
DOT: Dynamic Object Tracking for Visual SLAM

Irene Ballester1,2, Alejandro Fontán1,2, Javier Civera 1, Klaus H. Strobl2 and Rudolph Triebel2,3

Fig. 1. Top row: ORB-SLAM2 [1] tracks on KITTI [2] images. Middle row: ORB-SLAM2 tracks with DOT segmentation masks, which differentiate between
moving and static objects. Bottom row: ORB-SLAM2 tracks using Detectron2 [3] segmentation masks, encoding all potentially dynamic objects. Note how DOT
segments out actually moving objects (e.g., moving cars), while keeping the static ones (e.g., parked cars).

Abstract— In this paper we present DOT (Dynamic Object
Tracking), a front-end that added to existing SLAM systems can
significantly improve their robustness and accuracy in highly
dynamic environments. DOT combines instance segmentation and
multi-view geometry to generate masks for dynamic objects in
order to allow SLAM systems based on rigid scene models to avoid
such image areas in their optimizations.

To determine which objects are actually moving, DOT segments
first instances of potentially dynamic objects and then, with the esti-
mated camera motion, tracks such objects by minimizing the photo-
metric reprojection error. This short-term tracking improves the ac-
curacy of the segmentation with respect to other approaches. In the
end, only actually dynamic masks are generated. We have evaluated
DOT with ORB-SLAM 2 [1] in three public datasets. Our results
show that our approach improves significantly the accuracy and
robustness of ORB-SLAM 2, especially in highly dynamic scenes.

I. INTRODUCTION

Simultaneous Localization and Mapping, commonly known
by its acronym SLAM, is one of the fundamental capabilities for
the autonomous navigation of robotic platforms [4]. Its goal is the
joint estimation of the robot motion and a map of its surroundings,
from the information of its embedded sensors. Visual SLAM, for
which the sensors are mainly, or exclusively, cameras, is one of
the most challenging yet relevant configurations.

Despite the significant advances in SLAM in the last two
decades, most state-of-the-art systems still assume a static en-
vironment, where the relative position between the scene points
does not change and the only motion is done by the camera.
With this assumption, SLAM models attribute the visual changes
exclusively to the relative camera motion. A usual approach [5],
[1] is modeling dynamic areas as outliers, ignoring them during the
pose tracking and map estimation processes. However, for several

1University of Zaragoza, 2German Aerospace Center (DLR), 3Technical
University of Munich

frames, until such dynamic areas are discarded as outliers, their
data is used in the SLAM optimization, hence introducing errors
and inconsistencies in the estimation of the map and the camera
poses. Moreover, for feature-based SLAM methods, that track a
small number of salient image points, the errors produced by a rel-
atively small number of matches in dynamic areas are relevant and
can lead to the system failure. The world and the real applications
in which a robot or an AR system must operate is far from being
static. We can cite as representative examples the autonomous nav-
igation of cars or drones, AR in crowded scenes or even planetary
exploration tasks, where the poor texture makes SLAM systems
precarious in the presence of shadows or other robots. Developing
SLAM systems that are sufficiently robust to operate in highly
dynamic environments is then essential for many applications.

As shown in Fig. 1, this work aims to develop an image
processing strategy that improves the robustness of a visual SLAM
system in dynamic environments. Our specific contribution is the
development of “Dynamic Object Tracking” (DOT), a front-end
that combines instance segmentation with multi-view geometry
to track the camera motion, as well as the motion of the dynamic
objects, using direct methods [6]. The result of this pre-processing
is a mask containing the dynamic parts of each image that a SLAM
system can use to avoid making correspondences in such regions.

Our experimental results in three different public datasets
show that our combination of semantic segmentation and
geometry-guided tracking outperforms the state of the art in
dynamic scenes. We also find relevant that DOT is implemented
as an independent front-end module, and hence easy-to-plug
in existing SLAM systems. As DOT includes short-term mask
tracking, we avoid the segmentation of all frames in the sequence,
with significant savings in computation. Finally, although we
tuned and evaluated DOT for the specific domain of car navigation,
our strategy would be valid for other applications.

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICRA48506.2021.9561452

II. RELATED WORK

SLAM in dynamic environments is an open research problem
with a large scientific bibliography. We will divide the different
approaches into three main categories.

The first category, and the most general one, models the scene
as a set of non-rigid parts, hence including deformable and
dynamic objects [7][8][9]. While this research line is the most
general, it is also the most challenging one. In this paper we will
assume intra-object rigidity, which is the premise behind the other
two categories of dynamic visual SLAM.

The second category aims to improve the accuracy and robust-
ness of visual SLAM by reconstructing only the static part of a
scene. Dynamic objects are segmented out and ignored for camera
pose tracking and map estimation. Along this line, DynaSLAM
[10], built on top of ORB-SLAM2 [1], aims to estimate a map
of the static part of the scene and re-use it in long-term applica-
tions. Dynamic objects are removed by combining 1) semantic
segmentation for potentially moving objects, and 2) multi-view
geometry for detecting inconsistencies in the rigid model. Mask
R-CNN [11] is used for semantic segmentation, which detects and
classifies the objects in the scene into different categories, some of
which have been pre-set as potentially dynamic (e.g., car or person).
DynaSLAM was designed to mask out all the potentially mobile
objects in the scene, which as shown in [10], results in a lower
accuracy than the original ORB-SLAM2 in scenes containing
potentially mobile objects that are not actually moving (e.g., scenes
with many parked cars). The aim of this work is, precisely, to
overcome this problem as only those objects that are moving at
that precise moment will be labeled as dynamic. Another work that
has a similar approach is StaticFusion [12], a dense RGB-D visual
SLAM system where segmentation is performed by using the 3D
reconstruction of the scene background as a way of propagating
the temporal information about the static parts of the scene.

Finally, the third line of work in dynamic visual SLAM, which
goes beyond the segmentation and suppression of dynamic objects,
includes works such as MID-Fusion [13], MaskFusion [14],
DynSLAM [15] and ClusterVO[16]. Their aim is to simultane-
ously estimate the poses of the camera and multiple dynamic
objects. For that purpose, in MID-Fusion [13] and MaskFusion
[14] sub-maps of each possible moving object are created and a
joint estimation of both the objects and camera poses is carried out.

Most of the systems mentioned [13][14][15][16][10] involve
deep learning methods, which in some cases cannot be currently
implemented in real-time due to bottleneck imposed by the
limited frequencies of the segmentation network. The contribution
developed in this work eliminates the requirement to segment
all the frames, which allows the system to be independent of
the segmentation frequency of the network, thus enabling its
implementation in real time.

III. DOT

A. System Overview

Fig. 2 shows an overview of our proposal. The input to DOT
are either RGB-D or stereo images at a certain video rate, and its
output is a mask encoding the static and dynamic elements of the
scene, which can be directly used by SLAM or odometry systems.

The first block (Instance Segmentation) corresponds to the
CNN that segments out pixel-wise all the potentially dynamic
objects. In our experiments, done using autonomous driving
datasets, only cars were segmented as potentially moving. As it
will be detailed later, since DOT tracks the mask from frame to
frame, this operation does not need to be done at every frame.

The Image processing block extracts and separates the points
belonging to static regions of the image and the points that are
in dynamic objects. The camera pose is tracked using only the
static part of the scene. From this block, and taking into account
the camera pose, the motion of each of the segmented objects is
estimated independently (Object tracking).

The next block (Is the object in motion?) determines, using geo-
metric criteria, whether the objects labeled as potentially dynamic
by the network are indeed moving. This information is used to
update the masks encoding the static and dynamic regions of each
frame and to feed the linked odometry/SLAM visual system.

Finally, DOT generates new masks from the estimations of the
objects movement (Mask Propagation), so not every frame needs
to be segmented by the network (see Fig. 3). Given the significant
computational load of instance segmentation, this can be an rele-
vant advantage of DOT compared to other state-of-the-art methods.

B. Instance Segmentation

We use the COCO Instance Segmentation baseline model with
Mask R-CNN R50-FPN 3x[17], [18] trained with Detectron2
[3] for the segmentation of all potentially movable instances that
are present in an image. The output of the network has been
modified to obtain in a single image all the segmentation masks.
The image areas that are not classified into the potentially moving
categories are given a ‘background’ label and are considered
static in the subsequent blocks.The classes have been restricted
to those considered as rigid object and potentially movable, hence
excluding humans from the tracking. If other categories were
needed, the network could be fine-tuned using these weights as
a starting point or trained from scratch with its own dataset.

In order to consistently track the objects across multiple frames
we have included a matching step between the masks computed
by DOT and the ones provided by the net. New detections not
matching any existing object are used to initialize new instances.

C. Camera and Object Tracking

From the instance segmentation of the previous step, we aim to
estimate the motion of the camera and the dynamic objects. Since
the motion of the camera and the motion of the objects are coupled
in the images, we make the estimation in a two-step process.
First we find the pose of the camera as a relative transformation
Tc∈SE(3) and then we subtract it to estimate the object motion
To∈SE(3). Our optimization is related to the recent approaches
of direct visual odometry and SLAM [6], which aim to find the
motion that minimizes a photometric reprojection error.

Optimization. We do Gauss-Newton for both the camera pose
and the subsequent object motion estimation

(JTΣ−1r J)x=−JTΣ−1r r, (1)

Fig. 2. Overview of DOT. Path A (red), shows the processing for frames that get a segmentation mask from the network. Path B (green), shows the processing for
frames that will acquire a segmentation mask geometrically propagated by DOT.

where J∈Rn×6 contains the derivatives of the residual function
(equations (3) and (5)) and Σr∈Rn×n is a diagonal matrix con-
taining the covariances of the photometric residuals r∈Rn. The
Lie-algebras pose-increments x̂se(3)∈se(3), with ·̂se(3) being the
mapping operator from the vector to the matrix representation of
the tangent space [19], are expressed as a vector x∈R6. We update
the transformations using left matrix multiplication and the expo-
nential map operator exp(·). Both are initialized with a constant ve-
locity model and a multi-scale pyramid image to aid convergence.

Camera tracking. The camera motion is estimated using a
sparse subset of high gradient pixels from static scene areas P and
multi-view constraints [20], assuming that the camera calibration
and points depths are known. The projection of a static point
p∈P from its pixel coordinates pj in the reference frame Fj to
its corresponding coordinates pi in the frame Fi is as follows:

pi=Π(TcΠ
−1(pj,zj)), (2)

where Π and Π−1 correspond to perspective projection and
back-projection models, respectively, and zj is the depth of the
point in the reference frame Fj.

The camera pose is optimized by minimizing the photometric
reprojection error

∑
p∈P

∣∣∣∣∣∣Ij(pj)−Ii(Π(exp(x̂se(3))TcΠ
−1(pj,zj)))

∣∣∣∣∣∣
γ
, (3)

which is computed as the sum of all intensity differences between
points in their reference frame and their projection into the frame
being tracked. We use the Huber norm γ.

Object tracking. Once Tc has been estimated, the pose of
each potentially dynamic object can be estimated analogously
by using a subset of image high gradient pixelsQo belonging to
such object. Modelling the potentially dynamic object as a solid
with pose To, the projection of each point p̃ in the frame Fj to
its coordinates in frame Fi is:

p̃i=Π(TcToΠ
−1(p̃j,zj)). (4)

Analogously to equation 3, we estimate To by minimizing the
following photometric reprojection error

∑
p̃∈Q

∣∣∣∣∣∣Ij(p̃j)−Ii(Π(Tcexp(x̂se(3))ToΠ
−1(p̃j,zj)))

∣∣∣∣∣∣
γ
. (5)

Algorithm 1 Dynamic Object Tracking
1: function OBJECT TRACKING(P,Q,O)
2: . P = static points
3: .Q = dynamic points
4: .O = set of objects
5: mask←∅ . Dynamic mask to be computed
6:
7: {Tc , φc}← track camera (P) . Camera Tracking
8: if φc<thφ then return ∅
9: end if

10:
11: for object inO do . Object Tracking
12: if is visible (object , Tc) then
13: {To , φo}← track object (Tc ,Qo , mask)
14: if φo<thφ then break
15: end if
16: object← outlier rejection (φo)
17: mask← update mask (object)
18: mask← is object moving? (object)
19: end if
20: end for
21:
22: return mask
23: end function

D. Tracking quality, outliers and occlusions

Occlusions, changes in lighting conditions and segmentation er-
rors have a significant effect in the accuracy of the objects and cam-
era poses. As seen in algorithm 1, we developed several strategies
that we apply after the object tracking step to reduce their impact.

Tracking quality. The appearance of dynamic objects changes
significantly, increasing the tracking error. We used the Pearson’s
correlation coefficient φo∈ [−1,1] to model appearance similarity.
This metric reflects the degree of linear correlation between the
reference intensities and their corresponding estimates, hence
being invariant to gain and offset changes. Note that this can
also be applied to camera tracking φc, although changes in the
background appearance are usually less pronounced.

Outlier rejection. Commonly, outliers are rejected using an
absolute threshold for the photometric error. More sophisticated
works [6] adapt it according to the median residual, the motion
blur or the lighting changes. As shown in Fig. 4, we propose to
set a threshold relative to the linear relation between intensities,
so the errors are independent to photometric changes in the image.

Occlusions. The dynamic objects might occlude each other.

Fig. 3. Sample results. The upper row shows features and object tracks. Note how the network segmentations (framed in yellow) are not necessary in all frames.
The lower row shows the masks propagated by DOT that encode the motion classification: in motion (color), static (black) and yet not observed (gray).

Removing the occluded parts as outliers was not sufficient in our
experiments. We implemented a strategy consisting of tracking the
objects from the closest to the farthest, updating their respective
masks sequentially. In this manner, we update in every iteration the
points of the farther objects that have been occluded by closer ones.

E. Is the object in motion?

This block receives as input the transformation matrices of the
camera, Tc and the objects, To, and estimates whether the objects
are moving or not. Its output, to be used by SLAM or odometry
systems, are the masks that store the areas of the image occupied
by dynamic objects and whether they are in motion or not. The
masks are obtained by projecting the pixels of each object into
the new frame using Tc and To estimated in the previous step.

Observing the object motion directly in To generates, due to
the propagated image noise, difficulties in establishing absolute
thresholds that determine whether an object is in motion. In this
work we chose to observe the motion of the objects using 2D
image measurements. We denote our metric as dynamic disparity,
being the distance in pixels between the projection of the point
as if it were static pi and its actual projection p̃i. For each object
we compute the median dd = med

{∣∣∣∣pi,p̃i∣∣∣∣,∀p̃ ∈ Q} of the
dynamic disparities of its points p̃∈Q:

The 3D motion of a point produces different image motions de-

Fig. 4. Outlier rejection. Left: histogram of photometric errors for an object. The
shaded area corresponds to the points removed with a constant threshold. Right:
Linear relation between intensities. Note the different points labeled as outliers
by absolute (yellow) and relative (red) thresholds due to the changing photometry.

Fig. 5. Disparity vs Entropy. Comparison of the dynamic disparities produced
by different objects in motion. Note how observations with high entropy values
(brighter red) produce larger shifts of image pixels.

pending on 1) its image coordinates, 2) its depth, and 3) the relative
angle between the directions of the object and the camera motions.

From the non-linear pose optimization (see eq. (1)) we can
derive the uncertainty in the estimation of the motion of the object
Σx=(JTΣ−1r J)−1. Assuming a k-dimensional Gaussian distri-
bution, its differential entropy isH(xo)= 1

2 log((2πe)k|Σxo|).
The differential entropy can be seen as the pose uncertainty

derived from the photometric residuals minimization. In other
words, motion observations of high entropy will result in large
shifts of image pixels (see Fig. 5). Conversely, observations with
low entropy will produce small image disparities.

Based on this, the algorithm for classifying the movement of
objects works as follows. We compare dynamic disparities against
a variable threshold ∆d=f(H(x)) that grows smoothly with the
entropy. We label as “in motion” all those objects whose dynamic
disparity exceeds this threshold (dd>∆d). For every value below
an entropy thresholdHmin we assume the object motion cannot
be observed. Therefore, labeling an object as static requires that
the motion is observable (H(x)>Hmin) and that the median of
the dynamic disparity is less than the variable threshold (dd<∆d).

While selecting the optimal functional formulation would
require further study, this expression meets the requirements and
has shown good results in this work (see section IV). Fig. 3 is an
example of the mask propagated by DOT. Objects labeled as “in
motion” are represented in colour, while those labeled as “static”
disappear in black. The cars represented in gray are those which
cannot be determined as being static neither dynamic.

F. Mask propagation
To relate instances from different frames for the same 3D

object, DOT overlaps the mask produced by the neural network
and the one propagated by projecting the pixels from the previous
frame with multiview equations and the calculated camera and
object poses.

State propagation. Relating new semantic instances to
pre-existing objects allows us to predict their motion (which
is critical for fast moving objects). In addition, the state of the
motion can be maintained in the case of an object moving to a
position where the motion is not observable (see Section III-C).

Independent segmentation. Our proposal allows the
propagation of semantic segmentation masks from an initial seed
over time and space, eliminating the need to segment each frame.
Running the neural network at a lower frequency facilitates real-
time object tracking on low-end platforms. As an additional benefit,
DOT is able to fill the gaps in which the network temporarily
loses instantiation of an object between consecutive images.

Fig. 6. Content adaptation. Left: No masks. Centre: DOT masks. Right: All masks. The top row shows a static scene in which All masks discards all points in static objects.
In the bottom row, No masks tracks features on moving objects, which may cause failures. DOT successfully identifies parked cars as static and moving ones as dynamic.

IV. EXPERIMENTAL RESULTS

Baselines. Our experiments estimate the camera trajectory
using ORB-SLAM2 [1] in three different configurations:

No masks: ORB-SLAM2 is run using the authors’ implemen-
tation on unmodified images. Image features can be initialized
in the whole image (including areas belonging to moving objects).

DOT masks: in addition to the images, ORB-SLAM2 receives
as input the masks containing potentially dynamic objects
currently in motion. We modified ORB-SLAM2 so as not to
extract points from such moving objects.

All masks: all the masks obtained by the segmentation network
are applied in ORB-SLAM2. Hence, all potentially dynamic
objects are removed without checking if they are actually moving.

Sequence subsets. We evaluated these configurations for three
subsets from the KITTI Vision Benchmark Suite [2]. We used
data from Virtual KITTI [21], [22], a synthetic dataset composed
of 5 sequences virtually cloned from KITTI [2], KITTI Odometry,
a predefined subset of sequences specially designed for the
development and evaluation of visual odometry systems, as well as
a selection of sequences from the KITTI raw section with a high
number of moving objects [23]. We used RGB-D ORB-SLAM2
in Virtual KITTI, as this dataset provides synthetic depth images.
In other sets, we used stereo ORB-SLAM2. The ground truth for
the real sequences is given by a GPS localization system.

Evaluation metrics. In order to account for non-deterministic
effects, we run each configuration 10× per sequence and report
median values. All the experiments were run in a laptop with an
Intel Core i5 processor and 8GB of RAM memory. The absolute
trajectory error (ATE) [24] is the root-mean squared error (RMSE)
of the estimated position of all frames with respect to the GPS
ground truth after both trajectories have been aligned. For an easier
comparison, the average of the errors is normalized by the value
obtained with DOT on each sequence εnorm= 1

n

∑n
i=0

εi
εDOT

.
The right columns in Table I show the ATE normalized by

the best ATE in each sequence among the three configurations.
Thus, 1 identifies the best result, while values>1 are indicative of
poorer performance. The color scale indicates the relative position
between the best result (green) and the worst (red).

Tracking accuracy. Accoding to ATE in Table I, for V-KITTI
sequences, DOT improves performance by 92.6% and 37.8% with
respect to the No masks and All masks configurations, respectively.
In addition, DOT scores best for 3 of the 5 sequences evaluated.

TABLE I
DOT AGAINST BASELINES (No masks AND All masks).

ATE [m] ATE/ATEbest

V-KITTI
No

masks DOT
All

masks
No

masks DOT
All

masks
01 1.10 1.14 1.38 1.00 1.04 1.26
02 0.16 0.14 0.10 1.60 1.43 1.00
06 0.11 0.07 0.08 1.67 1.00 1.18
18 4.77 1.00 1.50 4.79 1.00 1.51
20 29.42 9.12 13.54 3.23 1.00 1.49

εnorm 192.6% 100.0% 137.8%

KITTI
Odometry

No
masks DOT

All
masks

No
masks DOT

All
masks

0 1.77 1.80 2.08 1.00 1.02 1.18
1 6.37 7.71 8.45 1.00 1.21 1.33
2 3.72 3.70 3.84 1.01 1.00 1.04
3 0.40 0.40 0.40 1.00 1.01 1.00
4 0.27 0.26 0.24 1.12 1.09 1.00
5 0.40 0.39 0.45 1.03 1.00 1.14
6 0.63 0.68 0.67 1.00 1.08 1.07
7 0.52 0.51 0.51 1.01 1.00 1.00
8 3.04 3.24 3.78 1.00 1.07 1.24
9 2.65 0.98 3.80 2.71 1.00 3.89
10 1.23 1.29 1.26 1.00 1.05 1.02

εnorm 112.7% 100.0% 130.3%

KITTI
Raw

No
masks DOT

All
masks

No
masks DOT

All
masks

0926-0009 1.23 1.24 1.44 1.00 1.01 1.17
0926-0013 0.26 0.26 0.27 1.00 1.00 1.03
0926-0014 0.86 0.82 0.78 1.11 1.06 1.00
0926-0051 0.37 0.36 0.37 1.02 1.00 1.02
0926-0101 8.66 10.26 12.37 1.00 1.18 1.43
0929-0004 0.32 0.30 0.30 1.08 1.03 1.00
1003-0047 13.81 1.25 2.23 11.01 1.00 1.78
εnorm 242.3% 100.0% 115.9 %

For the 11 trajectories of KITTI Odometry, DOT is 12.7% and
30.3% more accurate than No masks and All masks, respectively.
Compared to V-KITTI, this group of sequences contains less
dynamic elements, so the use of masks is even detrimental.
According to the dataset specifications, the ground truth camera
poses collected by the GPS are accurate to within 10 cm. This
is thought to be a consequence of the small number of moving
objects, as well as of the rich texture of the images, which provides
a large number of static points for estimating the camera motion.

The differences between sequences and methods are more
evident in the last section of Table I, KITTI Raw, characterized by
an abundance of moving objects. Overall, DOT achieves improve-
ments of 142.3% in ATE over No masks and 15.9 % over All masks.

Note how discarding dynamic objects in sequence 1003-0047
significantly reduces the tracking errors. The sequences 0926-0009,
0929-0004 and 1003-0047 were cloned to generate the V-KITTI
synthetic sequences (1, 18 and 20). As expected, since the scenes
contents are identical, so is the qualitative analysis of the results.

The color scale in Table I confirms that DOT approaches
the best solution even when it is not the most accurate (green).
So, while the use of masks may be convenient, the accuracy
is significantly improved if only the objects actually in motion
are removed. These results demonstrate that DOT consistently
achieves good performance both for static and dynamic scenes.

Adaptation to scene content. Fig. 6 illustrates two situations
that may affect SLAM accuracy. The high dynamism of the
scene in the lower row (V-KITTI 20), with all vehicles in motion,
violates the rigidity assumption of ORB-SLAM2, and makes
the system fail. Similarly, moving objects in VKITI 18 causes
tracking failure of ORB-SLAM2 in 6 out of 10 trials (only
56% of the trajectory could be estimated in those cases). The
upper row shows an urban scene with cars parked on both sides
(V-KITTI 01). Contrary to the previous case, the worst results
were obtained with all the segmentation masks, since many points
with reliable information are removed for tracking. ATE results
for this sequence show that extracting points from a larger area
results in more accurate estimated trajectories.

This analysis shows that, whereas using dynamic object masks
is beneficial, using them without verifying if the object is actually
in motion leads to information losses, especially in scenes with
many vehicles. DOT achieves a trade-off between those two
opposing scenarios by estimating the motion state of the objects,
significantly enhancing robustness and accuracy.

Loop closure. The loop closure module of ORB-SLAM2
reduces the drift and inaccuracies due to dynamic objects or to the
removal of parked vehicles. We have observed that ORB-SLAM2
running with DOT masks is able to close the loop 6 out of 10 runs
in sequence 9 of KITTI Odometry, while none was closed with
All masks. This explains a part of the variability in the results and
appears as an additional advantage afforded by DOT.

Segmentation errors. Compared to other approaches, DOT
reduces segmentation errors. Neural networks sometimes mislabel
static objects (e.g., traffic signs or buildings) as dynamic, but
DOT corrects this error by re-tagging the object as static (see Fig.
7).Also, when the network does not fire in one of the sequence
frames, DOT is able to fill the gap by propagating the object mask.

Mask propagation. As explained in section III-F, our approach
allows reducing the frequency of network segmentation by
propagating pre-existing masks in the intermediate frames. Figure
8 shows the number of correctly labeled pixels minus mislabeled
ones (ground truth in black) on every frame of V-KITTI when

Fig. 7. Segmentation error. Comparison between All masks and DOT masks.
Notice that an incorrect segmentation from Detectron2 (the sign in the red square
is assigned a car label) is correctly classified as static by DOT.

DOT uses 100% of Detectron2 segmentations (red), 50% (blue),
33% (yellow) and 25% (green). Note how the masks stay accurate
when being propagated except when tracking failures occur or
a moving object enters the scene between segmentations (see
also intersection over union on V-KITTI in Table II). This may
be exploited to reduce computation time, which can be a practical
advantage, specially for high frequency image streams.

TABLE II
IOU IN THE V-KITTI DATASET FOR DIFFERENT SEGMENTATION RATES.

Rate Seq01 Seq02 Seq06 Seq18 Seq20

1.0 0.88 0.88 0.84 0.90 0.89
0.5 0.74 0.83 0.67 0.85 0.84
0.33 0.72 0.80 0.60 0.85 0.81
0.25 0.69 0.78 0.55 0.84 0.81

Fig. 8. Mask propagation. Number of correctly labeled pixels minus mislabeled
ones respect to the ground truth (black) in V-KITTI, when DOT uses the segmenta-
tion network all frames (red), 50% (blue), 33% (yellow) and 25% (green) of them.

V. CONCLUSIONS

DOT is a novel front-end algorithm for SLAM systems that
robustly detects and tracks moving objects by combining instance
segmentation and multi-view geometry equations. Our evaluation
with ORB-SLAM2 in three public datasets for autonomous
driving research [2], [21], [22] demonstrates that DOT-generated
object motion information allows us to segment the dynamic
content, significantly improving its robustness and accuracy.

The independence of DOT from SLAM makes it a versatile
front-end that can be adapted with minimal integration work
to any state-of-art visual odometry or SLAM system. Unlike
other systems, DOT mask tracking reduces the rate at which
segmentation should be done, reducing the computational needs
with respect to the state of the art.

REFERENCES

[1] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, p. 1255–1262, 2017. [Online]. Available:
http://dx.doi.org/10.1109/TRO.2017.2705103

[2] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous Driving?
the KITTI Vision Benchmark Suite,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[3] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[4] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J. J. Leonard, “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Transactions on robotics,
vol. 32, no. 6, pp. 1309–1332, 2016.

[5] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile
and accurate monocular SLAM system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[6] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 3,
pp. 611–625, 2017.

[7] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Reconstruction
and tracking of non-rigid scenes in real-time,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

[8] M. Innmann, M. Zollhöfer, M. Nießner, C. Theobalt, and M. Stamminger,
“VolumeDeform: Real-time Volumetric Non-rigid Reconstruction,” October
2016.

[9] J. Lamarca, S. Parashar, A. Bartoli, and J. Montiel, “Defslam: Tracking and
mapping of deforming scenes from monocular sequences,” arXiv preprint
arXiv:1908.08918, 2019.

[10] B. Bescós, J. M. Fácil, J. Civera, and J. Neira, “DynSLAM: Tracking,
Mapping and Inpainting in Dynamic Scenes,” CoRR, vol. abs/1806.05620,
2018. [Online]. Available: http://arxiv.org/abs/1806.05620

[11] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in 2017 IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988.

[12] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers,
“StaticFusion: Background Reconstruction for Dense RGB-D SLAM in
Dynamic Environments,” in 2018 ICRA. IEEE.

[13] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and S. Leutenegger,
“MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic SLAM,”
2018.

[14] M. Rünz, M. Buffier, and L. Agapito, “MaskFusion: Real-Time Recognition,
Tracking and Reconstruction of Multiple Moving Objects,” 2018.

[15] I. A. Barsan, P. Liu, M. Pollefeys, and A. Geiger, “Robust dense mapping
for large-scale dynamic environments,” 2018 IEEE International Conference
on Robotics and Automation (ICRA), May 2018. [Online]. Available:
http://dx.doi.org/10.1109/ICRA.2018.8462974

[16] J. Huang, S. Yang, Z. Zhao, Y.-K. Lai, and S.-M. Hu, “ClusterSLAM:
A SLAM Backend for Simultaneous Rigid Body Clustering and Motion
Estimation,” 2019.

[17] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft COCO: Common
Objects in Context,” 2014.

[18] I. Matterport, “Mask R-CNN for object detection and
instance segmentation on Keras and TensorFlow,” 2019, uRL:
https://github.com/matterport/Mask RCNN [Online. Accedido el
03/12/2019].

[19] H. Strasdat, “Local accuracy and global consistency for efficient visual slam,”
Ph.D. dissertation, Department of Computing, Imperial College London,
2012.

[20] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge University Press, 2003.

[21] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for
multi-object tracking analysis,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2016, pp. 4340–4349.

[22] Y. Cabon, N. Murray, and M. Humenberger, “Virtual KITTI 2,” 2020.
[23] J. Huang, S. Yang, T.-J. Mu, and S.-M. Hu, “ClusterVO: Clustering Moving

Instances and Estimating Visual Odometry for Self and Surroundings,” 2020.
[24] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A

benchmark for the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 2012,
pp. 573–580.

