
MS2MP: A Min-Sum Message Passing Algorithm for Motion Planning

Salman Bari, Volker Gabler and Dirk Wollherr∗

Abstract— Gaussian Process (GP) formulation of continuous-
time trajectory offers a fast solution to the motion planning
problem via probabilistic inference on factor graph. However,
often the solution converges to in-feasible local minima and
the planned trajectory is not collision-free. We propose a
message passing algorithm that is more sensitive to obstacles
with fast convergence time. We leverage the utility of min-sum
message passing algorithm that performs local computations
at each node to solve the inference problem on factor graph.
We first introduce the notion of compound factor node to
transform the factor graph to a linearly structured graph.
We next develop an algorithm denoted as Min-sum Message
Passing algorithm for Motion Planning (MS2MP) that combines
numerical optimization with message passing to find collision-
free trajectories. MS2MP performs numerical optimization to
solve non-linear least square minimization problem at each
compound factor node and then exploits the linear structure
of factor graph to compute the maximum a posteriori (MAP)
estimation of complete graph by passing messages among
graph nodes. The decentralized optimization approach of each
compound node increases sensitivity towards avoiding obstacles
for harder planning problems. We evaluate our algorithm
by performing extensive experiments for exemplary motion
planning tasks for a robot manipulator. Our evaluation reveals
that MS2MP improves existing work in convergence time and
success rate.

I. INTRODUCTION

This work has been accepted to the IEEE 2021 International Conference on Robotics and Automation (ICRA).
The published version may be found at https://doi.org/10.1109/ICRA48506.2021.9561533.

Kinematic motion planning focuses on finding a trajectory
in a robot’s configuration space from start state to goal
state while satisfying multiple performance criteria such as
collision avoidance, joint limit constraints and trajectory
smoothness. There are several motion planning approaches
that have been proposed so far. These approaches can be
roughly divided into two broad categories: sampling-based
algorithms and optimization-based algorithms. Sampling-
based algorithms [1]–[3] efficiently find collision free tra-
jectories by probing the configuration space and checking
the feasibility of robot’s configuration. However, trajectories
produced by sampling-based algorithms are not smooth and
therefore require further post processing.

Trajectory optimization algorithms [4]–[6] start with an
initial trajectory that may not be collision-free and then
minimize an objective function that penalizes collisions and
non-smooth configurations. A drawback of these approaches
is that they only tend to find locally optimal solutions
and need fine-discritization of trajectory into way points
for collision checking in complex environments. Gaussian
Process (GP) formulation of continuous-time trajectories [7]
can overcome this challenge.

∗Authors are associated with the Chair of Automatic
Control Engineering (LSR), Department of Electrical and
Computer Engineering, Technical University of Munich, Germany
[s.bari|v.gabler|dw]@tum.de

(a) (b)

(c) (d)

Fig. 1: Different Robot configurations during MS2MP plan-
ning phase for an autonomous disassembly setup: (a) at
N = 0, (b) at N = 4, (c) at N = 7, (d) at N = 10.

Recently, the Gaussian Process Motion Planning (GPMP2)
framework [8] has been proposed that represents trajec-
tory as a GP and finds collision-free trajectories with fast,
structure-exploiting inference. It fuses all the planning prob-
lem objectives which are represented as factors and solves
non-linear least square optimization problem via numeri-
cal (Gauss-Newton or Levenberg-Marquardt) methods. Al-
though, GPMP2 is fast but the batch non-linear least square
optimization approach makes it vulnerable to converging
to in-feasible local minima. The approach to combine all
the factors of the graph makes it faster than state of the
art motion planning algorithms but it comes at the cost of
being more prone to getting stuck in local minima. Graph re-
optimization could naively help to get out of the in-feasible
local minima but it increases the computation time.

In this work, we explore the min-sum algorithm for
finding the maximum a posteriori (MAP) estimation of a
motion planning problem on factor graph. However, min-sum
cannot be efficiently adopted due to the non-linear factors
of probabilistic motion models. So, we propose a hybrid
algorithm called Min-sum Message Passing algorithm for
Motion Planning (MS2MP) that combines numerical opti-
mization methods with min-sum message passing algorithm
to solve non-linear factors for MAP estimation. MS2MP
combines all the factors attached to the same variable node
to form a compound factor node. Then, the messages are
passed among adjacent factor and variable nodes to find the
MAP estimation of complete graph that generates collision-

ar
X

iv
:2

20
3.

03
20

1v
1

 [
cs

.R
O

]
 7

 M
ar

 2
02

2

free trajectories.

II. RELATED WORK

The probabilistic inference view on motion planning is
introduced by Toussaint et al. [9], [10]. The motion plan-
ning problem is formulated as a probabilistic model which
represents the performance criteria (e.g. avoiding obstacles,
reaching a goal) as objectives and use probabilistic inference
to compute a posterior distribution over possible trajectories.
Belief propagation is proposed to solve the approximate
inference problem of finding feasible trajectories while factor
graphs are used to represent the planning problem.

The GP formulation of continuous-time trajectories [7]
made the probabilistic view on motion planning problem
more lucrative because it offers sparse parametrization of
the trajectory. Here, a GP is used to represent trajectories as
functions that map time to the robot state which provides the
benefit of querying the trajectory at arbitrary time steps by
exploiting the Markov property of GP priors produced from
linear time variant, stochastic differential equation (LTV-
SDE). Recently, B-spline [11] and kernel methods [12] have
been used in a similar manner to represent trajectories with
fewer states in motion planning problems.

The formulation of continuous-time trajectory as GP paved
the way to consider an alternative approach for solving the
inference problem on factor graph. The GPMP2 algorithm
combines all the factor nodes and solves the inference
problem using batch numerical optimization approach. Si-
multaneous Localization and Mapping (SLAM) problems
[13] have been also solved in the similar manner. The
algorithm often converges to in-feasible local minima due
to the holistic approach of solving factor graph and results
in trajectories that are not collision-free. In case of batch
optimization, several ideas like random initializations and
graph-based initialization [14] exist to improve results but
they do not deal with the inherent approach of combining
all factors and optimizing it at once.

Intuitively, the better approach is to evaluate each node of
the factor graph separately to obtain improved results. This
is the standard characteristic of message passing algorithms,
which in its purest form, allows in-place inference on a factor
graph with entirely local processing at graph nodes. Over
the past few years, there has been an increased interest in a
message passing based optimization algorithm for graphical
models, called min-sum message passing algorithm [15],
[16]. Message passing algorithms have been used to solve
NP-hard combinatorial optimization problems [17], [18].
The min-sum algorithm is equivalent to the max-product
algorithm, and is closely related to belief propagation also
known as sum-product algorithm [19].

We build upon the success of min-sum message passing
algorithm for general factor graphs and thus give an outline
how this method can be adopted for GP-based motion plan-
ning problems. We transform the factor graph by introducing
compound factor nodes and then optimize each node locally
to generate messages to compute MAP estimation of the
factor graph.

Fig. 2: An example trajectory planning problem formulation
on a factor graph. White circles show support states and
square boxes show factors.

III. PROBLEM FORMULATION

Suppose a trajectory is represented by x (t) : t → RD,
where D is the dimensionality of the state. p (x) is the prior
on x that actually encourages smooth trajectories and fixes
start and goal states, l (x; e) is the likelihood of states x
representing collision-free events e on the trajectory. For
example, ei could be a binary event with ei = 0 if trajectory
is collision-free and ei = 1 if trajectory is in collision. Given
the prior and likelihood, the optimal trajectory x∗ is found
by the MAP estimation, which generates the trajectory that
maximizes the conditional posterior p (x|e),

x∗ = arg max
x

p (x|e)︸ ︷︷ ︸
p(x)l(x;e)

. (1)

The posterior distribution can be equivalently formulated as
MAP inference problem on a factor graph. Factor graph
formulation for motion planning problem (1) is described
in detail in the following section.

A. Factor Graph Formulation

The motion planning problem formulation in (1) consists
of two components, prior and likelihood. Our objective is to
find a trajectory parameterized by x that satisfies collision-
free events ‘e’.

The continuous-time trajectory prior p (x) is represented
as functions sampled from GPs [7]. GP based trajectory
priors offer the benefit of representing the full trajectory x by
means of N support states xi ∈ RD. Given these, a trajec-
tory can be efficiently interpolated between two consecutive
support states through Gaussian Process regression (GPR).
Similar to prior work [8], we assume x to follow a joint
Gaussian distribution

x (t) = [x0, ...,xN]
T ∼ N (µ (t) ,K) , (2)

for a set of times t = t0, . . . , tN , where µ (t) is a mean
vector and K (t, t′) is the covariance kernel. The kernel K
induces smoothness and puts constraints on start and goal
states. We follow [7] by considering a structured kernel

generated from LTV-SDE, such that the GP prior of x results
in

p (x) ∝ exp

{
−1

2
‖x− µ‖2K

}
, (3)

where ‖x− µ, ‖2K is the Mahalanobis distance. The like-
lihood function which specifies the probability of avoiding
obstacles is also defined as a distribution in the exponential
family. The collision-free likelihood is

l (x; e) = exp

{
−1

2
‖h (x)‖2Σobs

}
, (4)

where h (x) represents the obstacle cost, and Σobs is a
hyperparameter matrix.

In the context of GP-based motion planning, we need
to model a belief over continuous, multivariate random
variables xi ∈ RD. It can be formulated on a factor
graph G = (X ,F , E) using conditional probability density
functions (PDFs) p (xi|e) over the variables xi, given the
constraints e. The bipartite graph G factorizes the conditional
distribution over x as

p (x|e) ∝
M∏
m=1

fm (Xm) , (5)

given a subset of M factor nodes fm ∈ F on an adjacent
subset of variable nodes Xm ∈ X , that are set in relation
via the edges E of the factor graph. Fig. 2 shows an
example factor graph for a motion planning problem with
N = 4 support states that describe a collision-aware motion
planning problem. Thus, the prior is factorized as

p (x) ∝ fp0 (x0) fpN (xN)

N−1∏
i=1

fpi (xi) f
GP
i (xi,xi+1) , (6)

where fp0 (x0) and fpN (xN) put constraints on fixing the
start state µ0 and goal state µN . Constraining the deviation
from the prior is included via

fpi (xi) = exp

{
−1

2
‖xi − µi‖2Ki

}
, (7)

in case they are not colliding with obstacles, while the GP
prior of the trajectory is incorporated via

fGP
i (xi,xi+1) = exp

{
− 1

2
‖Φ(ti+1, ti)xi − xi+1

+µi,i+1‖2Qi,i+1

}
,

(8)

using state transition matrix Φ (ti+1, ti) and power spectral
density matrix Qi,i+1 as introduced in [7].

The collision-free likelihood l (x; e) is factorized with two
types of factors, unary obstacle factors fobsi and interpolated
binary obstacle factors f intpτj as

l (x; e) =

N∏
i=0

fobsi (xi)

Nip∏
j=1

f intpτj (xi,xi+1)

 , (9)

where Nip is the number of interpolated states between two
consecutive support states xi, xi+1 and τj is the interpolation

time. The unary obstacle factor at each support state is
defined according to (4). The interpolated binary obstacle
factor is defined as

f intpτj (xi,xi+1)

= exp

{
−1

2

∥∥∥hintp
τj (xi,xi+1)

∥∥∥2
Σobs

}
.

(10)

The interpolated binary obstacle factor accumulates the
collision cost at interpolated states τj . This cost information
is utilized to update the associated support states by solving
MAP inference problem on the factor graph.

IV. MAP INFERENCE VIA MIN-SUM MESSAGE PASSING

Given F as a set of Gaussians, (5) results in a product of
Gaussians. Thus, finding the most probable values for x is
equivalent to minimizing the negative log of the probability
distribution via

x∗ = arg min
x

M∑
m=1

fm (Xm) . (11)

As the individual factors are nonlinear, it is in-feasible to
apply min-sum directly to solve the optimization problem
in (11). It requires to linearize factors at each step resulting
high computation cost. However, we propose to explicitly
alter the factor graph structure by introducing compound
factor nodes and then adopt the min-sum algorithm in
which a local node objective function is optimized using the
Gauss-Newton method. Our proposed algorithm decreases
the tendency of converging to local minima due to distributed
approach, while containing the convergence properties, as
shown in Appendix A. In the following, the concept of
compound factor nodes is outlined in detail.

A. Factor Graph with Compound Factor Nodes

The goal of introducing compound factor nodes is to
reshape general factor graphs into a linear representation with
unique edges between nodes by combining individual factors
as exemplarily shown in Fig. 3 for the graph from Sec. III-A.

Assumption 1 A motion planning problem can be fully
described by a factor graph G with F consisting of two
types of factors, unary factors fi : X → R ∪ {∞} and
binary factors fij : X × X → R ∪ {∞} connected to two
consecutive variables xi, xj where {ij} ∈ E and |i− j| = 1.

Definition 1 (Compound factor node) Based on assump-
tion 1, a compound unary factor node is defined as

φi (xi) =
∑
i ∈ X

fi (xi) , (12)

also denoted as self-potential and binary compound node

ψi (xi,xj) =
∑
ij ∈ E

fij (xi,xj) , (13)

as the edge-potential of the current graph.

(a) (b) (c)

Fig. 3: (a) Complete factor graph structure (b) Factors attached to same variable nodes are combined together to form a
compound factor nodes. Then, in (c), a linear graph structure is shown. Unary factors attached to variable nodes are not
shown explicitly for clarity. Instead, we show that graph consists of self-potentials φi (xi) and edge-potentials ψi (xi,xj).

Algorithm 1: MS2MP: Min-Sum Message Passing
Algorithm for Motion Planning

Data: trajectory prior x, factor graph G = {V, E},
number of support states N

Result: optimized trajectory x∗

Init(x) Initialize messages from prior

/* Compound Factor Node Formation (Def. 1) */

for i ∈ X do
φi (xi) ←

∑
i∈X fi (xi)

for ij ∈ E do
ψi (xi,xj) =

∑
ij ∈ E fij (xi,xj)

/* Min-sum messages calculation */

for t = 0, 1, . . . N − 1 do
/* get variable to factor messages */

mt
x→f (xi) & = φi (xi) +mt−1

(Fx/f)→x (xi) ,
/* get factor to variable messages */

mt
f→x (xi) ,∀ψi (xi,xj) ∈ F see (16)

/* update (belief) state */

bti (xi)← φi (xi) +
∑
f ∈ Fx

mt
f 7→x (xi)

xi ← arg min
xi

bti (xi)

return x∗

Given Definition 1, (11) results in

x∗ = arg min
x

∑
i

φi (xi) +
∑
ij

ψi (xi,xj) . (14)

The particular linear representation of factor graph, shown
on the right hand side of Fig. 3 is a pair-wise factor graph.
Here, min-sum algorithm allows to solve the pair-wise factor
graph by iteratively passing messages among nodes.

B. Min-sum Messages Equations

In the min-sum algorithm, each node solves a local op-
timization problem and traverses messages to the adjacent
nodes. Namely, we differentiate between messages passed
from variables to factor nodes, denoted as mt

x→f , and mes-
sages passed form factor nodes to variable nodes, denoted
as mt

f→x. Denoting the adjacent nodes of a factor node as

Xf and the adjacent nodes of a variable node as Fx, the
messages are iteratively updated according to

mt
x→f (xi) = φi (xi) +mt−1

(Fx/f)→x (xi) , (15)

mt
f→x (xi) = min

xj

[
ψi (xi,xj) +mt−1

x→f (xj)
]
, (16)

where (Fx/f) notates the set-theoretic difference, i.e. the set
of factor nodes Fx except the factor f . From Algorithm 1,
at time-step t = 0, all the messages from variable nodes to
factor nodes are initialized according to the prior in (15). In
the next step, the min-marginal of ψi (xi,xj) is calculated
in (16). Given the messages from adjacent factor nodes, the
belief of a variable node is approximated via

bti (xi) = φi (xi) +
∑
f ∈ Fx

mt
f→x (xi) . (17)

The minima of decision variable xi at tth iteration is

xti ∝ arg min
xi

bti (xi) . (18)

At each iteration t, each node optimizes a local objective
function by merging incoming messages into the node.

We use numerical optimization similar to [8], [13] to solve
the local non-linear objective function. Since, each local
objective function is composed of multiple factors, (16) and
(18) take the form of non-linear least-square problem as

mt
f→x (xi) =min

xj

[∑
ij ∈ E

{
1

2

∥∥∥hintp
τj (xi,xj)

∥∥∥2
Σobs

}
+
∑
ij ∈ E

{
1

2

∥∥fGP
ij (xi,xj)

∥∥2
Qi,j

}

+mt−1
x→f (xj)

]
,

(19)

x∗i =arg min
xi

[∑
i ∈ X

{
1

2
‖xi − µi‖2Kh

}
+
∑
i ∈ X

{
1

2
‖hi (xi)‖2Σobs

}

+
∑
f ∈ Fx

mt
f→x (xi)

]
.

(20)

Fig. 4: Planned trajectory using MS2MP for a 6 degree-of-
freedom (DOF) COMAU Racer 5 robot.

We use the Gauss-Newton algorithm to solve the opti-
mization problems in (19) and (20). Note that our proposed
algorithm is different in two aspects from GPMP2 [8]: first,
the batch optimization of complete graph is replaced by an
iterative local optimization of each node, secondly, message
passing is performed to achieve the optimization of the
complete factor graph. This behaviour is in fact helpful
in avoiding collisions for planning problems when robot
has to find its way out of obstacle-rich environment as
we empirically show in the experimental validation in the
following section.

V. EVALUATION

We evaluated our algorithm on an exemplary motion plan-
ning task in a lab environment. Precisely, a 6 DOF COMAU
Racer 5 robot is tasked to find collision-free trajectory from
the inside of the body of a PC-tower as part of an autonomous
disassembly process of Electrical and Electronic equipment.
The applicability of the proposed algorithm is also evaluated
on the robot platform visualized in Fig. 1. We ran benchmark
evaluations against GPMP2 in a simulated scenario. 1 The
simulation scenario is shown in Fig. 4, where the PC-tower
is approximated by an occupancy mesh. In this section, we
discuss the implementation and evaluation details of our
algorithm.

A. GP Prior

We use a constant-velocity prior similar to [8] with the
Markovian state consisting of configuration position and
velocity. The trajectory is generated from LTV-SDE [7]. The
prior factors for the experiment are presented in (6).

B. Collision-free likelihood

Similar to recent state-of-the art motion planning algo-
rithms, e.g. [4], [8], the robot collision body is represented
by a set of spheres. We formulate the collision-free unary

1For a detailed comparison of GPMP2 against recent state-of-the-art
motion planners, we refer the reader to [8], where an extensive benchmark
comparison has been outlined already.

and binary factors following (9). The obstacle cost function
is then obtained by computing the hinge loss

c (d) =

{
−d+ ε if d ≤ ε

0 if d > ε
, (21)

for the spheres. In (21) d (x) represents the signed dis-
tance from the sphere to the closest obstacle surface in
the workspace, and ε is a safety distance. ε increases the
sensitivity of the obstacle constraint before collision can
occur. Non-zero obstacle-cost addition enables the robot to
not reach too close to the obstacles. For likelihood in (4),
the parameter Σobs is defined as

Σobs = σ2
obsI (22)

where the parameter σobs is used to add weight to the
obstacle cost.

C. Experiment Setting

Prior trajectory is initialized by a constant velocity straight
line from start state to goal state. We initialized the trajectory
with N = 11 support states and 4 additional interpolated
states between two consecutive support states. In our bench-
marks we set ε = 0.2 for COMAU Racer arm. The term
σobs puts weight on observing the obstacles and it is set
according to the planning problem. we set σobs = 0.001 for
our manipulator planning tasks.

We evaluated the proposed algorithm for 24 unique plan-
ning problems for different start configurations inside the PC
tower. To make the planning problem much harder the start
configurations have been kept very close to the body of PC
tower. MS2MP extends the Matlab toolbox from GPMP2 and
has thus been benchmarked using identical framework. The
benchmarks have been run on a 3.90GHz Intel Core i3-7100
CPU.

D. Discussion

Table I summarizes results for 24 planning problems
where a robot has to find its way out of an obstacle-
rich environment. MS2MP is more successful in finding
collision-free trajectories compared to GPMP2 with only
approximately a third of the run-time. GPMP2 leads to an
early termination of the optimization algorithm due to an
increase in absolute error. In this case, a re-optimization
of the graph is required in order to naively overcome in-
feasible local minima. It results in increased run-time for
finding collision-free trajectories. However, GPMP2 will still
be faster with less success rate if we do not consider the re-
optimization step.

TABLE I: Results of 24 planning problems for 6-DOF
COMAU Racer robot

Success (%) Average time (s) Max. time (s)

MS2MP 83.3 0.1028 0.1751
MS2MP-no-comp 91.6 0.5625 0.8213
GPMP2 70.8 0.3772 0.3962
GPMP2-no-intp 66.7 0.2724 0.2873

We observe that local optimization step at each compound
node increases the sensitivity of obstacle avoidance resulting
in better success rate in case of MS2MP. A drawback of this
approach is that the increased sensitivity towards obstacles
affects the trajectory smoothness. In order to overcome this
drawback, an additional unary prior factor is introduced
in (6) that induces smoothness in case of MS2MP. MS2MP-
no-comp has the highest success rate because each non-
linear factor is linearized at every message passing step.
It results in high computation cost, almost double the run-
time as compared to GPMP2 and the output trajectory is not
very smooth. We also benchmarked our algorithm against
GPMP2 without interpolation (GPMP2-no-intp) with the
same number of support states and no interpolated states.
Although, its faster than GPMP2, the success rate is lowest
among all the evaluated algorithms. We refer the reader to
the accompanying video that shows a trajectory planned by
MS2MP.

VI. CONCLUSIONS

Formulation of motion planning problems on factor graphs
has set the stage for applying different approaches to generate
feasible and smooth trajectories. We build upon the idea of
GPMP2 using factor graphs in order to represent a motion
planning inference problem. However, a drawback of existing
work is that by fusing all factors in the graph and solving a
global nonlinear least square problem tends to converge to
in-feasible local minima. This tendency increases with the
complexity of motion planning problem. We believe that this
problem can be avoided using message passing techniques.

Message passing is a strong algorithmic framework for
solving MAP estimation problem on factor graphs by per-
forming local computations at each node. We proposes an
algorithm called MS2MP for finding collision-free trajec-
tories. It performs local computations at individual nodes,
thus decreases the chances of converging to in-feasible local
minima. A major benefit of MS2MP is that it can be extended
to an incremental method that allows planning in dynamic
environments, where each node is optimized online. An
added benefit of message passing approach is the possibility
of performing parallel computation acorss the graph nodes
that can further reduce planning time significantly. For future
work, we are considering to investigate the incremental
planning and parallel computation of the proposed algorithm.

APPENDIX A

A. Convergence Analysis

The min-sum algorithm converges to the global optimum
for tree-structured graphs. However, in our proposed algo-
rithm min-sum message passing differs in two aspects. First,
we introduce compound factor nodes by merging factors
connected to same variable node(s). Secondly, we have non-
linear factors. The crucial point in solving the inference
problem for non-linear factors is that at each iteration t, φi
and ψi form local objective functions by combining incoming
messages into the node. The MAP estimation using the min-
sum algorithm often fails to converge if the single node local

optimization fails to find a unique solution. Its not possible
to construct x∗ directly if the local node objective function
has more than one optimal solution [20]. For this reason, we
assume that the local node objective function has a unique
minimum.

Assumption 2 For each node with self-potential φi (xi) and
edge-potential ψi (xi,xj), where i ∈ X and ij ∈ E , the
solution produced by numerical optimization of local node
objective function always converges to a unique optimum
point.

Based on Assumption 2, the obtained beliefs are the min-
marginals of the function ψi (xi,xj). Similar to max-
marginal local optimality condition [20], we can also define
local optimality for the compound factor nodes in the graph.

Definition 2 (Local optimality - compound factor nodes)
Solution obtained from a local node objective function is
locally optimal (min-consistent) according to [21] if for all
nodes φi (xi), ψi (xi,xj)

min
xj

ψi (xi,xj) +
∑
x ∈ Xf

mt
x→f (xi)

 = bti (xi) . (23)

Remark 1 For a factor graph G, if the local node φi
optimization converges to unique solution x∗i , then the node
i is eliminated from the overall graph with the remaining
graph G/ |i| [20, proposition 1]. Proceeding in the same
manner will result in the the optimized x∗.

Proposition 1 For a linear-structured factor graph G with
compound factor nodes, if there exists a unique x∗i which is
the optimum point for node φi ∈ X then for the global objec-
tive function (14), the min-sum message passing algorithm
converges to a x∗ together which optimizes entire graph.

Proof: In order for the full graph G converging to a
solution, the set of open nodes in the graph needs to hold
Gcheck = ∅, where Gcheck is initialized by all nodes in the
graph. Thus, given the linear-structured factor graph G, where
each node possesses self and egde-potential functions, the
iterative optimization of the min-sum algorithm is run in a
monotonically increasing or decreasing manner. Based on
Remark 1, individual nodes are removed from Gcheck in an
ordered sequence, thus eventually obtaining Gcheck = ∅ for
for t → ∞. Referring to Definition 2, the obtained graph
directly allows to obtain the converged trajectory.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the Horizon 2020 research and innovation programme
under grant agreement 820742 of the project ”HR-Recycler
- Hybrid Human-Robot RECYcling plant for electriCal and
eLEctRonic equipment”.

REFERENCES

[1] L. E. Kavraki, P. Svestka, J. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robotics Autom., vol. 12, no. 4, pp. 566–580,
1996.

[2] J. J. K. Jr. and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings of the 2000 IEEE
International Conference on Robotics and Automation, ICRA 2000,
San Francisco, CA, USA, April 24-28, 2000. IEEE, 2000, pp. 995–
1001.

[3] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[4] N. D. Ratliff, M. Zucker, J. A. Bagnell, and S. S. Srinivasa, “CHOMP:
gradient optimization techniques for efficient motion planning,” in
2009 IEEE International Conference on Robotics and Automation,
ICRA 2009, Kobe, Japan, May 12-17, 2009. IEEE, 2009, pp. 489–
494.

[5] M. Kalakrishnan, S. Chitta, E. A. Theodorou, P. Pastor, and S. Schaal,
“STOMP: stochastic trajectory optimization for motion planning,” in
IEEE International Conference on Robotics and Automation, ICRA
2011, Shanghai, China, 9-13 May 2011. IEEE, 2011, pp. 4569–4574.

[6] C. Park, J. Pan, and D. Manocha, “ITOMP: incremental trajectory
optimization for real-time replanning in dynamic environments,” in
Proceedings of the Twenty-Second International Conference on Au-
tomated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo,
Brazil, June 25-19, 2012. AAAI, 2012, pp. 207–215.

[7] T. D. Barfoot, C. H. Tong, and S. Särkkä, “Batch continuous-time
trajectory estimation as exactly sparse Gaussian process regression,” in
Robotics: Science and Systems X, University of California, Berkeley,
USA, July 12-16, 2014, D. Fox, L. E. Kavraki, and H. Kurniawati,
Eds., 2014.

[8] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time Gaussian process motion planning via probabilistic inference,”
Int. J. Robotics Res., vol. 37, no. 11, pp. 1319–1340, 2018.

[9] M. Toussaint, “Robot trajectory optimization using approximate in-
ference,” in Proceedings of the 26th Annual International Conference
on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June
14-18, 2009, ser. ACM International Conference Proceeding Series,
A. P. Danyluk, L. Bottou, and M. L. Littman, Eds., vol. 382. ACM,
2009, pp. 1049–1056.

[10] M. Toussaint and C. Goerick, “A bayesian view on motor control and
planning,” in From Motor Learning to Interaction Learning in Robots,
ser. Studies in Computational Intelligence, O. Sigaud and J. Peters,
Eds. Springer, 2010, vol. 264, pp. 227–252.

[11] M. Elbanhawi, M. Simic, and R. N. Jazar, “Randomized bidirec-
tional b-spline parameterization motion planning,” IEEE Trans. Intell.
Transp. Syst., vol. 17, no. 2, pp. 406–419, 2016.

[12] Z. Marinho, B. Boots, A. D. Dragan, A. Byravan, G. J. Gordon, and
S. S. Srinivasa, “Functional gradient motion planning in reproducing
kernel hilbert spaces,” in Robotics: Science and Systems XII, University
of Michigan, Ann Arbor, Michigan, USA, June 18 - June 22, 2016,
D. Hsu, N. M. Amato, S. Berman, and S. A. Jacobs, Eds., 2016.

[13] F. Dellaert and M. Kaess, “Square root SAM: simultaneous local-
ization and mapping via square root information smoothing,” Int. J.
Robotics Res., vol. 25, no. 12, pp. 1181–1203, 2006.

[14] E. Huang, M. Mukadam, Z. Liu, and B. Boots, “Motion planning
with graph-based trajectories and Gaussian process inference,” in 2017
IEEE International Conference on Robotics and Automation, ICRA
2017, Singapore, Singapore, May 29 - June 3, 2017. IEEE, 2017,
pp. 5591–5598.

[15] C. C. Moallemi and B. V. Roy, “Convergence of min-sum message
passing for quadratic optimization,” IEEE Trans. Inf. Theory, vol. 55,
no. 5, pp. 2413–2423, 2009.

[16] J. Yedidia, “Message-passing algorithms for inference and optimiza-
tion,” J. Stat. Phys., vol. 145, no. 4, pp. 860–890, 11 2011.

[17] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21–28, 1962.

[18] T. J. Richardson and R. L. Urbanke, “The capacity of low-density
parity-check codes under message-passing decoding,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 599–618, 2001.

[19] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief
propagation,” in Advances in Neural Information Processing Systems
13, Papers from Neural Information Processing Systems (NIPS) 2000,
Denver, CO, USA, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds.
MIT Press, 2000, pp. 689–695.

[20] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, “Tree consistency
and bounds on the performance of the max-product algorithm and its
generalizations,” Stat. Comput., vol. 14, no. 2, pp. 143–166, 2004.

[21] N. Ruozzi and S. Tatikonda, “Message-passing algorithms: Reparam-
eterizations and splittings,” IEEE Trans. Inf. Theory, vol. 59, no. 9,
pp. 5860–5881, 2013.

	I Introduction
	II Related Work
	III Problem Formulation
	III-A Factor Graph Formulation

	IV MAP Inference via Min-Sum Message passing
	IV-A Factor Graph with Compound Factor Nodes
	IV-B Min-sum Messages Equations

	V Evaluation
	V-A GP Prior
	V-B Collision-free likelihood
	V-C Experiment Setting
	V-D Discussion

	VI Conclusions
	VI-A Convergence Analysis

	References

