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Abstract— Grasping a novel target object in constrained
environments (e.g., walls, bins, and shelves) requires intensive
reasoning about grasp pose reachability to avoid collisions with
the surrounding structures. Typical 6-DoF robotic grasping
systems rely on the prior knowledge about the environment
and intensive planning computation, which is ungeneralizable
and inefficient. In contrast, we propose a novel Collision-Aware
Reachability Predictor (CARP) for 6-DoF grasping systems.
The CARP learns to estimate the collision-free probabilities for
grasp poses and significantly improves grasping in challenging
environments. The deep neural networks in our approach are
trained fully by self-supervision in simulation. The experiments
in both simulation and the real world show that our approach
achieves more than 75% grasping rate on novel objects in
various surrounding structures. The ablation study demon-
strates the effectiveness of the CARP, which improves the 6-DoF
grasping rate by 95.7%.

Index Terms— Grasping, Deep Learning in Grasping and
Manipulation, Perception for Grasping and Manipulation

I. INTRODUCTION

Target-driven grasping is a fundamental yet challenging
task in robotic manipulation, as it requires intensive rea-
soning about grasping stability from imperfect and partial
observations. Most grasping systems assume a table-top
scenario and simply choose 3-DoF grasp poses to mitigate
the difficulty of reasoning. However, to grasp novel targets
in constrained environments, an autonomous robot has to
expand its action space from 3-DoF to 6-DoF, as shown
in Fig. 1. In addition, these environments escalate two
challenges: 1) How to robustly perceive novel target objects
and surrounding structures? and 2) How to foresee the
influence of surrounding structures on the grasping success
probability?

In recent years, target-driven grasping approaches have
been proposed by combining off-the-shelf object recognition
modules (e.g., detection, template matching, and classifiers)
with data-driven grasping models [1], [2]. These approaches
focus on object-centric reasoning for grasping (i.e., predict-
ing grasping stability from object appearance or geometry)
while overlooking scene context beyond objects. As a re-
sult, in constrained environments with surrounding structures
(e.g., walls, bins), they have to plan for an enormous set
of sampled grasp poses and iteratively search through the
entire set with a collision-checking algorithm. Furthermore,

*This work was in part supported by the MnDRIVE Initiative on
Robotics, Sensors, and Advanced Manufacturing.

1X. Lou and C. Choi are with the Department of Electrical and Com-
puter Engineering, Univ. of Minnesota, Minneapolis, USA {lou00015,
cchoi}@umn.edu

2Y. Yang is with the Department of Computer Science and Engineering,
Univ. of Minnesota, Minneapolis, USA yang5276@umn.edu

RGB-D 
Camera

Fig. 1: Grasping a target object in constrained environments.
Given a query image, our approach is able to localize and grasp
the target object (red cuboid) surrounded by structures through
reasoning feasible 6-DoF poses. In particular, our Collision-Aware
Reachability Predictor (CARP) helps solve this challenging task by
estimating the collision-free probability of each grasp pose.

these approaches require complete knowledge about the en-
vironment (e.g., geometric models of surrounding structure),
which is, in practice, usually partially observable by imper-
fect sensors. Hence, these approaches suffer from excessive
planning failures due to the absence of collision-awareness.
Another limitation of these approaches lies in perception.
Though simulation can expedite development and training,
these RGB image-based object recognition modules require
additional efforts to bridge the sim-to-real gap [3], [4] and
generalize poorly to novel objects. These limitations motivate
us to develop a target-driven grasping pipeline that achieves
single-shot recognition for novel objects and requires only
single planning for 6-DoF grasping in constrained environ-
ments.

The proposed collision-aware target-driven grasping
pipeline integrates a robust perception module and a
collision-aware 6-DoF grasping module. The perception
module exploits the depth information in simulation with
Siamese networks [5] for single-shot recognition and sim-to-
real generalization. Our 6-DoF grasping module features a
Collision-Aware Reachability Predictor (CARP). The CARP
is a 3D convolutional neural network (3D CNN) that explic-
itly learns the probabilities of reaching a set of grasp poses
without having collisions between the robot manipulator
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and surrounding structures. The overall feasibility of 6-DoF
grasp poses is evaluated by combining the collision-free
probabilities and the predictions of grasping stability from
a 3D CNN-based Grasp Stability Predictor (GSP) [6].1.

The rationale behind our approach resides in human be-
havior. For instance, when grasping an item from a packaging
box, we naturally optimize our grasping action (in terms of
both reachability and stability) with our experience rather
than iterative checking. Our work is an early attempt to
explicitly estimate collisions in constrained environments for
target-driven 6-DoF grasping. The main contributions of our
work are as follows:
• The Collision-Aware Reachability Predictor (CARP)

that models the correlation between the spatial informa-
tion and the collision-free probability of 6-DoF grasp
poses with a 3D CNN. The CARP is trained with
synthetic depth data by self-supervision and directly
transferred to the real world.

• A target-driven robotic grasping pipeline that com-
prises a depth-based single-shot recognition module, the
Collision-Aware Reachability Predictor, and the Grasp
Stability Predictor. The pipeline localizes the novel
target object in clutter and then grasps it in a constrained
environment with single planning.

II. RELATED WORK

A. Target-driven Object Grasping

Robotic grasping is a fundamental but challenging prob-
lem in robotic manipulation [7], [8]. This vast literature
can be divided into model-based [9], [10] and learning-
based approaches [11], [12]. Another way of categorization
is by task goal: target-agnostic [13],[14] and target-driven
grasping [2],[15]. Our approach is learning-based and target-
driven. Recent target-agnostic grasping approaches apply
deep neural networks to learn grasping in 3-DoF action
space (i.e., grasp pose with a 2D position and a wrist
orientation) [13], [14], [16], [17], [18]. While 3D CNN was
mainly studied in object recognition tasks [19], [20], Choi et
al. [21] showed with a soft robot hand that it is capable of
proposing additional grasping directions beyond the standard
top-down poses. A few works learn to propose 6-DoF poses
[6], [22], [23], [24], [25]. Mousavian et al. trained a network
based on PointNet++ and a variational autoencoder [26] to
generate stable grasp poses. Target-driven grasping [2], [27],
[28], [29] is less studied compared to target-agnostic ones.
The target-driven grasping problem necessitates a perception
module, such as 2D image based template matching [30] and
semantic segmentation [27], that recognizes the target object
before grasping. Single-shot recognition using traditional
RGB-based Siamese Networks [5] has also been explored
for robotic grasping task [15]. Recent studies suggests that
synthetic depth data is less influenced by the sim-to-real
gap [11], [31]. We exploit the depth data both for object
perception and grasping to minimize such sim-to-real gap.

1Note that the acronym GSP refers to the 3D CNN module in [6] We did
not explicitly use the GSP in [6] but defined here for a concise reference.

B. Grasping Reachability

Typical robotic grasping pipelines need to solve inverse
kinematics with motion planning algorithms [32], [33] to
reach a goal pose. Though such algorithms can handle
reachability and collision during execution, the computa-
tional cost is remarkably high, especially when the tra-
jectory to execute is infeasible. Most approaches bypass
this problem by restricting target objects within a known
reachable workspace [14], [21], [23]; other works estimate
the grasping reachability by querying an offline [34], or
online [35] database of reachable grasp poses. The Reach-
ability Predictor in our prior work [6] only predicts the
reachability concerning the kinematics of robot arms in the
table-top scenario. Hence, it does not consider the collision-
free probability, which determines the grasping reachability
in the constrained environments. A comparable work from
Murali et al. [29] extends their previous work [24] to estimate
the collision score between object and gripper for 6-DoF
grasp poses. We consider beyond gripper-object collisions as
our collision sources further include surrounding structures.

III. PROBLEM FORMULATION

We consider the problem of generating feasible 6-DoF
grasp poses for a target object surrounded by structures and
other objects. The problem is formulated as follows:

Definition 1. A grasp pose X ∈ SE(3) is collision-free if
the robot arm is able to reach the goal configuration without
colliding with the surrounding structures.

Assumption 1. The target object is possibly unknown (i.e.,
novel objects) and partially observable (e.g., object occlu-
sions and imperfect sensors), but an image of the target
object is given as the only target information.

The scene point cloud Ps, obtained from a single view
RGB-D image I, includes target object point cloud P ⊂ R3

and a surrounding structure point cloud P ′ ⊂ R3. To explore
the full 6-DoF action space, we do not pose any constraint
on the sampled grasp pose set X . The detailed sampling
procedure is described in [6].

Let Sc(X) ∈ {0, 1} denote a binary-valued collision-free
metric where Sc = 1 indicates that the grasp is collision-
free. The collision-free probability is determined solely by
the spatial relationship between the manipulator and the
surrounding structures, given by pc(X,P ′) = Pr(Sc =
1|X,P ′).

Each grasp pose X ∈ X is also subject to a binary-valued
stability metric Sg(X) ∈ {0,1} where Sg = 1 indicates
that the grasp pose is stable. We would like to estimate the
grasping stability pg(X,P) = Pr(Sg = 1|X,P). Finally,
the feasibility metric Sf (X) ∈ {0,1} measures if the grasp
pose is feasible to accomplish the task, and Sf = 1 indicates
a feasible, and therefore simultaneously stable and collision-
free grasp pose. Note that the stability metric of a pose X is
independent of its collision-free metric. Thus, we consider
the grasping feasibility pf (X,Ps) as the joint probability of
the two independent probabilities pc(X,P ′) and pg(X,P).
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Fig. 2: Grasping pipeline. The scene point cloud Ps is first reconstructed from RGB-D image I. Then the perception module takes I
as input and gives the target object point cloud P and the surrounding structure cloud P ′. From P , a set of 6-DoF grasp poses X is
randomly sampled, and P ′ is transformed by each X ∈ X and voxelized to voxel grid V ′. The CARP takes V ′ as input and evaluates
the collision-free probability pc. The voxel grid V is transformed from the object point cloud P w.r.t X. The Grasp Stability Predictor
then evaluates the grasping stability pg for each V . We multiply pc and pg to get a grasping feasibility pf and execute the pose having
the highest pf .

IV. PROPOSED APPROACH

We propose a 6-DoF target-driven pipeline for object
grasping in constrained environments. Our approach aims
to 1) recognize a target object (seen or novel) with a partial
observation and 2) select the most feasible grasp pose from
a set of randomly sampled 6-DoF grasp poses.

A. System Overview

As illustrated in Fig. 2, our grasping pipeline comprises a
perception module and a grasping module. Given a query
image for the target object, the perception module first
separates the scene point cloud Ps into target point cloud
P and surrounding structures P ′. The point clouds are
then forwarded to our grasping module, which consists of
the Collision-Aware Reachability Predictor (CARP) and the
Grasp Stability Predictor (GSP). The CARP evaluates the
collision-free probability pc(X,P ′) for grasp pose candidates
X by using the structure point cloud P ′. The CARP takes
advantage of the spatial relationship between the robot hand
and all the surrounding structures to determine if the given

Algorithm 1 Perception Module
Input: Scene RGB-D Image I, Query RGB-D Image

Iq , SD Mask-RCNN Ns, Siamese Network Nr

Output: Target Cloud P , Structure Cloud P ′
1: M←Ns.InstanceSegmentation(I)
2: for M ∈M do
3: Io ← Mask(I,M)
4: s(Io,M)← Nr.Recognition(Io, Iq)

5: It,Mt ← argmaxIo s(Io,M)
6: Is ← I ∩Mt

7: P,P ′ ← BackProjection(It, Is)

pose is prone to collision with the structure. The GSP
evaluates the stability of the grasp poses on the object point
cloud P . The final grasp pose is selected to maximize the
overall grasping feasibility pf (X,Ps). Our grasping pipeline
can be seen as a combination of a peripheral vision (i.e.,
the CARP’s coarse but wide-angle understanding of the
surrounding structures) and a foveated vision (i.e., the GSP’s
finer yet narrow-viewed understanding of the target object).

B. Perception

The perception module is delineated in Algorithm 1
wherein it first takes as input a scene RGB-D image I
from the camera and generates a set of binary-valued class-
agnostic instance masks M1,··· ,N ∈ ZH×W by SD Mask
R-CNN [31]. Next, the set of the masks is multiplied with
the RGB-D image to generate object images for recognition,
where a queried RGB-D image of the target object is
supplied. Unlike a traditional RGB image-based Siamese
network [5], our approach includes the depth channel that
helps differentiate the challenging objects (e.g., having sim-
ilar visual appearance but different geometric shapes) and
improves the sim-to-real generalization. To achieve single-
shot recognition, our RGB-D Siamese CNN first extracts the
latent features of an object image and the queried image for
feature matching. During training, the L1-distance between
the two feature vectors is minimized for the same class
objects using a contrastive loss [36]. Therefore, the best-
matched object during testing will have the lowest distance
in a forward pass and is selected as the target object. The
masked depth image is used to reconstruct the 3D target
point cloud P through back-projection while the non-masked
region gives the structure point cloud P ′.
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Fig. 3: The CARP predictions. The target object is placed adjacent
to the surrounding structures. The CARP predicts the collision-free
probabilities of each grasp pose. The green poses have higher results
and are less prone to collision.

C. Grasping

Our grasping module first considers the entire environmen-
tal structures to capture all potential collisions. It encodes
the spatial information by transforming structure cloud P ′
with respect to the grasp pose X. Then it voxelizes the
transformed P ′ to a 40 × 40 × 40 binary voxel occupancy
grid V ′, whose voxel size is (0.025m)3. It is centered on the
grasp point p, and its coordinate frame is aligned with that of
the grasp pose X. Consequently, collision-free and colliding
poses correspond to V ′ with distinct characteristics, and the
CARP learns from these features to estimate the collision-
free probability pc from the input voxel. The spatial features
are extracted by the 3D CNNs and then fed to fully connected
layers. The output layer uses a sigmoid activation function
to model the collision-free probability of X. Since a given
grasp pose can either be 0 (collision) or 1 (collision-free),
we use binary cross-entropy as the loss function.

To estimate the grasping stability for 6-DoF poses, we use
a 3D CNN-based Grasp Stability Predictor (GSP), details
of implementation can be found in [6]. It focuses on the
target object and examines the geometric shape. Moreover,
it implicitly minimizes collisions with clutters by evaluating
a more informative update of P , obtained by center cropping
the scene point cloud Ps at a grasping point p by (0.1m)3.
The new P is transformed with respect to the grasp pose
X and then voxelized as the input V to the GSP. Since

Algorithm 2 Collision-Aware Target-driven Grasping
Input: RGB-D image I, GSP Ng , CARP Nc

Output: collision-free grasp pose Xf ∈ SE(3)

1: Ps ← BackProjection(I)
2: P,P ′ ← Perception(I)
3: X ← GraspPoseSampling(P)
4: for X ∈ X do
5: P ← CenterCropping(Ps,X)
6: V,V ′ ← VoxelTransformation(P,P ′,X)
7: pc ← Nc.Feedforward(V ′)
8: pg ← Ng.Feedforward(V)
9: pf ← pc × pg

10: Xf ← argmaxX∈X pf (X,Ps)
11: Grasp(Xf )

V is voxelized from the cropped point cloud P , it may
partially contain the voxels of adjacent objects, which tend to
lower grasping stability predictions as these voxels make the
geometric shape in V unfamiliar. Therefore, the GSP will
pick the pose that contains the least collision with other
surrounding objects. We choose the most feasible pose as
the final grasp pose to be executed, which is simultaneously
collision-free and stable. Algorithm 2 shows the flow of our
grasping system.

D. Data Collection and Training

The entire system is trained by self-supervision in simula-
tion. We first train the perception module with 500 RGB-D
images of each object with ground truth class labels (ac-
cessible in simulation). For grasping module, we generated
the training dataset by dropping the training objects within
a common workspace structure (e.g., wall or bin) of random
size (ranging from 0.3m to 0.5m) and orientation. Then the
robot interacts with the objects and collects 60,000 labeled
point clouds to train the CARP. The labels are generated
reliably and efficiently with the default collision checking
algorithm in the simulation environment, which assumes the
full knowledge of the scene. To decouple collision from
grasping results, a training dataset of 50,000 data is collected
separately to train the GSP in the table-top scenario where
no surrounding structures exist.

V. EXPERIMENTS

We evaluate our approach in both simulated and real-
world settings. The experiments are designed to answer three
questions: 1) Can the perception module robustly identify the
target object, including novel ones, given a query image?, 2)
Can the CARP improve planning efficiency?, and 3) How
does our approach perform compared to other state-of-the-
art grasping approaches in various testing scenarios?

Baselines: We first performed ablation studies on the
perception module. The performance of the pipeline is then
compared with 4 baseline methods: 1) RAND randomly
generates a grasp pose on the target object, 2) 6GN is 6-
DoF GraspNet [24] that learns to generate 6-DoF grasp poses
with PointNet++[37] and a variational autoencoder, 3) VPG
[14] learns both pushing and grasping from RGB-D images,
and we only evaluate the grasping part of this work by
filtering the grasp Q-map with a target object mask, and
4) GSP+RP combines the Grasp Stability Predictor (GSP)
with the Reachability Predictor (RP) [6] that only considers
the kinematic constraints of a robot arm when proposing
feasible 6-DoF grasp poses. Note that the mask output from
our perception module is input to each baseline as they were
originally designed for target-agnostic grasping.

Evaluation Metrics: We define two metrics for both
simulation and real-world evaluations, the planning rate and
the grasping rate. The first metric is defined as the planning
rate = # of successful plans

# of total trials . A motion planning is considered
successful only if the motion planning algorithm is able to
find a valid trajectory for the robot arm without any collision.
For grasping, the grasping rate is defined as # of successful grasps

# of proposed grasps .



TABLE I: Target Recognition Accuracy

Known Novel Occl. Novel-Occl.
RGB Siamese 78.6 63.3 73.6 54.4

RGB-D Siamese (Ours) 96.3 85.5 93.5 80.4

A grasp is successful only if the robot gripper successfully
reaches the object and lifts the object by 15 cm. Because
the performance of each method varies depending on the
object arrangement (i.e., an object is much more difficult to
grasp if it is close to surrounding structures), we design a
standard and a challenging arrangement to demonstrate the
effectiveness of the CARP, shown in Fig. 4. If a target object
is placed at an unreachable location (e.g., target objects fall
at corners of the bin), we rearrange the object and continue
the experiment.

A. Perception Experiments

The perception module is tested on known and novel
objects that are randomly dropped into a bin. Note the novel
objects include challenging ones that are similar in color but
different in shape, as shown in Fig. 9, which is non-trivial
for RGB-based perception. We further test the robustness of
our perception module against occlusion by hiding 25% of
the input images. Table I summarizes the performance of
different perception modules using a small fine-tune dataset
of 500 and a test dataset of 1000 image pairs. The results
show the effectiveness of depth information. Our perception
module outperforms the RGB only version by 35.07% on
novel objects and is robust to occlusion.

B. Simulation Experiments

Our simulation environment is built in CoppeliaSim [38]
with Bullet [39] physics engine 2.83. The simulation setup
uses a Panda robot arm, various workspace structures, and
different test objects. We choose an eye-on-hand camera
configuration to expand the field of view and minimize
occlusion from surrounding structures.

In the standard arrangements, we use different workspace
structures, such as walls, large boxes, and small boxes, and
randomly orient them, as shown in Fig. 5. Ten objects are
randomly dropped in the environment, and then we execute
each approach 31 times. The target object is dropped into

(a) Standard arrangement (b) Challenging arrangement

Fig. 4: Different arrangements in simulation. The standard
arrangement in (a) test our approach in a common settings while
the challenging arrangement in (b) reflects a manually designed
scenario where collision-awareness is even more critical.

(a) Wall (b) Large bin (c) Small bin

Fig. 5: Different structures in simulation. Our approach is able to
grasp a target object in various surrounding structures with 6-DoF
poses. As the testing environment gets increasingly challenging, the
effectiveness of the CARP becomes more obvious.
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Fig. 6: Performance in simulation. The planning rate (top) and
grasping rate (bottom) of each approach in various surrounding
structures. Our approach achieves 97.55% planning rate and 78.78%
grasping rate on average, suggesting that it is the most effective.

the workspace after a successful grasp to keep the test
objects consistent. We report the results of each method in
the standard arrangement in Fig. 6. We noticed that as the
workspace’s constraints become increasingly stringent, other
approaches experience notable planning difficulties due to
collision, while the planning rate of our approach degrades
much less with the help of the CARP, hence increasing
both the planning and grasping efficiencies. On average, our
approach is able to achieve a 97.55% planning rate and a
78.78% grasping rate, which outperforms the baselines by
large margins. The GSP+RP serves as an ablation baseline,
introducing collision-awareness with the CARP increases
both the planning and grasping rate of GSP+RP by more than
60%. We notice that 6-DoF GraspNet suffers from infeasible
grasp poses. Although VPG manages to avoid some of the
planning challenges by using top-down grasping exclusively,
it fails both planning and grasping tasks when the target
object is close to the workspace structures (e.g., Small bin).

In the challenging arrangement, the objects are manually
dropped close to the peripheral of the bin. We evaluate
the methods and summarize the results in Table II. The
evaluation of the challenging arrangement requires better
reasoning about surrounding structures for grasping. Our ap-
proach outperforms the best-performing baseline by 127.31%
in grasping rate, showing that OURS is especially effective
under this scenario.



TABLE II: Challenging Arrangement in Simulation

RAND VPG 6GN GSP+RP OURS
Planning Rate 12.90 41.94 21.57 26.67 93.55
Grasping Rate 3.23 35.48 20.46 23.33 80.65

(a) Standard (b) Challenging (c) Novel

Fig. 7: Examples of real world experiments. Our approach is able
to grasp a target object that is close to the wall with 6-DoF grasp
poses. This task is challenging as any small variation in grasp pose
may lead to a collision with the surrounding structures.

C. Real-robot Experiments

We further evaluate our approach and the baselines on
a Franka Emika Panda robot. A single-view RGB-D image
is taken with an Intel Realsense D435 camera in eye-on-
hand configuration. For a given pose, the robot follows the
corresponding trajectory generated with MoveIt in open-
loop. Fig. 7 shows our real-robot experiment settings, which
include standard, challenging, and novel arrangements of
objects in the real world. Following the same evaluation
metrics, we compare our approach with RAND, 6GN, VPG,
and GSP+RP. Fig. 8 compiles the performance of each
method in different scenarios for 31 runs.

Overall, our approach is able to perform consistently
well in the real world and achieves the highest planning
rate and grasping rate. Both GSP+RP and VPG are prone
to predicting unreachable poses because they overlook the
other environment information, which contributes to failed
grasps. During testing, we realized the benefits as well as
the limitations of our approach. The voxel grid of the CARP
has a fixed resolution2, and thus unable to capture smaller
variations of either grasp poses or point cloud. In the very
challenging cases where small variations can influence the
collision-free probability (e.g., target object located side-by-
side with the wall), the resolution limitation on the voxel
degrades the performance.

Our approach generalizes well to novel environments. We
test our system with a random collection of novel objects, as
shown in Fig. 9. Novel experiment results in Fig. 8 suggest
our system is able to grasp novel objects as well. Note
that there is no further training in both our perception and

2One voxel of the CARP covers 2.53cm3 of real robot workspace.
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Fig. 8: Performance in the real world. The planning rate (top) and
grasping rate (bottom) of each approach in different arrangements.
Our approach achieves 91.40% planning rate and 80.65% grasping
rate on average, corroborating the simulation results.

Fig. 9: Examples of novel objects. We show that our work is able
to generalize to objects that were not seen during training.

grasping algorithms as the perception pipeline generalizes
to novel objects thanks to the Siamese network and the
3D CNN-based CARP and GSP, although additional fine-
tuning would further improve the accuracy of our system.
As the point clouds are transformed to gripper coordinates,
changing the robot’s gripper pose will subsequently modify
its coordinate system and leave the performance of the
system intact. The CARP is implicitly conditioned on robot
hardware, therefore, it may require additional tuning in order
to generalize to other robot manipulators.

VI. CONCLUSION

In this work, we presented the Collision-Aware Reach-
ability Predictor (CARP), a learning-based approach that
is able to accurately estimate collisions between the robot
arm and surrounding structures using spatial information.
Simulated and real experiments in various scenarios clearly
showed the benefit of using the CARP in terms of planning
rate and grasping rate. We further proposed a grasping
pipeline that integrated our perception module and grasping
module, and achieved, on average, a 91.40% planning rate
and a 80.65% grasping rate in real-robot experiments. The
proposed approach outperformed the other baseline methods
by large margins. As future work, it would be interesting to
include robot hand shapes in learning, so that our approach
could better generalize to different robot hands.
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