measure the generalization performance
of the policies. Results are repeated over 5 runs for each
method. Only three of the tracks were successfully completed
by at least one learned agent and those are reported here.
The reward in the TORCS environment is given by rt =
0.0002vt(cosβt + |αt|) where vt is the speed of the vehicle
in km/h, βt is the angle between the road direction and the
vehicle direction, and αt is the current lane centeredness.
The policies were evaluated on test roads at regular intervals
during training as shown in Figures 5 and 6.

The GVF-0.0-DDPG and GVF-0.95-DDPG variations ini-
tially learned very good solutions but then diverged indicating
that one prediction may not be enough to control both steering
angle and vehicle speed. Despite an unfair advantage provided
by DDPG-LowDim with the inclusion of lane centeredness
and road angle in the observation vector, GVF-DDPG still
outperforms both variants of DDPG on many of the test
roads. DDPG-Image was challenging to tune and train due to
instability in learning; however, the counterfactual predictions
in GVF-DDPG stabilized training for more consistent learning
even though they were being learned simultaneously. Only
GVF-DDPG with multiple time scale predictions is able to
achieve extraordinarily smooth control.

Fig. 6: Ablation study of GVF-DDPG (our method) of
jerkiness (lower is better) over different time scale selections.
We use angular and longitudinal jerkiness to evaluate the
smoothness of the learned policy. The jerkiness is evaluated
every 1000 steps during training for dirt-dirt-4, evo-evo-2 and
road-spring which were not part of the training set. Results
show our proposed multi-time-scale predictions achieves the
best performance.

VI. CONCLUSIONS

We present a new approach to learning to drive through a
two step process: (1) learn a limited number of counterfactual
predictions about future lane centeredness and road angle
under a known policy, and (2) learn an RL policy using the
counterfactual predictions as a representation of state. Our
novel approach is safe and practical because it learns from
real-world driving data without online exploration where
the behavior distribution of the driving data is unknown.
An experimental investigation into the impact of predictive
representations on learning good driving policies shows that
they generalize well to new roads, damaged lane markings
and even distracting lane markings. We find that our approach
improves the performance, smoothness and robustness of the
driving decisions from images. We conclude that counterfac-
tual predictions at different time scales is crucial to achieve
a good driving policy. To the best of our knowledge, this
is the first practical demonstration of deep RL applied to
autonomous driving on a real vehicle using only real-world
data without any online exploration.

Our approach has the potential to be scaled with large
volumes of data captured by human drivers of all skill levels;
however, more work is needed to understand how well this
approach will scale. In addition, a general framework of
learning the right counterfactual predictions for real-world
problems is needed where online interaction is prohibitively
expensive.

REFERENCES

[1] N. Möhler, D. John, and M. Voigtländer, “Lane detection for a
situation adaptive lane keeping support system, the safelane system,” in
Advanced Microsystems for Automotive Applications 2006, J. Valldorf
and W. Gessner, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 485–500.

[2] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang, “Robust lane
detection from continuous driving scenes using deep neural networks,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 41–54,
2020.

[3] T. Ort, L. Paull, and D. Rus, “Autonomous vehicle navigation in
rural environments without detailed prior maps,” in IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 2040–2047.

[4] Bing-Fei Wu, Tsu-Tian Lee, Hsin-Han Chang, Jhong-Jie Jiang, Cheng-
Nan Lien, Tien-Yu Liao, and Jau-Woei Perng, “Gps navigation based
autonomous driving system design for intelligent vehicles,” in IEEE
International Conference on Systems, Man and Cybernetics, 2007, pp.
3294–3299.

[5] G. Garimella, J. Funke, C. Wang, and M. Kobilarov, “Neural network
modeling for steering control of an autonomous vehicle,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 2609–2615.

[6] R. Liu, J. Wang, and B. Zhang, “High definition map for automated
driving: Overview and analysis,” Journal of Navigation, vol. 73, no. 2,
p. 324–341, 2020.

[7] L. Wang, Y. Zhang, and J. Wang, “Map-based localization method for
autonomous vehicles using 3d-lidar,” IFAC, vol. 50, no. 1, pp. 276 –
281, 2017.

[8] J. Chen, B. Yuan, and M. Tomizuka, “Deep imitation learning for
autonomous driving in generic urban scenarios with enhanced safety,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2884–2890, 2019.

[9] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving
cars,” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[10] Z. Chen and X. Huang, “End-to-end learning for lane keeping of self-
driving cars,” in IEEE Intelligent Vehicles Symposium (IV), 2017, pp.
1856–1860.

[11] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement
learning framework for autonomous driving,” Electronic Imaging, vol.
2017, pp. 70–76, 2017.

[12] L. Chi and Y. Mu, “Deep steering: Learning end-to-end driving model
from spatial and temporal visual cues,” CoRR, vol. abs/1708.03798,
2018. [Online]. Available: http://arxiv.org/abs/1810.00123

[13] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou,
and B. Boots, “Imitation learning for agile autonomous driving,” The
International Journal of Robotics Research, vol. 39, no. 2-3, pp. 286–
302, 2020.

[14] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates,”
in IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 3389–3396.

[15] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Sallab,
S. Yogamani, and P. Pérez, “Deep reinforcement learning for
autonomous driving: A survey,” CoRR, vol. abs/2002.00444, 2020.
[Online]. Available: http://arxiv.org/abs/2002.00444

[16] G. Dulac-Arnold, D. J. Mankowitz, and T. Hester, “Challenges
of real-world reinforcement learning,” International Conference on
International Conference on Machine Learning, vol. abs/1904.12901,
2019. [Online]. Available: http://arxiv.org/abs/1904.12901

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484–503, 2016.

[18] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas et al., “Solving
rubik’s cube with a robot hands,” CoRR, vol. abs/1910.07113, 2019.
[Online]. Available: http://arxiv.org/abs/1910.07113

[19] S. Whiteson, B. Tanner, M. E. Taylor, and P. Stone, “Protecting
against evaluation overfitting in empirical reinforcement learning,” IEEE

Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pp. 120–127, 2011.

[20] C. Zhao, O. Sigaud, F. Stulp, and T. M. Hospedales, “Investigating
generalisation in continuous deep reinforcement learning,” CoRR, vol.
abs/1902.07015, 2019. [Online]. Available: https://arxiv.org/abs/1902.
07015

[21] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” CoRR, vol. abs/1709.06560,
2017. [Online]. Available: http://arxiv.org/abs/1709.06560

[22] J. Farebrother, M. C. Machado, and M. Bowling, “Generalization and
regularization in DQN,” CoRR, vol. abs/1810.00123, 2018. [Online].
Available: http://arxiv.org/abs/1810.00123

[23] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” CoRR, vol. abs/1812.02900, 2018.
[Online]. Available: http://arxiv.org/abs/1812.02900

[24] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau,
“Benchmarking batch deep reinforcement learning algorithms,”
CoRR, vol. abs/1910.01708, 2019. [Online]. Available: http:
//arxiv.org/abs/1910.01708

[25] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: tutorial, review and perspectives on open problems,”
CoRR, vol. abs/2005.01643, 2020. [Online]. Available: http:
//arxiv.org/abs/2005.01643

[26] R. Sutton, J. Modayil, M. Delp, T. Degris, P. Pilarski, A. White,
and D. Precup, “Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction,” in Interna-
tional Conference on Autonomous Agents and Multiagent Systems, ser.
AAMAS ’11, vol. 2, 2011, pp. 761–768.

[27] J. Modayil, A. White, and R. S. Sutton, “Multi-timescale nexting
in a reinforcement learning robot,” in From Animals to Animats 12,
T. Ziemke, C. Balkenius, and J. Hallam, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 299–309.

[28] A. Clark, “Whatever next? predictive brains, situated agents, and the
future of cognitive science,” Behavioral and Brain Science, vol. 36,
no. 3, pp. 181–204, 2013.

[29] E. M. Russek, I. Momennejad, M. M. Botvinick, S. J. Gershman,
and N. D. Daw, “Predictive representations can link model-based rein-
forcement learning to model-free mechanisms,” PLOS Computational
Biology, vol. 13, no. 9, pp. 1–35, 2017.

[30] D. D. Salvucci and R. Gray, “A two-point visual control model of
steering,” Perception, vol. 33, no. 10, pp. 1233–1248, 2004.

[31] N. Kapania and J. Gerdes, “Design of a feedback-feedforward steering
controller for accurate path tracking and stability at the limits of
handling,” Vehicle System Dynamics, vol. 53, pp. 1–18, 2015.

[32] C. Beal and J. Gerdes, “Model predictive control for vehicle stabi-
lization at the limits of handling,” Control Systems Technology, IEEE
Transactions on, vol. 21, pp. 1258–1269, 2013.

[33] M. L. Littman and R. S. Sutton, “Predictive representations of state,” in
Advances in Neural Information Processing Systems 14, T. G. Dietterich,
S. Becker, and Z. Ghahramani, Eds., 2002, pp. 1555–1561.

[34] E. J. Rafols, M. B. Ring, R. S. Sutton, and B. Tanner, “Using predictive
representations to improve generalization in reinforcement learning,” in
International Joint Conference on Artificial Intelligence, ser. IJCAI’05,
2005, pp. 835–840.

[35] T. Schaul and M. Ring, “Better generalization with forecasts,” in
International Joint Conference on Artificial Intelligence, ser. IJCAI
’13, 2013, pp. 1656–1662.

[36] M. Bansal, A. Krizhevsky, and A. S. Ogale, “Chauffeurnet:
Learning to drive by imitating the best and synthesizing the
worst,” in Robotics: Science and Systems XV, University of Freiburg,
Freiburg im Breisgau, Germany, June 22-26, 2019, A. Bicchi,
H. Kress-Gazit, and S. Hutchinson, Eds., 2019. [Online]. Available:
https://doi.org/10.15607/RSS.2019.XV.031

[37] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 2722–
2730.

[38] P. S. Thomas and E. Brunskill, “Data-efficient off-policy policy
evaluation for reinforcement learning,” in International Conference on
International Conference on Machine Learning, ser. ICML’16, vol. 48,
2016, p. 2139–2148.

[39] J. Cunha, R. Serra, N. Lau, L. Lopes, and A. Neves, “Batch
reinforcement learning for robotic soccer using the q-batch update-rule,”
Journal of Intelligent & Robotic Systems, vol. 80, pp. 385–399, 2015.

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1810.00123
http://arxiv.org/abs/2002.00444
http://arxiv.org/abs/1904.12901
http://arxiv.org/abs/1910.07113
https://arxiv.org/abs/1902.07015
https://arxiv.org/abs/1902.07015
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1810.00123
http://arxiv.org/abs/1812.02900
http://arxiv.org/abs/1910.01708
http://arxiv.org/abs/1910.01708
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/2005.01643
https://doi.org/10.15607/RSS.2019.XV.031

[40] J. Günther, P. M. Pilarski, G. Helfrich, H. Shen, and K. Diepold,
“Intelligent laser welding through representation, prediction, and control
learning: An architecture with deep neural networks and reinforcement
learning,” Mechatronics, vol. 34, pp. 1 – 11, 2016.

[41] A. L. Edwards, M. R. Dawson, J. S. Hebert, C. Sherstan, R. S. Sutton,
K. M. Chan, and P. M. Pilarski, “Application of real-time machine
learning to myoelectric prosthesis control: A case series in adaptive
switching,” Prosthetics and orthotics international, vol. 40, no. 5, pp.
573–581, 2016.

[42] A. White, “Developing a predictive approach to knowledge,” Ph.D.
dissertation, University of Alberta, 2015.

[43] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks.” International Conference on Learning Representations,
2017.

[44] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van
Hasselt, and D. Silver, “Successor features for transfer in reinforcement
learning,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., 2017, pp. 4055–4065.

[45] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and
J. Tsang, “Hybrid reward architecture for reinforcement learning,” in
Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., 2017, pp. 5392–5402.

[46] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013. [Online]. Available:
http://arxiv.org/abs/1312.5602

[47] M. Schlegel, W. Chung, D. Graves, J. Qian, and M. White, “Importance
resampling off-policy prediction,” in Neural Information Processing
Systems, ser. NeurIPS’19, 2019.

[48] S. Ghiassian, A. Patterson, M. White, R. S. Sutton, and A. White,
“Online off-policy prediction,” CoRR, vol. abs/1811.02597, 2018.
[Online]. Available: http://arxiv.org/abs/1811.02597

[49] D. Graves, K. Rezaee, and S. Scheideman, “Perception as prediction
using general value functions in autonomous driving applications,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
ser. IROS 2019, 2019.

[50] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International Conference
on International Conference on Machine Learning, ser. ICML’14,
vol. 32, 2014, pp. I–387–I–395.

[51] M. Sugiyama, T. Suzuki, and T. Kanamori, “Density ratio estimation:
A comprehensive review,” RIMS Kokyuroku, pp. 10–31, 2010.

[52] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[53] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in International Conference on Learning Representations,
Puerto Rico, 2016.

[54] B. Paden, M. Cáp, S. Z. Yong, D. S. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” CoRR, vol. abs/1604.07446, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07446

[55] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible
and scalable slam system with full 3d motion estimation,” in IEEE
International Symposium on Safety, Security and Rescue Robotics
(SSRR), 2011.

[56] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45,
no. 3, pp. 52–57, 2002.

[57] T. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
International Conference on Learning Representations, 2016.

[58] G. Uhlenbeck and L. Ornstein, “On the theory of the brownian motion,”
Physical review, vol. 36, pp. 823–841, 1930.

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1811.02597
http://arxiv.org/abs/1604.07446

APPENDIX

A. Jackal Robot Experiments

The Jackal robot is equipped with a 5MP camera using a
wide angle lens, an IMU sensor and an indoor Hokuyo UTM-
30LX LIDAR sensor with a 270◦ scanning range and 0.1 to
10 meters scanning distance. The objective is to drive the
robot using a camera in the center of a lane marked with tape
using only data collected in the real-world. Training directly
from real world experience requires addressing multiple issues
such as minimizing wear and tear on the robot, and the need
of human supervision during training in order to prevent or
resolve robot crashes and recharge the battery.

There are two learned controllers, called GVF-BCQ and
E2E-BCQ respectively, and one classical baseline called MPC
(model predictive control). The learned controllers output a
steering angle asteert and target speed aspeedt based on the
image taken by the camera in order drive centered in a closed
loop road outlined with tape on a carpeted floor. The MPC
outputs a steering angle asteert and target speed aspeedt based
on localization of the robot on a prior constructed map of the
environment used to follow a sequence of waypoints supplied
to the robot beforehand. Localization, map and waypoints
are needed to train the GVF-BCQ controller; however, this
information is no longer used during testing. GVF-BCQ
tolerates noisy, low-accuracy localization methods that might
otherwise be not accurate enough for smooth control with
MPC or other methods.

1) Training and testing environment: The environment
used for collecting data and evaluating the agents included
two types of carpet floor - each with a different amount
of friction. The evaluation roads were done on one carpet
only which was included in only about 20% of the training
data; the rest of the training data was on another type of
carpet flooring to provide a generalization challenge for the
learned controllers. The friction was quite high on both carpets
and it caused the agent to shake the camera violently while
turning since the robot employs differential steering; tape
on the wheels helped reduce the friction a bit. Nevertheless,
localization techniques using wheel odometry was deemed
unsuitable and LIDAR-based localization was used instead.
LIDAR localization was not highly accurate but was sufficient;
our tests showed that it was repeatable to within roughly 5
centimeters which is deviation of upto about 13% from the
center of the road.

Nine closed loop roads were created by placing left and
right lanes markings on the carpeted floor separated to form
a consistent lane width of roughly 76 centimeters for all the
roads; some error in lane width measurements were tolerated
when creating our roads. 6 of the roads were selected for
collecting data to train our learned agents. Data was collected
in both directions. The remaining 3 roads were reserved for
testing the performance of the policies. In addition, each test
road included damaged variants for a total of 6 test roads.

The poses and orientations of a sequence of waypoints
were established to denote the center of lane which is the
desired path of the agent; this was used to train our agents

Fig. 7: Six roads for training. The second row shows more
complex road structure. The rectangle road has rectangular
edges at all corners.

on the training roads and evaluate them on the test roads.
The center waypoints were collected by an expert manually
and carefully navigating the Jackal robot on the road in the
approximate center of lane; while this was inaccurate, it was
not found to harm learning since the GVF-BCQ approach
was able to generalize and learn features to drive the vehicle
centered in the lane. The LIDAR-based localization produced
poses periodically to form the center waypoints; these were
cleaned up by removing overlapping waypoints to form a
closed loop path. However, it did not produce poses at a
consistent sampling frequency and thus a linear interpolation
method was used to fill in the gaps and provide localization
and center waypoint information at every time step. The
purpose of the center waypoints was to compute the road
angle and lane centeredness of the robot in the road at any
given time which is needed to train the GVF predictions and
evaluate all of our controllers.

The center waypoints for the training and testing roads are
depicted in Figure 7 and Figure 8, respectively. The first three
training roads were simple geometric shapes while the other
three were a bit more complex. The first test road was the
most similar to the training data where the outer edge of the
four corners were rounded. The second test road was an oval
shape to evaluate how well the agent maintained a turn that,
unlike the circle training road, requires the steering angle to
be modulated rather than remain constant. The third test road
was a complex shape with multiple sudden turns that was very
different from any of the roads in the training data set. This
tests generalization to new roads and confirms that the agent
is not memorizing an action sequence to remain centered in
the path. All methods were evaluated at 0.25 m/s and 0.4 m/s
maximum speeds and clock-wise (CW) and counter clock-
wise (CCW) directions. In order to test robustness, all three
test roads were altered by degrading or damaging the lane
markings. The complex test road also included distracting
markings as shown in Figure 1. An example of an image
received from the robot with and without damage to the lane
markers is shown in Figure 9.

Fig. 8: Three roads for testing. Left to right: (1) rectangle
with rounded corners; (2) oval; (3) complex.

Fig. 9: Input images of normal lane markings (top row) and
damaged lane markers (bottom row).

2) Data collection: Both learned agents – GVF-BCQ and
E2E-BCQ – were trained with batch RL [23] where the GVF-
BCQ method learned a predictive representation. Rosbags
were collected with the Jackal robot each containing around
30 minutes to 2 hours of data for a total of 40 hours of data
containing approximately 1.5 million images. The camera
image, localization pose, IMU measurement, and action taken
by the controller was recorded at each time step. The Jackal
robot was controlled using a random walk controller that
was confined to the road area to provide sufficient and
safe exploration. The map was created with Hector SLAM
[55] and the localization produced by Adaptive Monte-Carlo
Localization [56].

The random walk controller was based on a pure pursuit
controller, where action taken at each time step is defined by

asteert = clip(angle(pt, p
∗
k(t))− θ

z
t ,−π/2, π/2)

aspeedt = clip(v∗k(t), 0.2, 0.5)
(9)

where θzt and pt were the yaw angle and the 2-dimensional
position of the robot in the real world (obtained from
localization), p∗k(t) and v∗k(t) were the target position and
linear velocity at time t, clip(x, MinVal, MaxVal) is the
clip function that operates in scalar and vector element-
wise, and angle(pt, p

∗
k(t)) is the function that returns the

yaw angle in the real world of a vector that points from pt
to p∗k(t). The target position p∗k(t) and linear velocity v∗k(t)
were encapsulated in the next target pose at index k(t) in the

sequence of target poses:

k(1) = 1

k(t+ 1) =

{
k(t) + 1 if ||pt − p∗k(t)||2 < 0.025

k(t) otherwise

(10)

Thus, the robot advanced to the next target position and linear
velocity in the target pose sequence once it arrived within 2.5
centimeters of the current target position. In order to provide
efficient and safe exploration that can be confined to the road
area, the target position p∗j was based on the position p̃j of
the center waypoints collected earlier with some noise added
to provide the necessary exploration to learn the predictions
and policy:

p∗j = p̃j%N + εpj

v∗j =

{
v∗j−1 + εvj if j > 1

0.35 if j = 1

(11)

where N is the number of points that define the center
waypoints of the closed loop road. εpj and εvj were the noises
added at each time step:

εpj =

{
clip(εpj−1 +N (0, 0.02 ∗ 1),−0.3, 0.3) if j > 1

[0, 0]ᵀ if j = 1

εvj = N (0, 0.02)
(12)

The noises for the poses were clipped so that the robot would
not explore too far outside the road area.

The rosbags were processed to synchronize the sensor data
streams at a fixed sample frequency of 10Hz and compute
the lane centeredness αt, road angle βt, and speed vt of the
robot at each time step:

νt = knn(pt, St)

αt = clip(
||pt − νt||2

H
,−1.0, 1.0)

βt = clip(angle(pt, νt)− θzt ,−π/2, π/2)

(13)

where knn(x, S) returns ν as the closest point to x in S
using k-nearest neighbor and H = 38 centimeters as the half
lane width. St is a pruned set of center waypoints where
St = {p̃t} for all roads, except for the figure 8 road in the
lower right of Figure 7 where St was based on a sliding
window to prevent issues with k-nn at the intersection:

St =

{
{p̃t} if j = 1

{p̃t=It−1−w→It−1+w} if j > 1
(14)

where Ij−1 is the index of νt−1 in St−1 at the previous time
step and w = 10 is the size of the sliding window. Negative
indices are wrapped to the beginning of the waypoint list.
The speed was estimated using the change in position over a
single time step which was quite noisy but more reliable than
speed returned from the robot’s odometry. Due to computation
constraints on the robot, the localization messages were output
at less than 10Hz; thus, a linear interpolation was used to fill
in missing poses and orientations in the data and synchronize
the data streams.

Fig. 10: Model of the feature extractor of the robot’s state
concatenates features from the image with low-dimensional
state information from the robot like speed and last action.

Images from camera with original size 1920× 1080 were
cropped to 960×540 region in the center and then additionally
top-cropped by 60. The images were then downsampled
by a factor of 8 in both spatial dimensions to give a final
size of 120 × 60 and then converted to gray scale. To
improve generalization in deep learning and balance the left-
right biases in the data, augmented data was created with
horizontally flipped images along with the corresponding
signs of the lane centeredness αt, road angle βt, and steering
action asteert) flipped.

3) GVF-BCQ Training: The predictive neural network
used was trained using the offline version of the predictive
learning algorithm 2. The transitions in the data were loaded
into a replay buffer in the same order that the transitions
were observed in the rosbag where mini-batches of size 128
where sampled from the growing replay buffer and used to
update the GVFs. The GVFs were updated for 5 million
steps followed by BCQ for an additional 5 million steps
for a total of 10 million steps. The order that the rosbags
were loaded into the replay buffer was randomized. The
replay buffer had a maximum capacity of 0.5 million samples;
once the replay buffer was filled, the oldest samples were
removed. Training began once the replay buffer reached 0.1
million samples. While an alternative approach would have
been to sample mini-batches from the entire data set from
the beginning, our approach was found to be effective and
required minimal changes to the data loader of the online
version of the algorithm.

(a) Prediction Model (b) Behavior Model

Fig. 11: Neural network models for (a) Prediction Model
that produces ψ(s), and (b) Behavior Model that estimates
µ(a|s)

Fig. 12: Model of the GVF-BVQ variational auto-encoder
(VAE).

The feature extractor model of the robot state is depicted in
Figure 10. Estimating the behavior distribution for the GVF
predictions was done with η(a|s) as a uniform distribution
defined on the interval [−π/2, π/2] for the steering action
and a uniform distribution defined on the interval [0, 1] for the
target speed action. The neural network model used to learn
the GVFs predictions that produce φ are depicted in Figure
11a. The model used to estimate the behavior distribution
µ(a|s) is shown in Figure 11b. The BCQ network models that
are used to learn the policy of the agent were all relatively
small fully connected networks with hidden layer of size 256
as shown in Figures 12, 13a, and 13b.

The predictive representation ψ is a vector of length
11 consisting of φ (vector of predictions of size 8), the
last steering action, the last target speed action and the
current robot speed. The latent vector dimension was 4
which was a Normal distribution parameterised by mean and
log standard deviation. All networks used ReLU activation
for the hidden layers and linear activation for the outputs.
The action output from the actor and VAE were clipped to
[−π/2, π/2] for steering and [0.1, 0.6] for the target speed.

(a) Actor Model (b) Critic Model

Fig. 13: Neural network models for GVF-BCQ (a) Actor, and
(b) Critic

The weight of the KL divergence loss used in BCQ was 0.5.
The learning rate was 10−4 for both GVF and BCQ model
training. Figure 14 shows the training curves for the predictive
representation (GVFs) including the temporal-difference loss,
behavior model loss and mean importance sampling ratio.

4) End-to-end BCQ Baseline Training: Nearly the same
training setup used for GVF-BCQ was also applied to the
E2E-BCQ method. The hyperparameters, training settings,
activation functions for the output and action clipping are
exactly the same as GVF-BCQ unless noted otherwise. All
the networks in E2E-BCQ including the VAE, actor and critic
shared the same feature extractor as the GVF-BCQ shown in
Figure 10. The neural network models are given in Figures
15b, and 15a.

For a fair comparison, E2E-BCQ was trained for 10
millions update steps - the same number as GVF-BCQ method
which divides the update budget evenly where 5 million
updates are applied to the GVF predictions and 5 million
updates are applied to BCQ networks. The agent was then
tested on the rectangle test road and it was found that E2E-
BCQ performed very poorly. The agent was too slow reaching
an average speed of about 0.18 m/s whereas the GVF-BCQ
method was able to reach double that speed. In addition,
E2E-BCQ steered very poorly and was often not centered in
the lane; unlike the GVF-BCQ method which was observed
to be quite robust, the E2E-BCQ method sometimes drove out
of the lane where an emergency stop was needed to prevent
collision. For this reason, E2E-BCQ was only compared to
GVF-BCQ on the rectangle test road; and we focused on
comparisons against the MPC controller which was more
robust than E2E-BCQ. A detailed evaluation of E2E-BCQ is
shown in Figure 18 and Table I.

5) MPC Baseline: An MPC baseline using standard ros
nodes available for the Jackal robot were used for controlling
the Jackal robot. The baseline was tuned for 0.4 m/s; however,
it was challenging to achieve good performance due to limited
computation power for the look ahead, noisy localization with
LIDAR scan matching and inaccurate modeling of the steering

characteristics on carpet floors. The best performance was
achieved for 0.25 m/s but significant oscillation was observed
for 0.4 m/s that was very challenging to completely eliminate.
The center waypoints provided as input to the MPC controller
were processed so that the minimum distance between two
consecutive waypoints was 2.5cm; the waypoints were then
downsampled by a factor of 16 in order to increase their
separation and increase the look ahead distance; different
downsampling factors was tested but oscillation was never
completely eliminated. The MPC had an optimization window
of 5 steps into the future; this was limited by computation
available on the Jackal robot’s on-board computer. This look
ahead ensured the MPC was far enough into the future for
real-time control.

6) Test Results: This section provides a detailed compari-
son of GVF-BCQ and the baselines at different speeds and
directions. For both GVF-BCQ and E2E-BCQ methods, the
actor produced the steering and desired speed and thus the
agent was able to modulate its own speed and slow down
as necessary in advance of sharp turns. The speed command
was clipped at the maximum target speed. The controllers
started at the same position and heading angle and they were
allowed to run for exactly 300 seconds. The agents were
evaluated based on the following criteria:
• Reward per second: 1

N

∑N
t=1 rt

• Average speed: 1
N

∑N
t=1 vt

• Average absolute lane centeredness: 1
N

∑N
t=1 |αt|

• Average absolute road angle: 1
N

∑N
t=1 |βt|

• Near out of lane4: 1
N

∑N
t=1 1|αt|>0.75

5.
• First Order Jerk6: 1

N−1
∑N−1
t=1 |at+1 − at|

• Second Order jerk7: 1
N−2

∑N−2
t=1 |(at+2 − at+1) −

(at+1 − at)|
A comparison of GVF-BCQ and E2E-BCQ is given in

Tables IV and V. Experiments are named according to the
method used, the selected target speed and the direction of
the road loop (i.e. counter-clock-wise versus clock-wise).
For example, GVF-BCQ-0.4-CCW points to the test of the
GVF-BCQ controller with 0.4 m/s target speed in the counter-
clock-wise direction.

Finally, the GVF-BCQ method generalized well to damaged
lane markings and distractions in the visual images as shown
in the similar scores and similar distributions in Figure 17
and Table VI and VII. Experiments on roads with damaged
lane markings are denoted with suffix -D.

Details evaluations against the MPC baseline are shown
in Tables VIII and IX. In our evaluation at 0.25 m/s in the
counterclockwise direction, the gap between the controllers
narrowed but GVF-BCQ still out-performed MPC overall. A

4ratio of time steps where the agent’s absolute lane centeredness is greater
than 0.75

5Where 1 is the indicator function.
6First order jerk is the absolute change of action taken by the agent in

one time step. Lower jerk scores are better. Both steering and speed actions
considered separately.

7Second order jerk is the absolute change of the first order jerk in one
time step. Lower jerk scores are better. Both steering and speed actions
considered separately.

Fig. 14: TD loss, behavior loss and mean importance sampling ratio in the buffer over training steps. Red vertical dash line
is the point when the buffer is full.

TABLE IV: Comparison of GVF-BCQ and E2E-BCQ on the Rectangle test road at 0.4 m/s

Experiment
Reward

per
second ↑

Average
speed ↑

Average
off-center

(normalized)
↓

Average
off-angle

↓
Out of
lane ↓

Rectangle
shape

GVF-BCQ-0.4-CCW 2.6835 0.3205 0.1345 0.1315 0.0%
E2E-BCQ-0.4-CCW 1.2578 0.1816 0.2558 0.2414 3.76%
GVF-BCQ-0.4-CW 2.2915 0.3140 0.2217 0.1586 0.0%
E2E-BCQ-0.4-CW -0.1302 0.1710 0.9927 0.3034 54.18%

TABLE V: Comparison of GVF-BCQ and E2E-BCQ jerk levels on the Rectangle test road at 0.4 m/s

Experiment

First
order
speed
jerk ↓

Second
order
speed
jerk ↓

First
order

steering
jerk ↓

Second
order

steering
jerk ↓

Rectangle
shape

GVF-BCQ-0.4-CCW 0.0356 0.2532 0.2251 1.3403
E2E-BCQ-0.4-CCW 0.0154 0.2266 0.1109 1.4240
GVF-BCQ-0.4-CW 0.0311 0.2149 0.1995 1.1850
E2E-BCQ-0.4-CW 0.0148 0.1937 0.1174 1.3514

TABLE VI: Evaluation of the robustness of GVF-BCQ method on damaged lane markings on all the test roads

Experiment
Reward

per
second ↑

Average
speed ↑

Average
off-center

(normalized)
↓

Average
off-angle

↓
Out of
lane ↓

Rectangle
shape

GVF-BCQ-0.4-CCW 2.6835 0.3205 0.1345 0.1315 0.0%
GVF-BCQ-0.4-CCW-D 2.7407 0.3261 0.1358 0.1351 0.0%

Oval
shape

GVF-BCQ-0.4-CCW 2.4046 0.3501 0.2754 0.2125 1.45%
GVF-BCQ-0.4-CCW-D 2.0728 0.3279 0.3285 0.2089 7.19%

Complex
shape

GVF-BCQ-0.4-CCW 2.3501 0.3129 0.2221 0.1817 0.0%
GVF-BCQ-0.4-CCW-D 2.1059 0.3284 0.3125 0.2365 9.42%

clear advantage of GVF-BCQ is the stability and smoothness
of control achieved at the higher speeds. Our proposed GVF-
BCQ method beats the MPC in reward and was better on all
tracks at both speed values without access to localization
information during testing. The reason for this can be
explained by looking at the average lane centeredness of
the agent. The MPC performed as well as the GVF-BCQ
method while maintaining good speed; however, it fails at
keeping the vehicle in the center of the lane. The reason may
be due to a number of different factors including possible
inaccuracies in the MPC forward model resulting from the
friction between the wheels and the carpet in the test runs,
especially at higher speeds. The MPC suffered from many
near out of lane events and had trouble staying within the
lane markings of the oval road. The GVF-BCQ method was

better at controlling steering, leading to much higher average
reward even though it had lower average speed at 0.4 m/s
max speed. Additionally, the GVF-BCQ method was much
better in achieving smooth control. These points are reflected
in Figure 19 on the rectangle test track where the MPC lane
centeredness distribution is skewed to one side and its steering
action distribution has two modes that are far from zero while
the GVF-BCQ method distributions are more concentrated
around zero.

In order to provide more insight into the performance of
the controllers, we also investigated the distributions of αt,
βt, vt and at in Figures 17, 18, and 19.

7Note that measured vehicle speed might not be equal to speed action
from the agent due to physical constraints of the environment and noises in
measurement.

TABLE VII: Evaluation of the jerk of GVF-BCQ method on damaged lane markings on all the test roads

Experiment

First
order
speed
jerk ↓

Second
order
speed
jerk ↓

First
order

steering
jerk ↓

Second
order

steering
jerk ↓

Rectangle
shape

GVF-BCQ-0.4-CCW 0.0356 0.2532 0.2251 1.3403
GVF-BCQ-0.4-CCW-D 0.0383 0.2715 0.2303 1.4620

Oval
shape

GVF-BCQ-0.4-CCW 0.0348 0.2423 0.2191 1.4632
GVF-BCQ-0.4-CCW-D 0.0334 0.2953 0.2094 1.6612

Complex
shape

GVF-BCQ-0.4-CCW 0.0341 0.2540 0.2272 1.5306
GVF-BCQ-0.4-CCW-D 0.0437 0.3608 0.2897 2.0946

TABLE VIII: Comparison of GVF-BCQ method and MPC on all the test roads at different speeds and directions

Experiment
Reward

per
second ↑

Average
speed ↑

Average
off-center

(normalized)
↓

Average
off-angle

↓
Out of
lane ↓

Rectangle
shape

GVF-BCQ-0.4-CCW 2.6835 0.3205 0.1345 0.1315 0.0%
MPC-0.4-CCW 0.9700 0.3833 0.5252 0.1943 20.42%
GVF-BCQ-0.4-CW 2.2915 0.3140 0.2217 0.1586 0.0%
MPC-0.4-CW 0.1282 0.3836 0.9086 0.1916 67.86%
GVF-BCQ-0.25-CCW 2.1442 0.2467 0.1098 0.1181 0.0%
MPC-0.25-CCW 1.1971 0.2412 0.1218 0.1308 0.0%

Oval
shape

GVF-BCQ-0.4-CCW 2.4046 0.3501 0.2754 0.2125 1.45%
MPC-0.4-CCW 0.8928 0.3825 0.5293 0.1963 22.75%
GVF-BCQ-0.4-CW 2.4848 0.3658 0.2953 0.1922 0.0%
MPC-0.4-CW -0.7168 0.3836 1.3182 0.2095 91.22%
GVF-BCQ-0.25-CCW 1.5112 0.2473 0.3645 0.1466 3.32%
MPC-0.25-CCW 0.0225 0.2296 0.9565 0.1381 87.92%

Complex
shape

GVF-BCQ-0.4-CCW 2.3501 0.3129 0.2221 0.1817 0.0%
MPC-0.4-CCW 0.7172 0.3845 0.6407 0.2131 38.94%
GVF-BCQ-0.4-CW 2.3182 0.3168 0.2317 0.2150 0.06%
MPC-0.4-CW 0.4324 0.3905 0.7662 0.2264 52.23%
GVF-BCQ-0.25-CCW 1.9326 0.2472 0.1890 0.1509 0.0%
MPC-0.25-CCW 1.1559 0.2435 0.1664 0.1720 0.0%

TABLE IX: Comparison of jerk of GVF-BCQ method and MPC on all the test roads at different speeds and directions

Experiment

First
order
speed
jerk ↓

Second
order
speed
jerk ↓

First
order

steering
jerk ↓

Second
order
jerk

jerk ↓

Rectangle
shape

GVF-BCQ-0.4-CCW 0.0356 0.2532 0.2251 1.3403
MPC-0.4-CCW 0.0832 0.7605 1.2542 8.1963
GVF-BCQ-0.4-CW 0.0311 0.2149 0.1995 1.1850
MPC-0.4-CW 0.0944 0.8916 1.4328 10.9570
GVF-BCQ-0.25-CCW 0.0009 0.0112 0.1466 0.8890
MPC-0.25-CCW 0.0570 0.5272 0.6384 3.5208

Oval
shape

GVF-BCQ-0.4-CCW 0.0348 0.2423 0.2191 1.4632
MPC-0.4-CCW 0.1026 0.9301 1.4119 8.9051
GVF-BCQ-0.4-CW 0.0241 0.1638 0.1674 1.1451
MPC-0.4-CW 0.0847 0.7534 1.3957 9.0432
GVF-BCQ-0.25-CCW 0.0005 0.0061 0.0969 0.7614
MPC-0.25-CCW 0.0657 0.6273 0.4830 3.0566

Complex
shape

GVF-BCQ-0.4-CCW 0.0341 0.2540 0.2272 1.5306
MPC-0.4-CCW 0.0625 0.5846 1.2133 8.1747
GVF-BCQ-0.4-CW 0.0348 0.2339 0.2240 1.3911
MPC-0.4-CW 0.0809 0.7521 1.2861 8.7905
GVF-BCQ-0.25-CCW 0.0006 0.0082 0.1696 1.0394
MPC-0.25-CCW 0.0525 0.4932 0.6457 3.6786

(a) Actor Model (b) VAE Model

Fig. 15: Neural network models for E2E-BCQ (a) Actor, and
(b) VAE. The Critic model is the same as DDPG in Figure
21

Fig. 16: Distribution of lane centeredness, road angle, speed and action distribution of GVF-BCQ and E2E-BCQ on the
rectangle test track at 0.4 speed, counterclockwise direction.

Fig. 17: Distribution of lane centeredness, road angle, speed and action distribution on the rectangle test road. From top
to bottom: GVF-BCQ-0.4, GVF-BCQ-0.4 with lane marking damage on the rectangle road. The similarities highlight the
robustness of GVF-BCQ to the introduction of damaged lanes.

Fig. 18: Distribution of lane centeredness, road angle, speed and action distribution of E2E-BCQ on the rectangle test road at
0.4 speed, counterclockwise direction

Fig. 19: Distribution of lane centeredness, road angle, speed and action distribution of GVF-BCQ and MPC at 0.4 m/s
and 0.25 m/s on the rectangle test track. From top to bottom: GVF-BCQ-0.4-CCW, MPC-0.4-CCW, GVF-BCQ-0.25-CCW,
MPC-0.4-CCW8

B. TORCS Experiments

TORCS is a racing simulator used for learning to drive.
All opponent vehicles were removed for these experiments
as well as roads that were sloped. The goal of the agent is to
maximize the future accumulation of the following reward:
rt = 0.0002vt(cosβt + |αt|) where vt is the speed of the
vehicle in km/h, βt is the angle between the road direction and
the vehicle direction, and αt is the current lane centeredness.
Termination occurs when either the agent leaves the lane or
the maximum number of steps has been reached (1200 steps
= 120 seconds) triggering a reset of the environment. Upon
reset, a priority sampling method is used during training to
select the next road to train on. The probability of sampling
road i during a reset is given by

e−
ni
κ∑N

j=1 e
−
nj
κ

(15)

where ni is the number of steps that the agent was able
to achieve the last time the road was sampled and κ controls
the spread of the distribution. A value of κ = 1

N

∑N
j=1 nj

was found to perform well. The initial probabilities are equal
for all roads. This improved the efficiency in learning for all
learned methods.

The TORCS environment was modified to provide higher
resolution images in grayscale rather than RGB with most
of the image above the horizon cropped out of the image.
The grayscale images were 128 pixels wide by 64 pixels
high. This allowed the agent to see more detail farther away
which is very helpful in making long term predictions and
is beneficial to both policy gradient methods and predictive
learning.

1) Training: Two main learning algorithms are compared,
along with their variants: our proposed GVF-DDPG (general
value functions with deep deterministic policy gradient) and
end-to-end DDPG. The parameters used to train the methods
will be described in more detail here.

GVF-DDPG Training: Exploration followed the same
approach as [57] where an Ornstein Uhlenbeck process [58]
was used to explore the road; the parameters of the process
(θ = 1.0, σ = 0.1, dt = 0.01) were tuned to provide a
gradual wandering behavior on the road without excessive
oscillations in the action. This improved the learning of the
off-policy predictions for GVF-DDPG since the behavior
policy µ(a|s) was closer to the target policy τ(a|s) of the
predictions.

The GVF-DDPG approach learned 8 predictions: 4 predic-
tions of lane centeredness α, and 4 predictions of road angle
β. Each of the 5 predictions had different values of γ for
different temporal horizons: 0.0, 0.5, 0.9, 0.95, 0.97. This
allowed the agent to predict how the road will turn in the
future providing the necessary look ahead information for the
agent to control effectively. The GVF predictors shared the
same deep convolutional neural network as used on the Jackal
robot where the convolutional layers were identical to the
architecture in Figure 10 followed by three fully connected
layers of 512, 384 and 8 outputs, respectively as shown in

(a) Actor Model (b) Critic Model

Fig. 20: Neural network models for GVF-DDPG (a) Actor,
and (b) Critic

Figure 11a. The behavior estimator µ(a|s) was identical with
the one used on the Jackal robot in Figure 11b. The models for
actor and critic models for GVF-DDPG are given in Figures
20a and 20b. Actions produced by the actor network was
clipped to the range [−1.0, 1.0]. A linear transformation was
applied to the target speed action to change the range of values
from [−1.0, 1.0] to [0.5, 1.0]. The steering and target speed
input into both policy and critic networks were normalized
to range [−1.0, 1.0].

A replay buffer of size 100,000 was used with a warmup
of 10,000 samples. In order to not bias the replay buffer,
the last layers of the actor network were initialized with
a uniform distribution [−1e−3, 1e−3] for the weight and 0
for the bias. The learning rates for the actor network, critic
network, predictor network and behavior policy network were
1e−6, 1e−4, 1e−4, and 1e−4 respectively. Target networks
[57] were used for the critic and actor networks with τ =
0.001 in order to make the bootstrapped prediction of the
action-values more stable. However, target networks were
not necessary for the GVF predictions or the behavior policy
estimation. The reward for was scaled by 0.0002 to scale the
action-values to fall within the range [−1.0, 1.0].

Baseline DDPG Training: The two DDPG (deep deter-
ministic policy gradient) [57] baselines were trained nearly
identically where the only difference was the information
provided in the observation. The first method called DDPG-
Image is a vision-based approach where the image, current
speed, and last action are provided to the agent; the only
information available to the agent about the road is supplied
via images. The second agent called DDPG-LowDim includes
lane centeredness α and road angle β as part of the agent’s
state. The purpose was to understand the value of this
information in learning when supplied as a cumulant in GVF-
DDPG during training only or supplied an input to the actor
and critic during training and testing. It should be noted that
DDG-LowDim was the only learned approach that used α
and β was inputs to the actor and critic networks during
testing, whereas GVF-DDPG and DDPG-Image did not have
access to this information during testing.

The network architectures for the DDPG actor and critic

Fig. 21: Model of the DDPG critic network Q(s, a).

Fig. 22: Model of the DDPG actor network π(s).

are given in Figures 22 and 21 respectively; they share the
architecture for the feature extractor given in Figure 10.

The training setup for DDPG was the same as GVF-DDPG
unless noted otherwise. An Ornstein Uhlenbeck process [58]
was used to explore the road (θ = 1.0, σ = 0.1, and
dt = 0.01). Experimentally, it was found that the exploration
parameters did not affect the learning performance of DDPG
that much. Target networks were used with τ = 0.001. The
learning rates of the critic and actor networks were the same
as those of GVF-DDPG.

2) Experimental Results: The experimental results were
averaged over 5 runs and mean and standard deviations
plotted based on performance measured on the test roads
during training. The learning curves for the critic networks
for each of the DDPG agents, as well as learning curves for
GVF predictions and behavior estimation for GVF-DDPG
are shown in Figure 23. The average episode length is shown
in Figure 24. The average lane centeredness and road angle
during each episode are plotted in Figures 25 and 26. We can
see how the GVF-DDPG with predictions over multiple time
scales is able to maintain lane centeredness and road angle
better than GVF-DDPG with myopic prediction (γ = 0.0)
and future predictions with only γ = 0.95. The average lane
centeredness and road angle is not substantially different
though amoung the learned methods; however, DDPG-Image
struggles a bit largely due to instability in learning as the high

(a) Critic

(b) Predictors (c) Behavior

Fig. 23: Learning curves for (a) Q-values of the DDPG agents,
(b) mean squared TD (temporal difference) errors of the GVF
predictors, and (c) MSE of the behavior model estimator

variance is due to some failed runs where no learning occurs.
Figure 27 shows the standard deviation in the change in the
target speed action at each time step across an episode on each
test road; this measures the jerkiness of the speed controller.
GVF-DDPG and DDPG-LowDim are both able to control
speed comfortably since the jerkiness is low. Finally, Figure
28 shows the lane centeredness on all six of the test roads
during a final evaluation after training was completed. All
six roads in the test set were challenging but the test roads a-
speedway, alpine-2, and wheel-2 were especially challenging
because the image of the roads were too different from the
training roads. Nevertheless, on the dirt-4, evo-2-r, and spring
roads, the lane centeredness of the the methods was quite
good for all learned methods except for DDPG-Image. Note
that while DDPG-LowDim performs well in learning to steer
and control speed with lane centeredness and road angle, it
required that information to learn to steer the vehicle which
may be expensive or prohibitive to obtain in all situations
such as in GPS-denied locations or locations where there is
no map or it is out of date.

Fig. 24: Mean episode length during training for dirt-dirt-4,
evo-evo-2 and road-spring

Fig. 25: Mean lane centeredness during training for dirt-dirt-4,
evo-evo-2 and road-spring

Fig. 26: Mean road angle during training for dirt-dirt-4, evo-
evo-2 and road-spring

Fig. 27: Standard deviation of the change in target speed
action during training for dirt-dirt-4, evo-evo-2 and road-
spring

Fig. 28: The lane centeredness position on the (a) alpine-2, (b)
evo-2-r, (c) dirt-4, (d) wheel-2, (e) spring, and (f) a-speedway
roads in TORCS.

C. Predictive Learning Algorithms

The algorithm used for learning counterfactual predictions
(GVFs) online through interaction with an environment
is given in Algorithm 1. In important distinction of this
algorithm is that the distribution of the behavior policy used
to collect the data does not need to be known.

Algorithm 1 Online Counterfactual GVF training algorithm
with unknown µ(a|s)

1: Initialize φτ (s), g(a, s), η(a|s), and replay memory D
2: Observe initial state s0
3: for t = 0,T do
4: Sample action at from unknown µ(at|st)
5: Execute action at and observe state st+1

6: Compute cumulant ct+1 = c(st, at, st+1)
7: Compute continuation γt+1 = γ(st, at, st+1)
8: Estimate behavior density value µ̂(at|st) =

g(at,st)
1−g(at,st)η(at|st)

9: Estimate importance sampling ratio ρt = τ(at|st)
µ̂(at|st)

10: Store transition (st, at, ct+1, γt+1, st+1, ρt) in D
11: Compute average importance sampling ratio in replay

buffer D of size n with ρ̄ = 1
n

∑n
j=1 ρj

12: Sample random minibatch A of transitions
(si, ai, ci+1, γi+1, si+1) from D according to probability

ρi∑n
j=1 ρj

13: Compute yi = ci+1 + γi+1φ
τ (si+1; θ̂) for minibatch

A for most recent parameters θ̂
14: Update parameters θ using gradient descent on (3)

with gradient (6) over the minibatch A
15: Sample random minibatch B of state action pairs

(si, ai) from D according to a uniform probability and
assign label z = 1 to each pair

16: Randomly select half the samples in the minibatch
B replacing the action with at ∼ η(a|s) and label with
z = 0 and storing the updated samples in B̂

17: Update behavior discriminator g(a, s) with labels z
in the modified minibatch B̄ using binary cross-entropy
loss

With minor modifications, an offline version of the algo-
rithm can be derived. This algorithm learns by reading the data
in sequence and populating a replay buffer just as it would in
online learning; the only difference is that the offline algorithm
returns the action taken in the data. This allows the same
algorithm and code for learning counterfactual predictions
(GVF) to be used in either online or offline learning settings.

Algorithm 2 Offline Counterfactual GVF training algorithm
with unknown µ(a|s)

1: Initialize φτ (s), g(a, s), η(a|s), and replay memory D,
2: Obtain the first state in the data file s0
3: for t = 0,T do
4: Obtain action at recorded in the data file that sampled

from an unknown µ(at|st)
5: Obtain next state st+1 from the data file
6: Compute cumulant ct+1 = c(st, at, st+1)
7: Compute continuation γt+1 = γ(st, at, st+1)
8: Estimate behavior density value µ̂(at|st) =

g(at,st)
1−g(at,st)η(at|st)

9: Estimate importance sampling ratio ρt = τ(at|st)
µ̂(at|st)

10: Store transition (st, at, ct+1, γt+1, st+1, ρt) in D
11: Compute average importance sampling ratio in replay

buffer D of size n with ρ̄ = 1
n

∑n
j=1 ρj

12: Sample random minibatch A of transitions
(si, ai, ci+1, γi+1, si+1) from D according to probability

ρi∑n
j=1 ρj

13: Compute yi = ci+1 + γi+1φ
τ (si+1; θ̂) for minibatch

A for most recent parameters θ̂
14: Update parameters θ using gradient descent on (3)

with gradient (6) over the minibatch A
15: Sample random minibatch B of state action pairs

(si, ai) from D according to a uniform probability and
assign label z = 1 to each pair

16: Randomly select half the samples in the minibatch
B replacing the action with at ∼ η(a|s) and label with
z = 0 and storing the updated samples in B̂

17: Update behavior discriminator g(a, s) with labels z
in the modified minibatch B̄ using binary cross-entropy
loss

	I Introduction
	II Related Works
	III Predictive Control for Autonomous Driving
	IV Predictive Learning
	IV-A Counterfactual Predictions
	IV-B Behavior Estimation

	V Experiments
	V-A Jackal Robot
	V-B Ablation Study in TORCS

	VI Conclusions
	References
	Appendix
	A Jackal Robot Experiments
	A.1 Training and testing environment
	A.2 Data collection
	A.3 GVF-BCQ Training
	A.4 End-to-end BCQ Baseline Training
	A.5 MPC Baseline
	A.6 Test Results

	B TORCS Experiments
	B.1 Training
	B.2 Experimental Results

	C Predictive Learning Algorithms

