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Abstract— A human-centered robot needs to reason about
the cognitive limitation and potential irrationality of its human
partner to achieve seamless interactions. This paper proposes
an anytime game-theoretic planner that integrates iterative
reasoning models, a partially observable Markov decision
process, and chance-constrained Monte-Carlo belief tree search
for robot behavioral planning. Our planner enables a robot
to safely and actively reason about its human partner’s latent
cognitive states (bounded intelligence and irrationality) in real-
time to maximize its utility better. We validate our approach in
an autonomous driving domain where our behavioral planner
and a low-level motion controller hierarchically control an
autonomous car to negotiate traffic merges. Simulations and
user studies are conducted to show our planner’s effectiveness.

I. INTRODUCTION

Human-centered robots (e.g., self-driving cars, assistive
robots, etc.) operate in close proximity to humans. When
designing planning algorithms for human-centered robots,
it is critical for the robot to reason about the mutual
influence between itself and human actors. Such a mutual
dependency can be formulated as a general-sum game, in
which a standard approach is to assume that each agent is
a perfectly rational, expected utility maximizer, who simul-
taneously responds optimally to all the others (i.e., operates
under equilibrium strategies) [1], [2]. However, experimental
studies [3]–[5] suggest that human behaviors often systemi-
cally deviate from equilibrium behaviors due to their latent
cognitive states: bounded intelligence (cognitive limitation)
and irrationality (tendency to make errors). Therefore, a
robot must account for its human partner’s cognitive states
for seamless and safe interactions.

Recent works exploited the leader-follower model [6]–[9]
and the level-k model [10]–[12] to equip robots with the
ability to reason about humans’ non-equilibrium behaviors.
These planners either assign humans’ latent states a pri-
ori, omitting humans’ distinct cognitive characteristics, or
passively adapt to the humans’ latent states, sacrificing the
benefits from actively learning the latent states (Sec. II).

In this work, we propose an anytime game-theoretic plan-
ning framework that integrates iterative reasoning models, a
partially observable Markov decision process (POMDP), and
chance-constrained Monte-Carlo belief tree search. Drawing
inspiration from behavioral game theory, we model humans’
intelligence levels and degrees of rationality as their latent
cognitive states, capturing their heterogeneous cognitive lim-
itations and tendencies to make errors. Rather than passively
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adapting to humans’ latent states when planning, our ap-
proach enables the robot to actively and safely learn the
latent states to achieve its goal more effectively without
losing the ability of real-time execution. Our key insight
is: Human-centered robots can exploit the mutual influence
in interactions to design actions that reveal their human
partners’ cognitive limitations and degrees of rationality.
By actively reasoning about these latent states, robots can
achieve more effective planning. Overall, we make the fol-
lowing contributions:
An active anytime game-theoretic planner. We formalize
the robot planning problem in a human-robot team as a
POMDP with the human’s cognitive states as latent states.
The POMDP is approximately solved by an open-loop
Monte-Carlo belief tree search algorithm in an anytime man-
ner. Coupled with explicit realization of active information
gathering on the latent states, chance-constrained branching,
and tailored terminal value functions, our planner enables
the robot to safely and adaptively balance between explo-
ration (learning the human’s latent states) and exploitation
(maximizing utility).
Application of our framework to autonomous driving.
The proposed behavioral planner is connected with an off-
the-shelf low-level motion control layer [13] to achieve feed-
back control for an autonomous car represented by a high-
fidelity model. Simulations and user studies are conducted to
show the effectiveness of our planner compared to baselines.

II. RELATED WORK

Game-theoretic planning for human-centered robots. Our
work is related to [6]–[12]. In [7]–[9], the robot exploits
the Stackelberg game [14] and models its human partner as
a follower who accommodates the robot’s planned actions.
The follower model is homogeneous (the human is always
the follower w.r.t. the robot), thus the robot may behave
poorly when the human does not behave like a follower.
The approach in [6] allows the robot to actively “probe” the
human’s latent states, but the underlying human model is
still a pure follower model. In addition, the safety of the
planner is not explicitly enforced in [6]. In [10]–[12], the
robot exploits the level-k model [15] to model the human
as an agent who reasons under various intelligence levels.
While the level-k model is heterogeneous, it assumes that
humans with lower-levels of intelligence best respond to
higher-level humans, omitting humans’ potential irrationality.
Furthermore, the planners in [10]–[12] passively adapt to the
human’s intelligence level, leading to less effective plans.
Our approach is different from [6]–[9] since our planner
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does not assume humans’ cognitive characteristics in in-
teractions a priori but reasons about them when planning.
Our work is also distinguished from [10]–[12] by enabling
the robot to safely and actively learn the human’s cognitive
states to maximize utility more effectively without losing the
ability of real-time execution.
Solution methods for POMDP. A POMDP is a framework
for planning under uncertainty. Various approaches have
been proposed to approximate POMDPs, including point-
based methods [16]–[18], open-loop strategies [19]–[22],
and Monte-Carlo tree search [23], [24]. Partially observ-
able Monte-Carlo planning (POMCP) [23] performs well,
though building a closed-loop search tree in large games is
computationally expensive. Open-loop strategies condition
action selection on previous action sequences. They use a
much smaller search space by sacrificing the ability of active
information gathering, and achieve competitive performance
compared to closed-loop planning under computational con-
straints [20]. Our approach combines the strengths from
POMCP and open-loop strategies, achieving real-time active
game-theoretic planning.

III. PROBLEM FORMULATION

Human-robot team formalization. We formalize the
human-robot team as a two-player dynamic game represented
by the tuple G =< P, S̃,A, f, rR, rH >, where P = {R,H}
represents the two players with R denoting the robot and H
denoting the human; S̃ = S̃R×S̃H and A = AR×AH are,
respectively, the joint fully-observable state and action spaces
of the two agents; the function f governs the evolution of the
joint fully-observable state and is defined by the following
dynamic model: s̃t+1 = f(s̃t, a

R
t , a

H
t ) ( s̃t ∈ S̃, aRt ∈ AR,

aHt ∈ AH); r(·) : S̃ → R is the reward function of an agent.
Robot planning as a POMDP. We consider planning
from the robot’s perspective. The fully-observable state s̃
of the human-robot team represents measurable variables
(e.g., position, speed, etc.). In addition, the human also has
latent states (e.g., preference, trust, cognitive limitation, etc.)
that characterize his/her cognition and reasoning; such latent
states cannot be observed directly, and therefore must be
inferred from interactions. We let θ ∈ Θ denote the human’s
latent states, and we consider an augmented state space S =
S̃ ×Θ. As the robot’s knowledge about the augmented state
s ∈ S is incomplete, it maintains a belief distribution over
S at each discrete time step t, namely, the robot maintains
the belief state bt := [P(st = s1), . . . ,P(st = s|S|)]

ᵀ. We
formulate the robot planning problem as a POMDP defined
by the tuple < G,S,B,Ω,Z, ρ, r′R,Osafe >, where G denotes
the dynamic game model defined above; S is the augmented
state space; B represents the space of probability distributions
over S (bt ∈ B); Ω is the finite observation space; Z : Ω ×
S → [0, 1] is a probability function specifying the probability
of receiving an observation in a state; the belief dynamics
function ρ : B × AR × Ω → B governs the belief state
evolution and is defined as bt+1 = ρ(bt, a

R
t , ot+1). Given

an initial belief state bt, the robot executes the action aRt ,
receives the observation ot+1 at time step t+ 1, and updates

its belief accordingly. r′R : B×AR → R denotes the reward
function of the robot in belief space (defined in Sec. V-A);
Osafe ⊆ S̃ represents the set of safe states of the robot.

We let πR : B → AR denote a robot’s deterministic
policy. Given belief state bt, the robot maximizes its value:

π∗R = arg max
π

V πR(bt), (1)

where V πR(bt) = EZ
[∑∞

τ=0 γ
τr′R(bt+τ , at+τ )

∣∣at+τ = π(bt+τ )
]

is the value function representing the robot’s expected return
starting from bt, subject to its policy and the belief dynamics
function. Note the robot needs to reason about both its own
actions and its human partner’s responses due to the mutual
dependence. The POMDP formulation allows us to condition
the robot behaviors on the inferred latent states.

IV. HUMAN LATENT STATES MODELING

A. Iterative Reasoning Model

When studying interactions in games, players are com-
monly assumed to adopt the Nash equilibrium solution: each
player has unlimited computational resources and responds
optimally to the others. In real life however, humans are
known to act irrationally and have cognitive limitations. The
iterative reasoning models from behavioral game theory have
been proven to show better performance in characterizing
humans’ reasoning capabilities in simultaneous games [5].
Examples of iterative reasoning models include: the level-
k model [15], the cognitive hierarchy model [25], and the
quantal level-k model [26]. All these models aim to capture
humans’ cognitive limitations and share a common feature:
they model humans as agents with heterogeneous bounds
on their reasoning abilities, i.e., human agents can only
perform a finite number of iterations of reasoning, and such
an intelligence bound is referred as the intelligence level.
Among the various integrative reasoning models, the quantal
level-k model is the state-of-the-art [27].
B. Human Quantal Level-k Reasoning Model

Quantal best response and rationality coefficient. One
of the key components of the quantal level-k (ql-k) model
is quantal best response. The notion behind quantal best
response is that human players are more likely to select
actions with higher expected future rewards [28]. Formally,
we define the quantal best response function as follows: let
Qi(s̃, ai|a−i) denote agent i’s expected total reward (i ∈ P)
when executing ai in s̃ against an action a−i from his/her
opponent −i. Then a quantal best response by agent i to
agent −i is a mixed policy:

πi(s̃, ai|a−i) =
exp
(
λiQi(s̃, a|a−i)

)∑
a′∈Ãi exp

(
λiQi(s̃, a′|a−i)

) , (2)

where λi ∈ (0, 1] is the rationality coefficient that controls
the degree of agent i conforming to optimal behaviors. In
general, the larger the λ is, the more rational the human is.
Human quantal level-k policies. In the ql-k model, the
iterative reasoning process starts from ql-0 agents who are
non-strategic reasoners. Then, a ql-k agent, k ∈ N+, assumes
the other agents are ql-(k−1) agents, predicts their ql-(k−1)
policies, and quantally best responds to the predicted ql-
(k−1) policies. On the basis of ql-0 policies, the ql-k policies



are defined for every i ∈ P , for every λ ∈ Λ, and for every
k = 1, . . . , kmax through a sequential and iterative process.
Specifically, given an initial state s̃t ∈ S̃, a ql-k agent i max-
imizes the following objective: maxπi,k,λi V

i,k(s̃t), where
V i,k(s̃t) = E

π∗,−i,k−1,λ−i

[∑∞
τ=0 γ

τri(s̃t+τ )
]

is the ql-k value

function of agent i and π∗,−i,k−1,λ−i : S̃ ×A−i → [0, 1] is the
predicted ql-(k − 1) policy of agent −i. The optimal value
function satisfies the following Bellman equation: V ∗,i,k(s̃) =

B V ∗,i,k(s̃) = maxai∈Ai Eπ∗,−i,k−1,λ−i

[
ri(s̃
′) + γV ∗,i,k(s̃′)

∣∣s̃′ =

f(s̃, ai, a−i), a−i ∼ π∗,−i,k−1,λ−i
]

, and can be determined via
value iteration. Then, we define the Q-value function as:

Q∗,i,k(s̃, ai) = E
π∗,−i,k−1,λ−i

[
ri(s̃) + γV ∗,i,k(s̃′)

]
, (3)

and (2) is adopted to define agent i’s ql-k policy. We note
that when agent i predicts its opponent’s ql-(k−1) policy, it
assumes that its opponent’s rationality coefficients is also λi

(i.e., λ−i = λi) and forms its policy based on π∗,−i,k−1,λ
i

.
We summarize the algorithm that computes the ql-k policies
of the agents in G in Alg. 1.

Algorithm 1: Quantal level-k dynamic programming
1 Input: The highest intelligence level kmax, a set of rationality

coefficients Λ, and the level-0 model πi,0, i ∈ P .
2 for k = 1 : kmax do
3 for (i, λ) ∈ P × Λ do
4 while V i,k not converged do
5 for s̃ ∈ S̃ do V i,k(s̃)← BV i,k(s̃);
6 for (s̃, ai) ∈ S̃ × Ai do
7 Compute

π∗,i,k,λ(s̃, ai) =
exp
(
λQ∗,i,k(s̃,ai)

)
∑
a′∈Ai

exp
(
λQ∗,i,k(s̃,a′)

)
using (3);

8 Return {π∗,i,k,λ}, i ∈ P , k = 1, . . . , kmax, and λ ∈ Λ.

Summary. We model the human’s latent states as his/her
intelligence level and rationality coefficient, i.e., θ = (k, λ)
and use Alg. 1 to compute the policies/value functions of the
human and the robot as ql-k agents, which are exploited to
solve the POMDP in Sec. V.

V. ANYTIME ACTIVE GAME-THEORETIC PLANNING

In this section, we embed the human ql-k model in the
POMDP through belief dynamics following the procedure in
[12], [29] and present our anytime game-theoretic planner.

A. Embed the Human Behavioral Model in Robot Planning

Observation function. We define an observation made by
the robot as o := s̃, i.e., the robot can measure the joint
physical state s̃. Then the observation function is defined as:
Z(o′, s) = I(o′ = s̃), where s̃ is the joint physical state in
s, and I(·) is an indicator function, taking 1 if the event (·)
is true and taking 0 otherwise.
Prior belief state. We define the probability of arriving to
state s′ = (s̃′, θ′) ∈ S from state s = (s̃, θ) ∈ S after
executing a ∈ AR as:
T (s, a, s′) := P(st+1 = s′|st = s, aRt = a) (4)

=
∑

a′∈AH

I
(
s̃′ = f(s̃, a, a′)

)
P(θt+1 = θ′|θt = θ, s̃t = s̃, σ̄)πH,k,λ(s̃, a′),

where f is the dynamics function described in Sec. III,
P(θt+1|θt, s̃t, σ̄) represents an explicit probabilistic model
that governs the dynamics of the latent states (σ̄ denotes the

model parameters), and πH,k,λ denotes the human’s ql-k pol-
icy with rationality coefficient λ (recall θ = (k, λ)). Then, we
can define a prior belief state prediction function that predicts
the future belief state without accounting for the possible
observations: b̃t+1 = ρ̃(bt, a), where each element in b̃t+1

is computed following b̃t+1(s′) =
∑
s∈S T (s, a, s′)bt(s).

Then, the robot’s reward function in belief space can be
defined as: r′R(bt, at) =

∑
s̃′ rR(s̃′)P(s̃t+1 = s̃′|ρ̃(bt, at)).

Prior probability of future observations. With the observa-
tion function and the prior belief prediction function defined,
given an initial belief state b, we can predict the probabilities
of the robot’s future observations after executing an action
a ∈ AR following:
O(o, b, a) :=P(ot+1 = o|bt = b, aRt = a) =

∑
s′∈S

Z(o, s′)b̃t+1(s′). (5)

Posterior belief update. After executing an action and
receiving an observation, the robot can update its posterior
belief state through the belief dynamics equation bt+1 =
ρ(bt, a

R
t , ot+1). More specifically, each element in bt+1 can

be computed using the Bayesian inference equation [30]:
bt+1(s′) ∝ Z(ot+1, s

′)b̃t+1(s′), ∀s′ ∈ S. (6)

Summary. The human’s behavioral model is embedded
into the belief transition (4). With (6), the robot infers the
human’s latent states, and in turn uses the inference result to
predict belief evolution via the belief prediction function ρ̃.

B. Robot Planning Algorithm
Closed-loop policy. In stochastic environments, the robot’s
actions can help “actively learn” the latent states for the
benefits of the future. [31] shows that only the closed-loop
policy has the capability of active learning as it optimally
balances between uncertainty reduction and maximizing util-
ity. Solving (1) via stochastic dynamic programming to
obtain a closed-loop policy is computationally intractable
[32]. To achieve real-time computation, we exploit open-loop
strategies, but compensate for the loss of active learning.
Open-loop feedback strategy. In contrast to solving for the
optimal policy in (1), we let the robot solve for an optimal
action sequence at each t:

aRt = arg max
a

EZ

[
V̂ (bt+T ) +

T−1∑
τ=0

r′R(bt+τ , at+τ )

]
, (7)

where T is the planning horizon, a = {at+0, . . . , at+T−1}
is a planned action sequence, and V̂ (bt+T ) denotes the
terminal value of the predicted belief state bt+T . The robot
plans in a feed-back manner by applying the first action
in aRt and re-planing at the next time step. As opposed to
the closed-loop policy, (7) fixes the action plan ahead and
omits the benefits that can be propagated back from future
observations. Consequently, (7) only passively learns the
latent states and yields conservative actions. Hence, explicit
methods can be used to actively learn the latent states [33].
Active learning of the latent states. We exploit the Shannon
entropy [34] to measure the estimation uncertainty of a belief
state, and augment the robot’s reward function with the
expected information gain:

I(b, a) = H(b)−
∑
o

O(o, b, a)H
(
ρ(b, a, o)

)
, (8)



where H(b) = −
∑
s∈S b(s) log b(s), and O is the observation

prediction function defined in (5). In general, the higher the
I(b, a) is, the more expected information the robot obtains
about the human’s latent states if the robot executes a in b.
With the augmented reward function r̃R(b, a), (7) becomes:

aRt = arg max
a

EZ

[
V̂ (bt+T ) +

T−1∑
τ=0

r̃R(bt+τ , at+τ )

]
, (9a)

r̃R(b, a) = r′R(b, a) + ηI(b, a), (9b)

s.t. P(s̃t+τ ∈ Osafe|a, bt) ≥ 1−∆τ ,

T∑
τ=1

∆τ ≤ ∆, (9c)

where η ∝ H(b) is an adaptive term that enables the robot
to learn the latent states as needed. The constraint (9c)
requires that the probability that the predicted state s̃t+τ is
in the safe set Osafe is larger than 1−∆τ for all steps over
the planning horizon, with ∆τ being a design parameter.
The overall safety is bounded by ∆ via risk allocation
[35], [36] (evaluation of risk is shown in Alg. 2). [12]
exploited continuous relaxation techniques to solve (7) with a
time-joint chance constraint. However, with the information
reward (9b), the approach in [12] could become intractable.

Algorithm 2: Open-Loop Monte-Carlo Belief Tree
Search

1 Input: POMDP model, planning horizon T , discount factor γ,
exploration parameter e, and initial belief state b0;

2 while goal not reached do
3 Initialize root node vroot = (∅, 0, 0);
4 while not TimeOut() do
5 Simulate(vroot, bt, 0); N(vroot.a)+ = 1;
6 aRt = arg maxa∈AR V (a);
7 Execute aRt and collect the new observation ot+1;
8 Update belief state: bt ← ρ(bt, at, ot+1);
9

10 Function Simulate(v, b, τ )
11 if τ = T − 1 then
12 return

∑
k∈K

(
P(kH = k|b)

(∑
s̃∈S̃ P(s̃|b)V ∗,R,k+1(s̃)

))
13 if IsLeafNode(v) then
14 for all a ∈ AR do
15 if ComputeRisk(ρ̃(b, a)) < ∆τ then
16 Append vsucc =

〈
v.a.add(a), 0, 0

〉
in the tree;

17 return Rollout(b, τ );
18 else
19 v∗succ = arg maxvsucc

V (vsucc.a) + e
√

log(N(v.a))
N(vsucc.a)

;
20 a = v∗succ.a.last(); Sample observation o ∼ O(o, b, a);
21 V̂ = r̃R(b, a) + γSimulate(v∗succ, ρ(b, a, o), τ + 1);

22 N(v∗succ.a)+ = 1; V (v∗succ.a)+ =
V̂−V (v∗succ.a)

N(v∗succ.a)
; Return V̂ ;

23 end Function
24
25 Function ComputeRisk(b)
26 return

∑
θ∈Θ projθ(b)ᵀ[I(s̃1 ∈ Ocsafe), . . . , I(s̃

ns̃ ∈ Ocsafe)]
ᵀ;

27 end Function
28
29 Function Rollout (b, τ )
30 if τ = T − 1 then
31 return

∑
k∈K

(
P(kH = k|b)

(∑
s̃∈S̃ P(s̃|b)V ∗,R,k+1(s̃)

))
32 else
33 a ∼ πrollout(b);o ∼ O(o, b, a);
34 return r̃R(b, a) + γ·Rollout(ρ(b, a, o), τ + 1);
35 end Function

Open-loop chance-constrained Monte-Carlo belief tree
search. POMCP [23] combines Monte-Carlo simulation and
game-tree search. Building upon POMCP, we propose an
algorithm (Alg. 2) to solve (9) in an anytime manner. Our

algorithm differs from POMCP in the following ways: 1) a
search node, v =

〈
a, V (a), N(a)

〉
, stores an action sequence

a and its associated statistics: V (a) is the mean return of all
simulations that execute a, and N(a) counts the number of
times that a has been visited; 2) leaf node expansions must
enforce the safety chance constraint (line 14); 3) terminal
values are estimated using the pre-computed ql-k values (line
11); 4) the active information gathering on latent states is
explicitly realized via the augmented reward function r̃R.
Benefits of Algorithm 2. A search node only stores an action
sequence since the open-loop optimization (9) searches for
an action sequence. In contrast to POMCP, in which a node
stores a history of actions and observations, the search space
in Alg. 2 is significantly reduced. Hence Alg. 2 can run
in real-time under computational constraints. Quantal level-
k reasoning (Sec. IV) is exploited to estimate the terminal
value when the maximum planning depth is reached (line 11).
Specifically, the terminal belief state bt+T is used to deter-
mine the human’s intelligence level distribution P(kH|bt+T ),
then, we assume the robot behaves as a ql-(kH + 1) agent
(recall that a ql-(k+1) agent quantally best responds to a ql-
k agent) with rationality coefficient λ = 1 and estimates the
terminal value using the pre-computed robot’s ql-(kH + 1)
value weighted by P(kH|bt+T ). By actively learning the
belief state, the planner can quickly reduce the estimation
error on the terminal values and maximize its performance.
Infeasibility handling mechanism. When the root node has
no safe successors, we relax the chance constraint and find
the action that minimizes the degree of constraint violation.

VI. EXPERIMENTS

A. Implementation Details

Test domain. We use autonomous driving as the test domain.
In particular, we consider a forced merging scenario [37],
where an autonomous car must merge to an adjacent (upper)
lane that is occupied by a human-driven car (Fig. 1).

Fig. 1. An autonomous car interacts with a human-driven car controlled by
a user through a racing wheel and a pedal in a forced merging scenario.

Reward functions. The reward function of a car is a linear
combination of features φ : S̃ → Rnf ,satisfying r(·)(s̃) =
ωᵀ · φ(s̃). The features encode safety, comfort, progress,
etc. [11]. The weights ω ∈ Rnf can be recovered via an
inverse learning algorithm [38]–[40]. Note that when the
autonomous car runs Alg. 2, the safety feature in its reward
function is deactivated since the safety is handled by (9c).
Level-0 policy. Alg. 1 requires a ql-0 policy to initiate the
iterative reasoning process. Similar to [10], [11], we let a ql-
0 agent be a non-strategic agent who treats others as static
obstacles when making decisions.
Latent state dynamics. Recall (4) that an explicit prob-
abilistic model is required to govern the dynamics of the
latent states. In this work, we consider single-shot games, i.e.,
the human’s latent states are assumed to be constant during



interaction. Hence, the latent states’ transition model is
reduced to P(θt+1|θt, s̃t, σ̄)=I(θt+1=θt). In general repeated
games, the transition model can be represented as a Markov
chain and its parameters σ̄ can be embedded in the POMDP
and learned simultaneously as in [41].
High-level robot planning. The dynamics of the human-
robot team are represented as[
ẋR ẏR ẋH v̇R v̇H

]
=
[
vR wR vH aR aH

]
, (10)

where x (y) is the longitudinal (lateral) position, v (w) is
the longitudinal (lateral) speed, and a is the acceleration.
The sampling period is ∆t = 0.5[s]. We use a state grid of
the size 40×6×40×6×6 to represent the discrete states of
the human-robot system. The safety set Osafe includes states
in which the boundaries of the two agents do not overlap.
We use ∆=0.05 and ∆τ= 1

160 as the chance constraint
thresholds in (9c). We let the highest intelligence level of
the human be kmax=2 based on experimental results in [42],
[43]. The rationality coefficients take value from the set
Λ={0.5, 0.8, 1.0}. The planning horizon in (9) is T=8.
Hierarchical planning and control. Behavioral planning
and control of the autonomous car are hierarchically con-
nected. The planning layer (Alg. 2) uses a low-fidelity model
(10) to generate behavioral commands, and runs at 8Hz on
a laptop with 2.8 GHz CPU. In the low-level control layer
(running at 8Hz), the vehicle dynamics are represented by a
high-fidelity bicycle model [44], and we use a model predic-
tive controller [13], [45] to generate continuous controls that
drive the system to the desired states generated by Alg. 2. In
Alg. 2, when the actual system state deviates from the state
grid, the nearest neighboring grid will be exploited.
Baselines. We consider two baseline planners: 1) our planner
without the feature of active information gathering, i.e., the
autonomous car passively infers the human’s latent states
(BLP-1); 2) the strategic game-theoretic planner in [8] that
treats the human-driven car as a follower who accommodates
the actions from the autonomous car (BLP-2). Both BLP-2
and our planner use a closed-loop feedback structure when
building human behavioral models, but our planner reasons
about the heterogeneity in the human’s cognitive limitations
and irrationality through active inference rather than treating
the human as a follower.

B. The Human Behavioral Model

Human intelligence level interpretation. The ql-k model
is exploited to reason about human behaviors under bounded
intelligence. Recall that the level-0 agent represents a non-
strategic agent who treats others as static obstacles. Thus,
a ql-1 agent can be interpreted as a cautious agent since
it believes that its opponent is an aggressive non-strategic
agent. On the contrary, a ql-2 agent behaves aggressively
since it believes its opponent is a cautious ql-1 agent.

Fig. 2 shows the interactions between two cars modeled as
ql-k agents in the forced merging task. The heat-map displays
the ql-k value function (V ∗,i,k described in Sec. IV-B) of
the lower-lane car, indicating the preferred states; colder
color means higher value. It can be observed in (a-b) that
the interactions are seamless between a ql-1 agent and a

ql-2 agent, which is expected since the ql-2 agent’s belief
in the model of the ql-1 agent matches the ground truth
(note that the high-value region in the upper lane encourages
the red car to merge ahead of the white car (a); the low-
value region in front of the white car guides it to yield (b)).
However, when an agent’s true model deviates from the other
agent’s belief, conflicts may occur. For instance, (c) shows
the interaction between two ql-1 agents with a dead-lock
because both agents prefer to yield. The low-value region in
front of the yellow car discourages it to merge although it is
safe. Similarly, when two ql-2 agents interact (d), collisions
may occur as both agents think their opponents will be likely
to yield. Note that the high value region in the upper lane
encourages the yellow car to merge even if it is not safe.

(c)

(a)

(d)

(b)

Fig. 2. Interactions between ql-k agents. (a-b): ql-1 (white) v.s. ql-2
(red); (c): ql-1 v.s. ql-1; (d): ql-2 v.s. ql-2. All agent have λ = 1, the same
initial longitudinal position, and the same initial speed 12[m/s].

C. Case Studies and Quantitative Results

We compare our planner against the baselines via simula-
tions. The human driven-car is modeled as a ql-k agent, and
is also controlled by the hierarchical planning and control
scheme described in Sec. VI-A, with behavioral commands
obtained directly from the corresponding ql-k policies.
Hypotheses. We state the following two hypotheses: 1).
active exploration improves efficiency of the robot’s plan-
ning; 2). our planner is robust to the human’s heterogeneous
intelligence levels and irrational behaviors.
(a) Ours

(b) BLP-1

(c) Ours

(d) BLP-2

Fig. 3. Planner comparison. (a-b) show the interactions between a
simulated cautious human-driven car (white) and the autonomous car
(orange); (c-d) show those between a simulated aggressive human-driven
car (red) and the autonomous car (orange). Initial speeds are 12 [m/s].

We first show two case studies, highlighting the benefits
that naturally emerged from our planner.
Scenario 1. Fig. 3(a-b) show a scenario where the au-
tonomous car and a simulated cautious human-driven car (ql-
1 agent) with rationality coefficient λ = 0.8 start at the same
initial speed and longitudinal position. It can be observed
that with our planner, the autonomous car actively indicates
an intention to merge by nudging into the target lane,
as it predicts that, the human’s reactions triggered by the
“probing” action can help disambiguate the human’s latent
states. With the baseline planner (BLP-1), the autonomous
car takes a longer time to merge, since passive inference
requires additional observations to infer the latent states.
Scenario 2. Fig. 3(c-d) show a case that is similar to
scenario 1 but the human-driven car is simulated by an
aggressive ql-2 agent who starts behind the autonomous



(a) (b) (c)

Scenario 1 Scenario 2

(d) (e)

Fig. 4. Evaluation result. (a-b): Human latent states inference results for (a) cautious and (b) aggressive humans. (c): Average TM of the autonomous
car; error bars show 95% confidence integral. (d-e): The rates of success under various human rationality coefficients (higher λ yields more rational human
behaviors). The human-driven car is a simulated cautious driver with intelligence level-1 in (d), and an aggressive driver with intelligence level-2 in (e).

car. With our planner, the autonomous car nudges in to
explore the human’s latent states, then quickly decides to
yield after observing the humans’ aggressive reactions. With
BLP-2, the autonomous car initiates a dangerous merge as
BLP-2 incorrectly assumes the human-driven car will likely
yield. Note that when humans behave under heterogeneous
cognitive states, it is critical for a robot to reason about such
a heterogeneity to better predict human behaviors.

Metrics for quantitative results. In quantitative studies, we
use two metrics for validating the hypotheses : 1) the rate of
success (RS), which measures the percentage of simulations
in which no collision or dead-lock occurs; 2) the time used
by the autonomous car to complete the merge (TM).

Results. We run 50 simulations for each of the scenarios
in the case studies using our planner and two baseline
planners. We first compare our planner against BLP-1 in
terms of inference performance (BLP-2 has no inference
capability). In Fig. 4 (a-b), we show the time history of
the autonomous car’s belief in the ground truth human-
driven car’s latent states. It can be observed that our planner
can more effectively identify the human’s latent states by
exploiting the mutual influence to make its human partner
reveal his/her hidden states. In Fig. 4 (c), we show the
average TM for the two scenarios. Note that our planner
achieves the lowest TM, due to the active inference. Fur-
thermore, our planner achieves the highest confidence on TM
since our planner strategically generates actions that aim for
triggering the most informative reactions from the human,
this regulates human behaviors in a game-theoretic sense
(such a phenomena is also observed in user studies Fig. 5(b)).

Next, we evaluate the robustness of our planner under
various human intelligence levels and degrees of irrationality.
We let the simulated ql-k human take his/her rationality
coefficient from Λ and run 100 simulations for each (λ, k)
combination. The human starts at a random position within
10 m around the autonomous car. In Fig. 4(d-e), we show
the RS of each planner for each scenario. Note that in all
cases, our planner and BLP-1 achieve more than 95% RS.
This is attributed to reasoning about the human’s bounded
intelligence and irrationality, and enforcing the safety chance
constraint. BLP-2 shows satisfactory RS when the simulated
human is a ql-1 agent, but the RS decreases as the human
becomes more irrational. When the human is a ql-2 agent,
BLP-2 performs noticeably worse. The results indicate that
our planner enables the robot to learn the human’s latent
states, plan more effectively, and be robust to the human’s
various intelligence levels and irrational behaviors.

D. User Study

Objective. We conduct user studies in which we let the au-
tonomous car interact with a real human driver in a simulator
(Fig. 1), showcasing the effectiveness of our planner.
Experiment setup. We recruited 10 human participants. For
each participant, we ran Scenario 1 for 3 times using each
of the planners. Here, the accelerations of the upper lane car
are provided by human participants directly through a pedal.

Fig. 5. User study results: (a) the rates of success of the planners; (b)
the time histories of the step reward of the autonomous car; the thick line
represents the mean and the shaded area represents the 95% confidence tube
of the data; (c) the distribution of inferred intelligence levels and rationality
coefficients of the human participants.

Results. Fig. 5(a) shows the RS of each planner. It can be
observed that both our planner and BLP-1 outperform the
BLP-2 in terms of safety. Fig. 5(b) shows the time histories
of the step reward collected by the autonomous car. Note
that although the autonomous car pays more costs in the
first few steps using our planner (due to the probing actions)
it is able to complete the task much more effectively and
safely compared with the baselines. In Fig. 5(c), we show
the distributions of inferred intelligence levels and rationality
coefficients. It can be observed that roughly 60% of the
participants are identified as ql-1 agents, which is aligned
with the experiment study on other forms of games [43]. In
addition, Fig. 5(c) suggests that, under the reward function
assumed by the autonomous car, most of the participants
demonstrated behaviors that align with the behaviors pro-
duced by the rationality coefficient λ = 0.8.

VII. CONCLUSION

We proposed an anytime game-theoretic planning frame-
work that integrates iterative reasoning models, POMDP, and
chance-constrained Monte-Carlo belief tree search for robot
behavioral planning. Our planner enables a robot to safely
and actively reason about its human partner’s latent cognitive
states in real-time to maximize its utility more effectively.
We applied the proposed approach to an autonomous driving
domain where our behavioral planner and a low-level motion
controller hierarchically control an autonomous car to nego-
tiate traffic merges. Both simulation and user study results
demonstrated the effectiveness of our planner compared with
baseline planners.
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