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Abstract— This paper presents Kinetic Energy Difference 

(KED) as a metric for collision proximity. The calculation of 

KED for differentially driven robots is explained, along with an 

example obstacle avoidance algorithm that utilizes it. This 

example algorithm is computationally efficient and simulations 

show that it is capable of guiding robots with slow dynamics 

through narrow corridors. 

I. INTRODUCTION 

Choosing a suitable obstacle avoidance method for a 
mobile robot in an unknown environment is not a 
straightforward task [1], and the choice is typically a 
compromise between different attributes such as speed and 
safety. The ideal method in each case depends on the structure 
of the environment, the dynamic capabilities and the shape of 
the robot, and the sensors used to observe the obstacles. The 
computational capacity of the robot is an additional constraint 
when selecting a feasible method. To avoid computational 
complexity, a typical approach is to make some 
approximations of the shape, size and kinematics of the robot, 
or to ignore these properties altogether. 

Obstacle avoidance is intertwined with the problem of path 
planning. There are no strict definitions, but it is generally 
considered that global planners work off-line to calculate 
some long-term path based on a priori data of the robot's 
surroundings, while the goal of the local planners is to 
combine these path and sensor readings to generate 
moment-to-moment control signals to the actuators. Obstacle 
avoidance is a critical part of a local planner and needs to 
maintain a good balance between collision prevention and 
local goal-seeking navigation. 

Perhaps the most well-known and widely used family of 
obstacle avoidance methods is that based on the Artificial 
Potential Field (APF) method [3]. In their most basic form, 
APF methods generate virtual forces that repel the robot away 
from obstacles and attract it towards a goal. Variations of APF 
include approaches where the potential function is modified to 
account for the robot's velocity as well as position [4] or to 
allow the treatment of moving targets and obstacles [5]. APF 
methods are generally simple and very fast, but suffer from the 
local minima problem where the repelling and attracting 
virtual forces are equal, and the robot stops before reaching its 
goal. Furthermore, APF methods often do not consider the 
exact shape of the robots, nor take into consideration that 
differentially driven robots are actually not holonomic. 
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 .   Another well-known group of obstacle avoidance methods 
is based on the Dynamic Window Approach (DWA) [6]. Such 
methods usually not only take into account the exact shape of 
the robot, but also consider the velocity and acceleration 
limits. In these methods the steering commands are calculated 
in the robot's velocity space by first generating feasible 
circular arc trajectories, and then picking the best one 
according to some optimization function. By using circular 
arcs, the issue of the non-holonomy of differentially steered 
robots is explicitly addressed. One significant variation of 
DWA is the Velocity Obstacles method [7], which includes 
observations of obstacle motions in the evaluation of safe 
trajectories. The downside of DWA type methods is that as 
they are based on finding minima of cost-functions, the 
available velocity commands are discretized, with higher 
resolutions requiring increasing processing power. 

Some methods with long histories in plant control have 
been modified to become applicable to the obstacle avoidance 
problem. One such example is the Model Predictive Control 
(MPC) approach [2]. MPC methods can take into account 
exact shapes and dynamical capabilities, but are often 
complex and computationally very expensive because before 
each motion command the method basically calculates 
multiple simulations forward in time.  

Other methods like Arc Reachable Manifolds (ARM) [8], 
and Parameterized Trajectory Generators (PTG) [13][14] 
abstract away the robot’s physical properties so that 
controllers can consider them holonomic points on a plane, 
and thus making a wide variety of controllers, such as those 
based on APFs, applicable. These methods, while generally 
advanced and not computationally expensive, however do not 
consider the limited motor torques and possible environmental 
disturbances explicitly. 

 In this paper, we consider differentially driven robots with 
slow dynamics, and as the main contribution present a new 
metric for collision proximity, Kinetic Energy Difference 
(KED), which can be used in their obstacle avoidance. Of the 
previously mentioned methods, the metric and its use most 
closely resemble [8], [13] and [14] in the sense that the metric 
operates in abstract spaces to which the robot and obstacles 
have been translated. The new metric accounts for the shape, 
torque limits and other dynamics of the robot. This paper also 
presents one example motion controller that utilizes the new 
metric. The example controller is computationally 
inexpensive, works in unknown environments, and anticipates 
environmental disturbances (such as rough terrain) that can 
subject the robot to unexpected but limited energy injections 
that change the robot's translational and rotational kinetic 
energy. The paper is organized as follows: Section II 
introduces the metric, section III gives an example controller 
that utilizes it, section IV shows simulation results, section V 
shows performance with an actual robot, and section VI 
concludes the paper. 

Obstacle Avoidance with Kinetic Energy Buffer 

V. Pitkänen, T. Pennanen, A. Tikanmäki, J. Röning 



II. KINETIC ENERGY DIFFERENCE 

This section explains the concept and calculation of KED.  

A. Models 

Figure 1 shows the robot and environmental models.  The 
robot body is rigid and non-deformable, and has a coordinate 
frame {B} attached to it between the two powered wheels 𝑤1and 𝑤2. Unless otherwise noted all values are expressed in 
{B} and are relative to it.  The wheels are located at (0, 𝑦1) 
and (0, 𝑦2), and can produce maximum nominal forces 𝑓1and 𝑓2 with the ground. There are M (green) points 𝑏𝑖  rigidly 
attached to {B}.  These “bumper” points are the (usually 
slightly enlarged) approximation of the robot’s body. Note 
that although the robot has a box-like shape in Fig. 1, 𝑏𝑖 could 
of course be used to approximate any shape. The robot’s mass 
m is centered at {B} and the robot has a rotational inertia of I. 
At any given moment the robot has a translational velocity of 𝑣  and rotational velocity of 𝜔 . The robot is given “soft” 
maximum velocity and acceleration limits 𝑣𝑚𝑎𝑥 , 𝜔𝑚𝑎𝑥 ,𝑎𝑚𝑎𝑥  
and 𝛷𝑚𝑎𝑥 .The environment is planar, has an inertial 
coordinate frame {G} attached to it, and has a varying total of 
N (red) known obstacle points 𝑜𝑗.  

 

Figure 1.  World and robot models.  

B. Maximum Recoverable Initial Velocities 

For each pair of 𝑏𝑖 and 𝑜𝑗 , there is a circular track with 

radius 𝑅𝑖𝑗 that would cause a collision between the two points. 

This collision can happen if the robot either goes forward a 
distance of 𝐷𝑖𝑗+ or backward a distance of 𝐷𝑖𝑗−. Dependent on 

the robot’s dynamical capabilities, there are two maximum 
initial velocities, the positive forward 𝑣𝑖𝑗+ and the negative 

backward 𝑣𝑖𝑗−, from which the robot can decelerate to full 

stop before collision while maintaining the circular track of 
radius 𝑅𝑖𝑗. The rest of this section explains how to calculate 𝑣𝑖𝑗−  and 𝑣𝑖𝑗+ for each 𝑏𝑖 and 𝑜𝑗 pair. 𝑅𝑖𝑗 (i.e., the y coordinate of the Instantaneous Center of 

Rotation (ICR) in {B}) is calculated as  

 𝑅𝑖𝑗 = 𝑥𝑜𝑗2 −𝑥𝑏𝑖2 +𝑦𝑜𝑗2 −𝑦𝑏𝑖2
2(𝑦𝑜𝑗 −𝑦𝑏𝑖 ) . 

With differential steering, sideways motion is prohibited, so 
the associated Lie algebra (see e.g. [10]) and its exponential 
mapping have the matrix forms 

 𝜀𝑖𝑗 =  [ 0 −𝛼𝑖𝑗 𝛼𝑖𝑗𝑅𝑖𝑗𝛼𝑖𝑗 0 00 0 0 ] ∈ 𝑠𝑒(2), 

 exp(𝜀𝑖𝑗) = 𝑇𝑖𝑗 =  [Cij −Sij 𝑅𝑖𝑗𝑆𝑖𝑗Sij Cij 𝑅𝑖𝑗(1 − 𝐶𝑖𝑗)0 0 1 ]  ∈ 𝑆𝐸(2), 

where Cij = cos (𝛼𝑖𝑗) and Sij = sin (𝛼𝑖𝑗). If the robot rotates 

an angle 𝛼𝑖𝑗 about the ICR located at (0, 𝑅𝑖𝑗), then the body 

point (𝑥𝑏𝑖 , 𝑦𝑏𝑖) will move to 

 [𝑥𝑏𝑖′𝑦𝑏𝑖′1 ] = 𝑇𝑖𝑗 [𝑥𝑏𝑖𝑦𝑏𝑖1 ] = [ 𝑥𝑏𝑖Cij − 𝑦𝑏𝑖Sij + 𝑅𝑖𝑗Sij𝑥𝑏𝑖Sij + 𝑦𝑏𝑖Cij + 𝑅𝑖𝑗(1 − Cij)1
Therefore, for 𝑏𝑖  and 𝑜𝑗  to collide the following group 

equation must be true:  

 { 𝑥𝑏𝑖Cij + (𝑅𝑖𝑗 − 𝑦𝑏𝑖)Sij = 𝑥𝑜𝑗(−𝑅𝑖𝑗 + 𝑦𝑏𝑖)Cij + 𝑥𝑏𝑖Sij = 𝑦𝑜𝑗 − 𝑅𝑖𝑗. 

The above equals the following due to the rules regarding the 
linear combinations of sines and cosines: 

 { 𝐻𝑖𝑗𝑐𝑜𝑠(𝛼𝑖𝑗 −  𝜑𝑖𝑗1) = 𝑥𝑜𝑗𝐻𝑖𝑗𝑐𝑜𝑠(𝛼𝑖𝑗 − 𝜑𝑖𝑗2) = 𝑦𝑜𝑗 − 𝑅𝑖𝑗, 

 𝐻𝑖𝑗 =  √𝑥𝑏𝑖2 + (𝑅𝑖𝑗 − 𝑦𝑏𝑖)2
, 

 𝜑𝑖𝑗1 = 𝑎𝑟𝑐𝑡𝑎𝑛2( 𝑅𝑖𝑗 − 𝑦𝑏𝑖 , 𝑥𝑏𝑖), 

 𝜑𝑖𝑗2 = 𝑎𝑟𝑐𝑡𝑎𝑛2( 𝑥𝑏𝑖 , −𝑅𝑖𝑗 + 𝑦𝑏𝑖  ). 

Solving for 𝛼𝑖𝑗 results in 

 { 𝛼𝑖𝑗 = arccos (𝑥𝑜𝑗𝐻𝑖𝑗) + 𝜑𝑖𝑗1 =  𝜆𝑖𝑗1 + 𝜑𝑖𝑗1 
𝛼𝑖𝑗 = arccos (𝑦𝑜𝑗−𝑅𝑖𝑗𝐻𝑖𝑗 ) + 𝜑𝑖𝑗2 =  𝜆𝑖𝑗2 + 𝜑𝑖𝑗2

In most programming languages arccos returns a value in the 
range [0, 𝜋]. In that case, there are four relevant angle values 

for each pair of 𝑏𝑖 and 𝑜𝑗  as cos(𝛼𝑖𝑗) = cos (−𝛼𝑖𝑗);  

 𝛽𝑖𝑗1+ =  𝑓[0,2𝜋)(𝜆𝑖𝑗1 + 𝜑𝑖𝑗1),  

 𝛽𝑖𝑗1− =  𝑓[0,2𝜋)(−𝜆𝑖𝑗1 + 𝜑𝑖𝑗1), 

 𝛽𝑖𝑗2+ =  𝑓[0,2𝜋)(𝜆𝑖𝑗2 + 𝜑𝑖𝑗2), 

 𝛽𝑖𝑗2− =  𝑓[0,2𝜋)(−𝜆𝑖𝑗2 + 𝜑𝑖𝑗2), 

where the function 𝑓[0,2𝜋) simply sets the sum to the range [0,2𝜋). Points 𝑏𝑖  and 𝑜𝑗  will collide if the robot is rotated  

about the ICR at (0, 𝑅𝑖𝑗) by 

 𝛼𝑖𝑗 =  {𝛽𝑖𝑗1−, 𝑖𝑓 (𝛽𝑖𝑗1− = 𝛽𝑖𝑗2+) 𝑜𝑟 (𝛽𝑖𝑗1− = 𝛽𝑖𝑗2−)𝛽𝑖𝑗1+, 𝑒𝑙𝑠𝑒 , 

so the “forward travel angle” as seen in Figure 1 is 

 𝛼𝑖𝑗+ =  {𝑎𝑖𝑗 , 𝑖𝑓 𝑅𝑖𝑗 > 02𝜋 − 𝑎𝑖𝑗 , 𝑒𝑙𝑠𝑒. 

The forward and backward collision distances for the robot are  



 𝐷𝑖𝑗+ = |𝑅𝑖𝑗   𝛼𝑖𝑗+|, 
 𝐷𝑖𝑗− = |𝑅𝑖𝑗  (2π −  𝛼𝑖𝑗+)| = |𝑅𝑖𝑗   𝛼𝑖𝑗−|. 
A robot on a circular track has the following maximum 

path deceleration due to the limited forces the wheels can 
produce with the ground: 

 𝑎𝑓,𝑖𝑗 = −min (|𝑎1|, |𝑎2|) (1) 

 𝑎1 = 𝑓1(−𝑦1+𝑦2)𝐼𝑅𝑖𝑗+𝑚𝑦2 , 𝑎2 = 𝑓2(𝑦1−𝑦2)𝐼𝑅𝑖𝑗+𝑚𝑦1 . (2) 

The robot’s path deceleration is also limited by 𝑎𝑚𝑎𝑥  and 𝛷𝑚𝑎𝑥  so the final maximum deceleration is 

 𝑎𝑖𝑗 = −min ( |𝑎𝑓,𝑖𝑗|, 𝑎𝑚𝑎𝑥 , 𝛷𝑚𝑎𝑥|𝑅𝑖𝑗|). (3) 

Therefore, a robot on a circular collision track as described by 𝑅𝑖𝑗  and 𝛼𝑖𝑗+ can brake down to zero velocity on the “forward” 

arc of length 𝐷𝑖𝑗+while maintaining 𝑅𝑖𝑗 if it has at maximum 

the initial velocity 

 𝑣𝑖𝑗+ =  √−2𝐷𝑖𝑗+𝑎𝑖𝑗  , 𝜔𝑖𝑗+ = 𝑣𝑖𝑗+𝑅𝑖𝑗 . (4) 

Similarly for the “backward” arc of length 𝐷𝑖𝑗− 

 𝑣𝑖𝑗− =  −√−2𝐷𝑖𝑗−𝑎𝑖𝑗  , 𝜔𝑖𝑗− = 𝑣𝑖𝑗−𝑅𝑖𝑗  . (5) 

Note that in this paper the robot has a symmetrical mass 
distribution centered at {B}. If that is not the case, the 
equations (1-5) need to be modified. Examples how to 
calculate wheel forces for robots with an asymmetrical mass 
distribution are found for example in [9]. 

 

C. Kinetic Energy Space 

Given 𝑚, 𝐼 , 𝑣, and ω, the corresponding translational and 
rotational kinetic energy can be mapped to points in ℝ2, from 
now on called the Kinetic Energy Space (KES). As shown in 
Fig. 2, if the robot has the velocity (𝑣 , 𝜔 ), then its kinetic 
energy state is mapped to 𝐸𝑟𝑜𝑏𝑜𝑡 = (𝐸𝑣 , 𝐸𝜔)  where 𝐸𝑣 =𝑠𝑖𝑔𝑛(𝑣)0.5𝑚𝑣2 is the coordinate on the horizontal axis and 𝐸𝜔 = 𝑠𝑖𝑔𝑛(𝜔)0.5𝐼𝜔2  the coordinate  on the vertical axis. 
The recoverable initial velocities (𝑣𝑖𝑗+, 𝜔𝑖𝑗+) and (𝑣𝑖𝑗−, 𝜔𝑖𝑗−)  

get mapped to points 𝐸𝑖𝑗+ = (𝐸𝑣𝑖𝑗+, 𝐸𝜔𝑖𝑗+)  and 𝐸𝑖𝑗− =(𝐸𝑣𝑖𝑗−, 𝐸𝜔𝑖𝑗−)  in a similar fashion. Note that the mapping 

takes into account the sign of the velocity component, e.g., if 
v<0 , then the mapped point in KES is on the left horizontal 
half-plane, thus indicating the robot has a “negative” 
translational kinetic energy. For a unicycle type robot with a 
fixed mass and rotational inertia, each circular path with a 
fixed radius must have a fixed ratio between 𝐸𝜔and 𝐸𝑣, i.e., 𝐸𝜔 = 𝐾𝐸𝑣 , thus each 𝑅𝑖𝑗  is represented in KES as a line 

through the origin with a slope of  

 𝐾𝑖𝑗 = 𝑠𝑖𝑔𝑛(𝑅𝑖𝑗) 𝐼𝑚𝑅𝑖𝑗2 . 

Therefore, all the points on the rays starting at 𝐸𝑖𝑗+ and 𝐸𝑖𝑗− 

with the slope of 𝐾𝑖𝑗  are energy states which would result in a 

collision under the assumption that 𝑅𝑖𝑗  were maintained 

throughout the braking. 

 

Figure 2.  Kinetic Energy Space. For clarity, the mapping of only one  𝑏𝑖 
and 𝑜𝑗 pair is shown but there are actully MN lines through the origin and 

2MN +1 points (including the robot’s energy state 𝐸𝑟𝑜𝑏𝑜𝑡).  

D. Kinetic Energy Difference 

As 𝐸𝑖𝑗+ and 𝐸𝑖𝑗− are the robot’s energy states from which 

it can barely decelerate to stop before collision, they (and the 
rays starting from them) can be viewed as dangerous obstacle 
states that 𝐸𝑟𝑜𝑏𝑜𝑡  should avoid, analogous to how the robot’s 
physical body should stay away from walls and other physical 
obstacles. We propose the Kinetic Energy Difference (KED) 
as a metric of collision proximity for differentially steered 
robots. KED is the Manhattan distance (L1 norm) between 
two points in KES, i.e., the total amount of energy that is 
needed to change the robot’s energy state from one point to the 
other.  Of course, instantaneous energy injection is physically 
impossible, but many phenomena, such as rolling over low 
obstacles, can cause significant energy injections in a short 
time period. Even when the robot is not reasonably expected 
to encounter such disturbances, KED remains a suitable metric 
as it incorporates rich information about obstacle proximity, 
shape, velocity, and dynamic limits.  

III. EXAMPLE ROBOT MOTION CONTROL WITH KED 

This section gives one, conceptually as simple as possible, 
example on how KED can be utilized to control a robot with 
unicycle kinematics and limited dynamic capabilities. As will 
be shown later, the example controller is computationally 
inexpensive enough even for affordable hardware. The 
example consists of two main parts. The velocity limiter 
(section III.A), which calculates the maximum allowed “safe” 
twist for the robot, and steering (section III.B), which 
calculates the twist the robot should take to get closer to the 
waypoint while avoiding obstacles. The final output of the 
example controller is an acceleration twist (section III.C).  

Each (𝑏𝑖 , 𝑜𝑗) pair produces two eventual collision states in 

KES, namely the points  𝐸𝑖𝑗+  and 𝐸𝑖𝑗− . For the sake of 

readability, from here on the +/ − subscripts are replaced 
with a binary variable s (as in sign). 𝐸𝑖𝑗𝑠  is now a generic 

collision state in KES, and 𝐾𝐸𝐷𝑖𝑗𝑠 the L1 distance between it 

and 𝐸𝑟𝑜𝑏𝑜𝑡. 

A. Velocity Limits 

All 𝐾𝐸𝐷𝑖𝑗𝑠 and 𝐸𝑖𝑗𝑠  are divided to sets according to which of 

the four quadrants of KES the corresponding 𝐸𝑖𝑗𝑠 are in: 



𝐾𝐸𝐷𝑄1 = {𝐾𝐸𝐷𝑖𝑗𝑠|𝐸𝑣𝑖𝑗𝑠 > 0 𝑎𝑛𝑑 𝐸𝜔𝑖𝑗𝑠 > 0}, 𝐾𝐸𝐷𝑄2 = {𝐾𝐸𝐷𝑖𝑗𝑠|𝐸𝑣𝑖𝑗𝑠 > 0 𝑎𝑛𝑑 𝐸𝜔𝑖𝑗𝑠 < 0}, 𝐾𝐸𝐷𝑄3 = {𝐾𝐸𝐷𝑖𝑗𝑠|𝐸𝑣𝑖𝑗𝑠 < 0 𝑎𝑛𝑑 𝐸𝜔𝑖𝑗𝑠 < 0}, 𝐾𝐸𝐷𝑄4 = {𝐾𝐸𝐷𝑖𝑗𝑠|𝐸𝑣𝑖𝑗𝑠 < 0 𝑎𝑛𝑑 𝐸𝜔𝑖𝑗𝑠 > 0}, 𝐸𝑄1 = {𝐸𝑖𝑗𝑠|𝐸𝑣𝑖𝑗𝑠 > 0 𝑎𝑛𝑑 𝐸𝜔𝑖𝑗𝑠 > 0}, 𝐸𝑄2 = {𝐸𝑖𝑗𝑠|𝐸𝑣𝑖𝑗𝑠 > 0 𝑎𝑛𝑑 𝐸𝜔𝑖𝑗𝑠 < 0}, 𝐸𝑄3 = {𝐸𝑖𝑗𝑠|𝐸𝑣𝑖𝑗𝑠 < 0 𝑎𝑛𝑑 𝐸𝜔𝑖𝑗𝑠 < 0}, 𝐸𝑄4 = {𝐸𝑖𝑗𝑠|𝐸𝑣𝑖𝑗𝑠 < 0 𝑎𝑛𝑑 𝐸𝜔𝑖𝑗𝑠 > 0}. 

𝐾𝐸𝐷𝑚𝑖𝑛  and 𝐾𝐸𝐷𝑚𝑎𝑥  are tuning parameters which describe 

the energy injection the robot must and should always tolerate 

without crashing. For each control cycle the robot’s allowed 

velocities are calculated with 𝑣𝑎𝑙𝑤𝑑,+ = max (0, 𝑣𝑚𝑎𝑥min (1, min(𝑀1,𝑀2)−𝐾𝐸𝐷𝑚𝑖𝑛𝐾𝐸𝐷𝑚𝑎𝑥−𝐾𝐸𝐷𝑚𝑖𝑛 ), 𝑣𝑎𝑙𝑤𝑑,− = −max (0, 𝑣𝑚𝑎𝑥min (1, min(𝑀3,𝑀4)−𝐾𝐸𝐷𝑚𝑖𝑛𝐾𝐸𝐷𝑚𝑎𝑥−𝐾𝐸𝐷𝑚𝑖𝑛 ), 𝜔𝑎𝑙𝑤𝑑,+ = max (0, 𝜔𝑚𝑎𝑥min (1, min(𝑀1,𝑀4)−𝐾𝐸𝐷𝑚𝑖𝑛𝐾𝐸𝐷𝑚𝑎𝑥−𝐾𝐸𝐷𝑚𝑖𝑛 ), 𝜔𝑎𝑙𝑤𝑑,− = −max (0, 𝜔𝑚𝑎𝑥min (1, min(𝑀2,𝑀3)−𝐾𝐸𝐷𝑚𝑖𝑛𝐾𝐸𝐷𝑚𝑎𝑥−𝐾𝐸𝐷𝑚𝑖𝑛 ), 𝑀𝑛 = min (min(𝐾𝐸𝐷𝑄𝑛) , min(𝐸𝑄𝑛)). 

 𝑣𝑎𝑙𝑤𝑑,+ , 𝑣𝑎𝑙𝑤𝑑,− ,  𝜔𝑎𝑙𝑤𝑑,+ and 𝜔𝑎𝑙𝑤𝑑,− effectively construct 

four walls around the origin of KES and 𝐸𝑟𝑜𝑏𝑜𝑡  is allowed to 
be inside the “box” they construct. Small 𝐾𝐸𝐷𝑖𝑗𝑠  and 𝐸𝑖𝑗𝑠 

therefore slow down the robot. Usually 𝐸𝑖𝑗𝑠 have no effect but 

their inclusion is critical as without them the controller could 
ignore 𝐸𝑖𝑗𝑠 that are close to the origin (thus implying close 

physical proximity) if 𝐸𝑟𝑜𝑏𝑜𝑡  is far away from it. For example, 
a sudden appearance of an obstacle in front of a robot with a 
high velocity could cause such a scenario. 

B. Steering 

  The example controller guides the robot through narrow 
passages using a (possibly inaccurate) continuous or discrete 
path, which is given by some global planner. A waypoint W 
moves forward on the path if the distance between it and {B} 
is less than 𝑘𝑝𝑎𝑡ℎ𝐷𝑖𝑠𝑡. However, W is informally speaking just 

a weak recommendation where to go, and mostly used just to 
divide obstacle points to those that should be avoided by 
turning left, and those that should be avoided by turning right.  

1) Left Obstacles and Right Obstacles 
A sensor akin to a 2D LIDAR is assumed to give the distances 
and direction angles of obstacle points. Then a “virtual 
corridor” of width 𝑘𝑚𝑖𝑛𝐷𝑖𝑠𝑡  is generated between {B} and W.   𝑘𝑚𝑖𝑛𝐷𝑖𝑠𝑡  is the minimum opening size the robot is allowed to 
go through and the angle to W is 𝛽𝑊 . If this corridor does not 
contain any obstacle points, then the line that divides 𝑜𝑗  to 

“left obstacles” and “right obstacles” is in the direction 𝛽𝐷 = 𝛽𝑊. If the virtual corridor has any 𝑜𝑗 , then the closest one 

along the virtual corridor is picked. This closest obstacle point 𝑜𝑐  is then used as a “seed” from which the obstructing 
continuous obstacle 𝑐𝑜  is constructed. This construction is 
done in three steps (see Figure 3 for illustration). The first step 
is to use 𝑜𝑐 as the starting point to grow a graph-like structure 
whose nodes are obstacle points (red points), and two of these 
nodes are connected (red lines) if they are closer than 𝑘𝑚𝑖𝑛𝐷𝑖𝑠𝑡  

to each other. The second step is to go through each node in 
the structure and calculate the circular sector that contains it 
and all the nodes it is connected to (see Figure 3 for an 
example with one node). The third step is to add to this 
structure those 𝑜𝑗 whose lines between them and {B} are 

contained within at least one circular sector from step 2.  The 
graph-like structure 𝑐𝑜  now consists of all 𝑜𝑗 within a circular 

sector, and thus has two well defined edge points. From these 
two points the one closer to W is named 𝑜𝑒, and  𝛽𝐷 is chosen 
to be the angle to it. 

 

Figure 3.  Merging of the obstacle points and selection of the edge point. 

2) Turn Left or Turn Right 

We can now use 𝛽𝐷 and the x-coordinates of 𝑜𝑗 to divide all 𝐾𝐸𝐷𝑖𝑗  to those that should avoided by turning left (“go up” in 

KES) and to those that should be avoided by turning right (“go 
down” in KES). All 𝐾𝐸𝐷𝑖𝑗  are divided to four sets:  𝐾𝐸𝐷𝑓𝑟𝑜𝑛𝑡,− = { 𝐾𝐸𝐷𝑖𝑗  |𝑥𝑜𝑗 > 0 and 𝛽𝑗 < 𝛽𝐷}, 𝐾𝐸𝐷𝑓𝑟𝑜𝑛𝑡,+ = { 𝐾𝐸𝐷𝑖𝑗  |𝑥𝑜𝑗 > 0 and 𝛽𝑗 > 𝛽𝐷}, 𝐾𝐸𝐷𝑏𝑎𝑐𝑘,− = { 𝐾𝐸𝐷𝑖𝑗  |𝑥𝑜𝑗 < 0 and 𝛽𝑗 < 𝛽𝐷}, 𝐾𝐸𝐷𝑏𝑎𝑐𝑘,+ = { 𝐾𝐸𝐷𝑖𝑗  |𝑥𝑜𝑗 < 0 and 𝛽𝑗 > 𝛽𝐷}. 

The closest 𝐾𝐸𝐷𝑖𝑗  in KES that we would like to avoid by 

turning left has the value  𝐾𝐸𝐷𝑜𝑏𝑠,+ = min(min( 𝐾𝐸𝐷𝑓𝑟𝑜𝑛𝑡,−) , 2min( 𝐾𝐸𝐷𝑏𝑎𝑐𝑘,+))   
and similarly for those 𝐾𝐸𝐷𝑖𝑗  that are avoided by turning 

right: 𝐾𝐸𝐷𝑜𝑏𝑠,− = min(min( 𝐾𝐸𝐷𝑓𝑟𝑜𝑛𝑡,+) , 2min( 𝐾𝐸𝐷𝑏𝑎𝑐𝑘,−)).  
The multiplier of two of the “back” parts is there because 
de-emphasizing the obstacle proximity to the rear-half of the 
robot gives slightly better performance with non-circular 
robots. This multiplier could be some other small value larger 
than one as it has a limited impact on the overall behavior. 

The control system is constructed so that the robot would 
generally try to steer left if 𝐾𝐸𝐷𝑜𝑏𝑠,+ > 𝐾𝐸𝐷𝑜𝑏𝑠,− and right if 𝐾𝐸𝐷𝑜𝑏𝑠,+ < 𝐾𝐸𝐷𝑜𝑏𝑠,−. However for free-space navigation we 

also need methods that do not depend on the proximity of 
obstacles. The solution chosen here is  𝜔𝑠𝑡𝑒𝑒𝑟 = 𝜔𝑚𝑎𝑥 (𝐾𝐸𝐷−− 𝐾𝐸𝐷+)min (𝐾𝐸𝐷−,   𝐾𝐸𝐷+),    



𝐾𝐸𝐷+ = min(𝐾𝐸𝐷𝑜𝑏𝑠,+, 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡(1 + |min(0, 𝛽𝐷)|), 𝐾𝐸𝐷− = min(𝐾𝐸𝐷𝑜𝑏𝑠,−, 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡(1 + max (0, 𝛽𝐷)), 

where 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡  is some relatively large default value. 

Effectively, if “far” away from obstacles, the robot will tend to 
steer towards W (or 𝑜𝑒 in case of obstruction), and the smaller 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡  is, the closer to the obstacles the robot navigates.  

3) Translational Velocity  
Many heuristics could be used to set the desired translational 
velocity, but as will be shown even setting 𝑣𝑠𝑡𝑒𝑒𝑟 = 𝑣𝑚𝑎𝑥 
works well enough. Similarly, many heuristics could be used 
to slow down and stop the robot near (stationary) W, but this 
will not be addressed in this example controller. 

4) Limit to Allowed Velocities 
If steering velocities exceed the allowed velocity limits they 
are capped to the maximum allowed values 

 𝑣𝑐𝑎𝑝𝑝𝑒𝑑 = {min(𝑣𝑠𝑡𝑒𝑒𝑟 , 𝑣𝑎𝑙𝑤𝑑,+) , 𝑖𝑓 𝑣𝑠𝑡𝑒𝑒𝑟 > 0max(𝑣𝑠𝑡𝑒𝑒𝑟 , 𝑣𝑎𝑙𝑤𝑑,−) , 𝑒𝑙𝑠𝑒 , 

 𝜔𝑐𝑎𝑝𝑝𝑒𝑑 = {min(𝜔𝑠𝑡𝑒𝑒𝑟 , 𝜔𝑎𝑙𝑤𝑑,+) , 𝑖𝑓 𝜔𝑠𝑡𝑒𝑒𝑟 > 0max(𝜔𝑠𝑡𝑒𝑒𝑟 , 𝜔𝑎𝑙𝑤𝑑,−) , 𝑒𝑙𝑠𝑒 . 

5)  Recovery Mode 

As the controller is reactive, local, and memoryless, it is 

possible that the robot will become stuck. This is detected by 

checking |𝑣|, |𝜔|, |𝑣𝑐𝑎𝑝𝑝𝑒𝑑|and |𝜔𝑐𝑎𝑝𝑝𝑒𝑑|. If all these values 

are below some small threshold 𝑘𝑅𝑀 , then the robot is 

considered stuck, as it is basically not moving and is not 

allowed to start moving in the desired way. In this case, the 

recovery mode is activated for 𝑡𝑅𝑀  seconds. In recovery 

mode sections III.B.2 and III.B.3 are replaced with 𝑣𝑠𝑡𝑒𝑒𝑟 =−𝑣𝑚𝑎𝑥 , 𝜔𝑠𝑡𝑒𝑒𝑟 = 𝑠𝑖𝑔𝑛(𝜔𝑠𝑡𝑒𝑒𝑟)𝜔𝑚𝑎𝑥  and section III.B.4 is 

run normally to produce 𝑣𝑐𝑎𝑝𝑝𝑒𝑑  and 𝜔𝑐𝑎𝑝𝑝𝑒𝑑 . If both of 

these new 𝑣𝑐𝑎𝑝𝑝𝑒𝑑  and 𝜔𝑐𝑎𝑝𝑝𝑒𝑑  remain below 𝑘𝑅𝑀, then the 

steering velocities are replaced with 

 

 𝑣𝑠𝑡𝑒𝑒𝑟 = {𝑣𝑚𝑎𝑥 , 𝑖𝑓 max(𝑀1, 𝑀2) > max(𝑀3, 𝑀4)−𝑣𝑚𝑎𝑥 , 𝑒𝑙𝑠𝑒  

  𝜔𝑠𝑡𝑒𝑒𝑟 = {𝜔𝑚𝑎𝑥 , 𝑖𝑓 max(𝑀1, 𝑀4) > max(𝑀2, 𝑀3)−𝜔𝑚𝑎𝑥 , 𝑒𝑙𝑠𝑒  

 
and section III.B.4 is again run normally to produce 𝑣𝑐𝑎𝑝𝑝𝑒𝑑 

and 𝜔𝑐𝑎𝑝𝑝𝑒𝑑. In other words, the recovery mode first tries to 

go backwards while turning in the desired direction, and if this 
is not possible, go in a direction that is generally the safest in 
KES. In either case, after the recovery mode has run for 𝑡𝑅𝑀 
seconds, normal operation is resumed. This recovery behavior 
is very rudimentary, and the example controller should be in 
practice accompanied by a more robust planner, e.g. 
something from the algorithm family based on RRT [15], 
which can be given control if the robot gets stuck.  

C. Robot Acceleration Twist 

A very simple proportional control scheme with acceleration 

limits was used to produce the final allowed robot twist, 

 𝛷𝑐 = 𝑠𝑖𝑔𝑛(𝜔𝑐𝑎𝑝𝑝𝑒𝑑 − 𝜔 )min (𝛷𝑐𝑎𝑝𝑝𝑒𝑑 , 𝑘𝑎|𝜔𝑠𝑡𝑒𝑒𝑟 − 𝜔 |), 

 𝑎𝑐 = 𝑠𝑖𝑔𝑛(𝑣𝑐𝑎𝑝𝑝𝑒𝑑 − 𝑣 )min (𝑎𝑐𝑎𝑝𝑝𝑒𝑑 , 𝑘𝑎|𝑣𝑠𝑡𝑒𝑒𝑟 − 𝑣 |). 

1) Wheel Velocity Commands 
The acceleration twist could be realized with some torque 

control method like [9], but motor controllers often accept 
only velocity values. In such a case, the new desired wheel 
velocities can be calculated with 

 𝜔𝑤1,𝑡+1 = 𝜔𝑤1,𝑡 + 𝛥𝑡(𝑎𝑐 − 𝑦𝑤1𝛷𝑐)/𝑅𝑤1, 

 𝜔𝑤2,𝑡+1 = 𝜔𝑤2,𝑡 + 𝛥𝑡(𝑎𝑐 − 𝑦𝑤2𝛷𝑐)/𝑅𝑤2, 

 

where 𝜔𝑤𝑛,𝑡is the current rotational velocity of wheel n and 𝛥𝑡 is the control cycle length. 
 

IV. SIMULATIONS 

A. Simulation Setup 

In the example controller 𝐾𝐸𝐷𝑚𝑖𝑛 , 𝐾𝐸𝐷𝑚𝑎𝑥   and  𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡  are the parameters with the most room for 

meaningful experimentation as all the others are either model 
parameters, which should be selected accurately or 
pessimistically, or some soft behavioral limits that arise from 
operational preferences. A deeper study on how to choose 𝐾𝐸𝐷𝑚𝑖𝑛 ,  𝐾𝐸𝐷𝑚𝑎𝑥  and 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡  is subject to further 

work, but as seen in the simulations, even simple heuristics 
produce acceptable results.  

The simulations shown in this section were done with the 
CoppeliaSim simulator [11] using the Newton [12] 
physics-engine plugin. The control cycle was 50ms and the 
internal time-step of the dynamics engine was the default 5ms. 
Four simulated scenarios with a twisting path were run with 
three different robots. The obstacles were sensed with a 
simulated 360 degree 2D LIDAR. Each wheel motor was 
capable of producing a 70N force with ground contact. The 
motors were given velocity commands as in section III.C.1.  

The common robot parameters were  𝑓1 = 𝑓2 = 50 N, 𝑣𝑚𝑎𝑥 = 1 𝑚𝑠 , 𝜔𝑚𝑎𝑥 = 2 𝑟𝑎𝑑𝑠 , 𝑎𝑚𝑎𝑥 = 2 𝑚𝑠2 ,  𝛷𝑚𝑎𝑥 = 2 𝑟𝑎𝑑𝑠2 , 𝑀 = 76, 𝑁 = 90, 𝛥𝑡= 50ms, 𝑘𝑅𝑀 = 0.05, 𝑡𝑅𝑀 = 1𝑠 , 𝑘𝑎 =10 , 𝑘𝑝𝑎𝑡ℎ𝐷𝑖𝑠𝑡 = 3𝑚 ,  𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 60𝐽 , 𝐾𝐸𝐷𝑚𝑖𝑛 = 5𝐽 + |𝐸𝑣| + |𝐸𝜔|, and  𝐾𝐸𝐷𝑚𝑎𝑥 = 20𝐽 + |𝐸𝑣| + |𝐸𝜔|.  Note that 𝐾𝐸𝐷𝑚𝑖𝑛 and 𝐾𝐸𝐷𝑚𝑎𝑥  increase when the velocity of the robot 
increases. This simple heuristic was chosen because physical 
disturbances generally increase when velocities increase. 

For the large rectangular 2m*1.5m robot, and the large 
circular one with a radius of 0.75m; 𝑅1 = 𝑅2 = 0.22𝑚, 𝑦1 = 0.57𝑚 , 𝑦2 =  −0.57𝑚, 𝑚 = 40𝑘𝑔, and 𝐼 = 21𝑘𝑔 𝑚2. 

For the small rectangular 0.6m*0.4m robot; 𝑅1 = 𝑅2 =0.05 , 𝑦1 =  0.15𝑚 , 𝑦1 =  −0.15𝑚 , 𝑚 = 15𝑘𝑔 , 𝐼 =10𝑘𝑔 𝑚2, and 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 20𝐽 (during the second run). 

In each scenario the environment was identical and the 
waypoint W moved on the same (thick blue) path that was 
(poorly) constructed by some global planner. The path {B} 
made is the green line, and the wheel paths are the thin blue 
lines. 

B. Simulation Results 

The route of the large circular robot was fairly smooth both in 
terms of curvature and velocities as seen in Figure 4. In this 
case and all the following ones, W was behind obstacles most 
of the time.  



  

Figure 4.  Left, large circular robot in a corridor. Right, its velocities. 

With the large rectangular robot the outline of the robot 
was drawn every 0.25s to better visualize the taken route (see 
Fig. 5). The recovery mode was activated twice, first after the 
first narrowing, and then on the L-turn. The corridors were 
admittedly set-up so that the controller could successfully 
navigate the robot through them, but this scenario nevertheless 
demonstrated that the controller can control large, non-circular 
robots in fairly demanding environments.  

 

Figure 5.  Large rectangular robot in a corridor. 

The small robot was run twice: once with 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 60𝐽 

and a second time with 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 20𝐽. In Fig. 6 the effect 

of changing 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡  is clearly visible. With the higher 

value the robot tended to keep more free space around it. With 
the lower value the robot tended to take straighter routes closer 
to the obstacles. 

 

Figure 6.  Left, 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 60𝐽. Right, 𝐾𝐸𝐷𝑑𝑒𝑓𝑎𝑢𝑙𝑡 = 20𝐽. 

In summary, the simulations show that the example 

controller can successfully navigate robots with slow 

dynamics through narrow corridors despite quite a poor path 

from the global planner. 

V. TEST WITH A REAL ROBOT 

The controller was further tested with a real robot in a simple 

scenario with static W, mainly for testing the performance 

with a low-cost computer. The robot was akin to the small 

simulated one, with a Rasberry Pi 4 Model B computer, and 

Hokuyo UST-20LX-H01 270 degree LIDAR. The simplified 

test was run multiple times with N=120 obstacle points, 

varying M between 30-120, 𝑣𝑚𝑎𝑥 = 0.125 𝑚𝑠  , and a 200ms 

control cycle. The visible behavior in each run was very 

similar (see Figure 7), but not identical, due to at least some 

extent to the noise in the unfiltered LIDAR measurements. 

 

 

Figure 7.  Simple test run with a real robot. 

The example controller was written in Python, with only 

rudimentary optimization, and most notably, as a 

single-threaded program running on one of the four cores of 

the CPU. Table 1 displays the percentage increase of the total 

average CPU load when running the example controller with 

a 500ms control cycle with different M and N. The data in 

Table 1 implies that just with proper parallelization, the 

controller could, for example, operate at a 50ms control cycle 

with M=120 and N=240,  using roughly 70% of the very 

affordable CPU’s processing power. Properly optimized C 

implementation would further increase the performance, and 

GPU utilization much more so. Likewise, various heuristics 

and other improvements could be used to reduce the amount 

of processed (𝑏𝑖 , 𝑜𝑗 ) pairs, e.g. reducing M if all 𝑜𝑗  are 

relatively far away from the robot. 

TABLE I.  INCREASE IN THE TOTAL CPU LOAD WITH A 500MS 

CONTROL CYCLE 

 N = 60 N = 120 N = 180 N = 240 N = 300 N = 360 

M=30 +1,4% +2,7% +3,6% +4,0% +4,3% +5,8% 

M=60 +2,4% +3,1% +3,7% +5,1% +5,7% +6,9% 

M=120 +2,5% +4,2% +5,8% +7,0% +8,1% +10,0% 

VI. CONCLUSION 

This paper introduced distance in the kinetic energy space as a 
metric for collision proximity, and provided a simple 
computationally inexpensive example obstacle avoidance 
algorithm that utilizes it. Further work includes refining the 
example controller, especially the selection of 𝐾𝐸𝐷𝑚𝑖𝑛 and  𝐾𝐸𝐷𝑚𝑎𝑥 , integrating KED to well-established methods  such 
as DWA [6], and extending the metric to robots with different 
kinematics. 

ACKNOWLEDGMENTS 

The authors would like to thank the Finnish Cultural 

Foundation, the University of Oulu Graduate School 

(UniOGS) and Infotech Oulu for making this research 

possible. The authors would also like to thank BSc Timo 

Mäenpää for his help with section V. 



REFERENCES 

[1] M. Hoy, A.S. Matveev, and A.V. Savkin, "Algorithms for collision-free 

navigation of mobile robots in complex cluttered environments: a 
survey," Robotica, vol. 33, 2015, pp. 463-497. 

[2] D.Q. Mayne and S. Raković, "Model predictive control of constrained 

piecewise affine discrete-time systems," International Journal of 
Robust and Nonlinear Control, vol. 13(3-4), 2003, pp. 261-279. 

[3] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile 

robots," International Journal of Robotics Research, vol. 5(1), 1986, pp. 
90-98. 

[4] R.B. Tilove, "Local obstacle avoidance for mobile robots based on the 

method of artificial potentials," IEEE International Conference on 
Robotics and Automation, Cincinnati, OH, USA, 1990. 

[5]  S.S. Ge and Y.J. Cui, "Dynamic motion planning for mobile robots 

using potential field method," Autonomous Robots, vol. 13(3), 2002, 
pp. 207-222. 

[6] D. Fox, W. Burgard, and S. Thrun, "The dynamic window approach to 

collision avoidance," IEEE Robotics & Automation Magazine, vol. 
4(1), 1997, pp. 23-33. 

[7] P. Fiorini and Z. Shiller, "Motion planning in dynamic environments 

using velocity obstacles," International Journal of Robotics Research, 
vol. 17(7), 1998, pp. 760-772. 

[8] J. Minguez, L. Montano, J. Santos-Victor, "Abstracting vehicle shape 

and kinematic constraints from obstacle avoidance methods," 
Autonomous Robots, vol. 20(1), 2006, pp. 43-59. 

[9] V. Pitkänen, V. Halonen, A. Kemppainen, and J. Röning “Path 

following controller for Differentially Driven Planar Robots with 
Limited Torques and Uncertain and Changing Dynamics.” Robotics 
and Automation (ICRA), 2019 IEEE International Conference on, 

Montreal, 2019. 
[10] S. Ebetiuc, S. Haraldw, "Applying Differential Geometry to Kinematic 

Modeling in mobile Robotics", 2005 WSEAS Int. Conf. on Dynamical 

systems and control, Italy, 2005, pp. 106-112. 
[11] http://www.coppeliarobotics.com/ 

[12] http://newtondynamics.com/forum/newton.php 

[13] J-L. Blanco, J. Gonzalez-Jimenez, and JA. Fernandez-Madrigal, ” 
Extending obstacles avoidance methods through multiple 

parameter-space transformation” Autonomous Robots, vol. 24, no. 1, 

(2008) pp. 29-48. 

[14] ] M. Jaimez, J-L. Blanco, and J. Gonzalez-Jimenez, “Efficient Reactive 

Navigation with Exact Collision Determination for 3D Robot Shapes.” 
International Journal of Advanced Robotic Systems. May 2015. 

[15] S.M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” 

in Proceedings of the International Conference on Robotics and 
Automation, Detroit,USA,1999. 


