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Abstract— This work proposes a RGB-D SLAM system
specifically designed for structured environments and aimed
at improved tracking and mapping accuracy by relying on
geometric features that are extracted from the surrounding.
Structured environments offer, in addition to points, also an
abundance of geometrical features such as lines and planes,
which we exploit to design both the tracking and mapping
components of our SLAM system. For the tracking part, we
explore geometric relationships between these features based
on the assumption of a Manhattan World (MW). We propose
a decoupling-refinement method based on points, lines, and
planes, as well as the use of Manhattan relationships in an
additional pose refinement module. For the mapping part,
different levels of maps from sparse to dense are reconstructed
at a low computational cost. We propose an instance-wise
meshing strategy to build a dense map by meshing plane
instances independently. The overall performance in terms
of pose estimation and reconstruction is evaluated on public
benchmarks and shows improved performance compared to
state-of-the-art methods. The code is released at https://
github.com/yanyan-li/PlanarSLAM.

I. INTRODUCTION

Visual Simultaneous Localization and Mapping (SLAM)
algorithms are used to estimate the 6D camera pose while
reconstructing the surrounding unknown environment. They
have shown to be useful in a wide range of applications,
such as autonomous robots, self-driving cars and aug-
mented/virtual reality, where camera pose estimation enables
cars, robots and mobile devices to localize themselves, while
the dense map provides a representation of the environment,
e.g. for robot-environment or human-environment interac-
tion.

Many SLAM applications have to deal with structured
scenes, i.e. man-made environments that are usually char-
acterized by low-textured surfaces - a typical example is
an indoor scene, or an outdoor parking place. This induces
a lack of visual features, that visual SLAM systems typ-
ically leverage to improve camera pose estimation and/or
3D reconstruction, e.g. by carrying out loop closure and
bundle adjustment to reduce drift. In order to deal with
structured scenes, specific SLAM methods based on points
and line segments, like S-SLAM [1], Stereo-PLSLAM [2],
PLVO [3], Mono-PLSLAM [4] and Probabilistic-VO [5]
have been proposed, extending the working environment to
scenes where more lines than points can be detected. SP-
SLAM [6] merges plane features into ORB-SLAM2 [7],
achieving robust results in low-textured scenes.
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Fig. 1. RGB-D SLAM system. (a) Examples of a typical structured scene,
and 2D features and orthogonal lines and planes segmentation. (b) Point
cloud including points, lines and planes. (c) Real-time mesh on a CPU.

For the reconstruction, there are sparse, semi-dense and
dense methods. Compared to the first two classes, which only
provide incomplete maps, dense reconstruction is required
to provide sufficient information for applications such as
robot-environment interaction and 3D scene understanding.
Many algorithms have been proposed to reconstruct indoor
scenes via RGB-D sensors. KinectFusion [8] is a pioneering
work relying on the truncated signed distance field (TSDF)
representation of the map. In order to reconstruct large scale
scenarios, surfel-based methods, like ElasticFusion [9], were
proposed. Instead of reconstructing each pixel, Wang et
al. [10] extracts superpixels from RGB images and depth
maps, which is more efficient but still has redundant infor-
mation especially in indoor scenarios where large planes can
be commonly found.

In this paper, we build on our monocular Structure-
SLAM [1] and propose a robust RGB-D SLAM system
specifically designed to deal with structured environments,
which improves tracking and mapping at the same time.
Figure 1 illustrates the components of such structured scenes,
which contains points, lines and plane segments. Following
the decoupling strategy of Structure-SLAM, we estimate a
drift-free rotation matrix first, and then the 3-DoF translation.
The initial rotation and translation are refined via a map-to-
frame strategy. Different to [1], [11], [12], plane features are
merged into our Manhattan-based framework, which is used
to estimation the initial translation vector and retain Man-
hattan relationships as constrains in the refinement module.
Furthermore, an efficient meshing module is proposed that
reconstructs the scene structure based on the obtained planar
regions in the sparse map. In summary our contributions are:

• Based on the concept of MW-based decoupled pose
estimation, we improve the translation estimation by
combining point and line features with planes and an
additional pose refinement step with Manhattan rela-
tionships.
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• We propose a planar instance-wise mesh based recon-
struction method generating a compact representation
of the environment from a sparse point cloud.

• A general framework for real-time RGB-D SLAM
where these components are used to localize and map
under structured environments with high accuracy.

We evaluate the performance of our approach in terms of
both camera pose estimation and reconstruction on public
benchmarks, showing improved performance compared to
state-of-the-art methods.

II. RELATED WORK

In the following we review the literature related to RGB-
D based SLAM systems as well as methods leveraging
structural regularity as the MW assumption.

a) RGB-D SLAM.: In [13], [14] it was proposed to
use planes over point features whenever possible, as the
averaging over multiple depth measurements reduces the
noise significantly. In Dense Planar SLAM [15] surfels
belonging to the same planar areas are smoothed by fitting a
plane to them and back-projecting the surfels onto the plane.
Le et al. [16] rely on a scene layout consisting of a ground
plane and several walls, and use dynamic programming to
infer a sequentially consistent assignment of pixels to planes.
In Probabilistic-VO [5], the uncertainties of points, lines
and planes are modelled explicitly and used during pose
estimation, where points, lines and planes are represented
in a uniform framework in [17]. A direct SLAM system
combining photo-metric and geometric terms is proposed
in DVO-SLAM[18] and extended in CPA-SLAM [19] with
global planes, where depth measurements are assigned to the
global planes with weights.

b) Dense Reconstruction.: While the aforementioned
methods have the goal to estimate precise poses and therefore
only maintain a map with the most reliable information,
several works have been proposed with the goal to create a
complete dense reconstruction of the environment. KinetFu-
sion [8] and ElasticFusion [9] explore dense reconstruction
for RGB-D sensors. The first method fuses all depth data
into a volumetric dense representation, which is used to
track the camera pose using ICP. The size of the map
is usually limited in volumetric methods due to memory
constraints. Different from KinectFusion, ElasticFusion is
a map-centric system that reconstructs surfel-based maps
of the environment. In order to decrease the number of
surfels in the map, superpixel-based surfels are proposed
by [10], which reduces the number of surfels compared with
ElasticFusion. Recently BAD-SLAM [20] proposed a direct
bundle-adjustment approach for RGB-D SLAM. In [21] a
textured mesh is extracted from a dense surfel cloud. A direct
mesh based reconstruction approach for RGB-D sensors was
proposed in [22].

c) Structural Regularity.: A line of works exploits
additional constrains and regularities in the world, to improve
the reconstruction performance. In [23] and [24] the authors
showed that the rotation estimation error is the main reason
for long-term drift.

Fig. 2. Overview of the proposed framework. Point, line and plane features
are extracted from the RGB-D frame. Rotation and translation are estimated
in a decoupled fashion first and refined afterwards. The planar segments are
used to create a mesh-based reconstruction of the environment.

A branch-and-bound framework for Manhattan Frame
estimation is proposed in [25]. In MVO [24] a method using
mean shift on the unit sphere is used to find the transfor-
mation between the MW and the current frame. When only
planes are used for the rotation estimation as in OPVO [26] at
least 2 orthogonal planes must be detected in each frame, the
addition of vanishing points extracted from lines can be used
alternatively, as done in LPVO [11]. The methods mentioned
above use point features to estimate the translation. Structure-
SLAM [1] is a monocular system that predicts normals via a
convolutional neural network leverages normals with points
and lines in a decoupling strategy. Since predicted normals
are not as accurate as those computed from a depth map,
the system provide a refinement/fallback module based on
points and lines. Compared with Structure-SLAM, optimized
vanishing points of lines and plane features are used for
rotation and translation in this work. Then, the fallback part
is removed and the refinement part incorporates geometric
relationship of planes. Instead of the sparse point-line map, a
dense mesh as output is more useful for robotics applications.
L-SLAM [12] is also based on the MW assumption, which
obtains translation, rotation and pixels of potential planar
regions from LPVO. Then it refines 3D translational and 1-
D plane offsets with a linear Kalman Filter. However, we
use a more robust front-end for initial translation estimation.
Furthermore, the 6D pose refinement step is used to optimize
rotation and translation simultaneously and allows an offset
to the initial rotation from MW, which is more robust to non-
MW (curved surfaces and few planar regions) compared with
L-SLAM and LPVO (see Figure 6).

III. PROPOSED FRAMEWORK

Given a sequence of RGB-D frames from a structured
environment, the goal of our method is to reconstruct the 3D
scene while simultaneously estimating the 6D camera pose at
each frame. Section IV provides an overview of the proposed
tracking pipeline, which decouples rotation and translation,
while section V describes different types of mapping pre-
sentations generated by the system. We now describe the
system’s underlying features and structural components.

A. Extended feature set

In our method we use ORB features [27], which are fast
to extract and match. In low-textured environments, it is



hard to extract sufficient points for robust pose estimation,
therefore we extend the feature set with lines, which are
extracted using the LSD [28] approach, as described by
LBD [29]. Furthermore, it is common to find non-textured
planar regions in indoor environments, where plane instances
extracted from the depth maps are valuable cues to extend
points and lines. Planes are detected using the connected
component analysis method [30]. They are represented by
the Hessian normal form π = (n̂, d), where n̂ = (nx, ny, nz)
is the normal of the plane, representing its orientation and d
is the distance from the camera origin to the plane.

a) Points and lines: After the extraction of 2D
point features xj = (uj , vj) and line segments lj =
(xj,start, xj,end) in frame Fi, we can back-project points and
lines using the camera intrinsic parameters and the depth map
to obtain 3D points Xj and 3D lines Lj . The depth map is not
always correct, especially at depth discontinuities e.g. object
boundaries. Therefore a robust fitting method for 3D lines is
needed. First, we count the number of pixels with non-zero
depth values intersected by the detected line segment. If the
number exceeds a certain threshold, the 3D line Lj will be
estimated via RANSAC to remove potential outliers.

b) Normals and planes.: Smooth normals are computed
by averaging the tangential vectors from the depth image
inside a patch of 10× 10 pixels using integral images. After
plane detection, we use the strategy of [6] to associate the
observed planes with those present in the map. To match
an observed plane with one from the map, we first check
the angle between their normals. If it is below the threshold
θn, we check the point-to-plane distance between them. The
plane which has the minimum distance to the observed plane,
and also lies below the distance threshold θP , is matched to
the observed plane. In the experiments, θn and θP are set at
10 degrees and 0.1 m respectively. Furthermore, we also keep
parallel and perpendicular relationships [6] between the map
planes to leverage additional constraints during the tracking
process. These are determined by the angle between the plane
normals. Since they only provide constraints for orientation,
we do not consider their distance.

B. Decoupling pose estimation and refinement.
To reduce error propagation between frames, we build on

our monocular architecture [1] that computes rotational mo-
tion based on the MW assumption. Then the corresponding
translational motion is estimated by features, with the fixed
rotation computed from last step. In the font-end of this work,
we use optimized lines for rotation estimation and planes for
translation estimation.

Differently to Structure-SLAM [1] that uses a point-line
local map to optimize translation and rotation together, we
leverage planes in the local map and also make use of the
geometric relationship (parallel and perpendicular) of those
planes as constrains, which improves the accuracy of the
system as it will be shown in Figure 4 and Table I.

IV. TRACKING

Differently from traditional pose estimation methods, we
decouple the 6D camera pose into rotation and translation.

Based on the MW assumption, we obtain the rotational
motion Rcim between the MW and camera ci. In this way,
the rotation estimation will not be affected by the pose of the
last frame or last keyframe, which reduces drift effectively.
Afterwards, point, line and plane features as well as the initial
rotation matrix are used for translation estimation, which
consists of just 3 Degrees-of-Freedom (DoFs).

A. Rotation estimation

Instead of tracking the camera from frame-to-frame di-
rectly, the drift-free rotation estimation method estimates
the rotation Rcm between each frame and the Manhattan
coordinate frame, by modeling the indoor environments as
a MW, thus reducing the drift generated from frame-to-
frame tracking. As shown in Figure 1, Manhattan coordinate
frames can be aligned to the starting frame of the camera
via Rk+1,m. Generally, the coordinate of the first frame is
regarded as the world frame, i.e. R1,m = RTm,w. So we can
obtain pose in the world coordinate by using,

Rk+1,w = Rk+1,mRm,w (1)

Here Rm,w represents the relation from the world to MW,
which is obtained by the MW initialization step and Rk+1,m

is the relation from MW to the (k + 1)th frame. These two
matrices are computed via a sphere mean-shift method [24],
where the normals and normalized vanishing directions are
projected onto the tangent planes of the current rotation
estimate. Then a mean shift step is performed on the tangent
planes, which generates new centers and back-projects them
to the sphere as new estimates. We refer the reader to [24]
and [26] for more details on the sphere mean-shift method.
To handle difficult scenes where only one or no plane at
all is detected, we feed the unit sphere with both vanishing
directions of the refined 3D lines and surface normals of
planes, which is a more robust approach than [26], [1] under
these challenging conditions.

B. Translation estimation

After estimating the rotation, points, lines and planes are
used to estimate the translation. We re-project 3D points
from the last frame into the current one and define the error
function, based on the re-projection error, as follows,

epk,j = pk −Π(Rk,jPj + tk,j) (2)

where Π(·) is the projection function. Since the rotation
matrix Rk,j has been obtained in the last step, we fix the
rotation and only estimate the translation using the Jacobian
matrix corresponding to (2).

As for lines, we obtain the normalized line function from
the 2D endpoints pstart and pend as follows

l = [pstart × pend]/[‖pstart‖‖pend‖] = (a, b, c). (3)

Then, we formulate the error function based on the point-
to-line distance [4] between l and the projected 3D endpoints
Pstart and Pend from the matched 3D line in the keyframe.
For each endpoint Px, the error function can be noted as,

elk,Px
= lΠ(Rk,jPx + tk,j). (4)



To get a minimal parameterization of a plane π for
optimization, we represent it as q(π) = (φ, ψ, d) where φ
and ψ are the azimuth and elevation angles of the normal
and d is the distance from the Hessian form

q(π) = (φ = arctan(
ny
nx

), ψ = arcsin(nz), d). (5)

So, the error function between the observed plane πk in the
frame and corresponding map plane πx is

eπk,πx
= q(πk)− q(T−Tcw πx) (6)

where T−Tcw is the transformation from world to camera co-
ordinates.Assuming that the observations follow a Gaussian
distribution, the final non-linear least squares cost function
t∗ can be written as in (7), where Λpk,j

, Λpk,Px
and Λk,πx

are the inverse covariance matrices of points, lines and
planes, and ρp, ρl and ρπ are robust Huber cost functions,
respectively.

t∗ =argmin

M∑
j

ρp

(
epk,j

T
Λpk,j

epk,j

)
+ ρl

(
elk,Px

T
Λpk,Px

elk,Px

)
+ ρπ

(
eπk,πx

TΛk,πx
eπk,πx

)
(7)

Here, a solution is determined using the Levenberg-
Marquardt algorithm.

C. Pose refinement

The last two steps assume that the scene is a good Manhat-
tan model, nevertheless several general indoor environments
are not strictly adhering to the MW assumption, leading
to degradation in accuracy. So, after obtaining the initial
pose via the decoupled rotation and translation strategy, the
refinement module [1] fine-tunes the pose to compensate
for deviations from the MW or unstable initial estimates.
In the refinement step, to reduce the drift from frame-to-
frame pose estimation, the local map constructed by previous
keyframes is used to optimize the pose based on a map-to-
frame strategy [7].

Similar to [6], [7], [31], we also use keyframes to build
a local map, although our map has point, line and plane
landmarks, which are projected into the current frame to
search for matches. Furthermore, we explore the relationship
between planes in the local map and planes detected in
the current frame. The parallel and perpendicular constraints
between those planes are described as (8),{

e
π‖
k,nx

= ||qn(nk)− qn(Rcwnx)||
eπ⊥
k,nx

= ||qn(R⊥nk)− qn(Rcwnx)|| (8)

where qn(π) = (φ, ψ) and Rcw is the transformation from
world to camera coordinates. For perpendicular planes, their
plane normal is rotated by 90 degrees (R⊥) to construct the
error function. These two error functions are merged to (7) to
build a joint optimization function in the refinement module.

Fig. 3. Different levels of maps provided by the system.Top row: office
room of the ICL-NUIM; bottom row: structure-nontexture-near of TUM
RGB-D;

V. MAPPING

This section describes the keyframe-based 3D mapping
strategy used in our SLAM framework. Keyframes and
3D features build up a co-visibility graph, where nodes
and edges are updated whenever a new keyframe and new
features are available.

A. Sparse Mapping

As shown in Figure 3, the sparse map module is
reconstructed by point-line-plane features extracted from
keyframes. The first frame is set as the first keyframe and the
global map is initialized by the landmarks thereby detected.
When new points, lines and planes are detected in a new
keyframe, which are not in the global map, they will be
saved to a local map first. Then we check the quality of
the landmarks in the local map, and then push reliable
landmarks into a global map after culling bad ones. Different
to the matching methods for points and lines, for each
detected plane in a new keyframe, we first check whether
it is associated with a plane in the map using the strategy
described in section III. If we find an association, we add
the 3D points of the new plane to the associated plane in the
global map and filter out redundancies using a voxel grid to
get a compact point cloud again. If the incoming plane is
not associated to any plane in the global map, we add it to
the map as a new plane.

B. Planar instance-wise meshing

The sparse map obtained in the previous section is still
not adequate for applications involving robot-environment
interactions, but it provides information about planar and
non-planar instances. Therefore, we construct a denser map
using an instance-wise meshing strategy. Indoor scenes can
be divided into planar and non-planar regions. Planar areas
like floors, walls and ceiling have often a large extent,
however a dense pixel-wise information does not add to the
quality and is highly redundant. So instead of using surfel
or TSDF, we regard plane regions as instances that include
a small and fixed number of elements independently of their
size.

In particular, we input plane instances to the meshing
module, which meshes them independently. First, the points
belonging to a plane are organized as a kd-tree data-structure.
Different to unstructured inputs, our method needs less time
for searching several nearest neighbors. Then, we use Greedy
Surface Triangulation (GST) [33] to build an instance-wise
mesh, which is designed to deal with planar surfaces. Note



Sequence Ours Ours/-wo ORB [7] PS-SLAM [6] LPVO [12] L-SLAM [11] DVO [18] InfiniTAM [32]
lr-kt0 0.006 0.025 0.025 0.016 0.015 0.012 0.108 ×
lr-kt1 0.015 0.036 0.008 0.018 0.039 0.027 0.059 0.006
lr-kt2 0.020 0.053 0.023 0.017 0.034 0.053 0.375 0.013
lr-kt3 0.012 0.059 0.021 0.025 0.102 0.143 0.433 ×
of-kt0 0.041 0.068 0.037 0.032 0.061 0.020 0.244 0.042
of-kt1 0.020 0.028 0.029 0.019 0.052 0.015 0.178 0.025
of-kt2 0.011 0.060 0.039 0.026 0.039 0.026 0.099 ×
of-kt3 0.014 0.012 0.065 0.012 0.030 0.011 0.079 0.010

snot-far 0.022 0.026 × 0.020 0.075 0.141 0.213 0.037
snot-near 0.025 × × 0.013 0.080 0.066 0.076 0.022
cabinet 0.035 0.057 0.075 0.067 0.520 0.291 0.690 0.035

large-cabinet 0.071 0.813 0.124 0.079 0.279 0.140 0.979 0.512

TABLE I
COMPARISON OF TRANSLATION RMSE (M) FOR ICL-NUIM AND TUM-RGB-D SEQUENCES. × MEANS THE METHOD FAILS IN THE TRACKING

PROCESS. -WO MEANS ONLY USING DECOUPLED TRACKING WITHOUT THE REFINEMENT STEP.

Fig. 4. Comparison of relative pose error (RPE) for rotation on the ICL-
NUIM and TUM RGB-D sequences.

Fig. 5. Qualitative results of sparse reconstruction and trajectory between
the proposed method and ORB-SLAM2 in the TAMU dataset.

that in our experiments, the initial search radius for selecting
neighbors for triangulation is set to 5m and the multiplier is
set as 5 to modify the final search radius to adapt to different
point densities on the plane regions.

VI. EXPERIMENTS

We evaluate the proposed SLAM system on two well
known public datasets, the ICL-NUIM [34] and TUM RGB-
D [35] benchmarks, comparing its performance with other
state-of-the-art methods such as ORB-SLAM2 [7], PS-
SLAM [6] that are feature-based methods, but removed
the global bundle adjustment modules in the following
experiments. Methods based on the MW assumption such
as LPVO [11] and L-SLAM [12]. DVO-SLAM [18] is a
direct method and InfiniTAM [32] uses a GPU for real-
time tracking and mapping based on RGB and depth images.
Additionally, we provide the reconstruction accuracy of our

time Feat. extr. Rotat. Transla Refinement Total
Median 19.9 2.1 4.8 13.0 42.5
Mean 20.5 3.0 5.4 13.1 43.7
Std. 3.6 0.4 2.8 4.8 9.4

TABLE II
MEASURED TRACKING TIMES (MS) ON THE TUM RGB-D SEQUENCES

Sequence RGB-D ElasticFu InfiniTAM SPFu Ours
kt0 4.4 0.7 1.3 0.7 0.4
kt1 3.2 0.7 1.1 0.9 0.6
kt2 3.1 0.8 0.1 1.1 0.6
kt3 16.7 2.8 2.8 1.0 0.8

TABLE III
RMSE RECONSTRUCTION ERROR (CM) ON THE ICL-NUIM DATASET IN

CENTIMETERS.

reconstructed model on the ICL-NUIM dataset and compare
it with other popular methods for dense reconstruction.
Lastly, to demonstrate that our system is robust over time,
we also test on a sequence from the TAMU [3] dataset
containing long sequences covering a large indoor area. All
experiments are carried out with an Intel Core i7-8700 CPU
(with @3.20GHz) and without any use of GPU. The ICL-
NUIM dataset [34] provides synthetic scenes for two indoor
environments, one living room and one office room scenario.
These scenes contain large areas of low textured surfaces
such as walls, ceilings, floors, etc. There are four sequences
for each scene. We evaluate our method on all sequences.

A. ICL-NUIM RGB-D Dataset

Table I shows that our method obtains the best perfor-
mance on three out of the eight sequences, based on the
translation RMSE (ATE). InfiniTAM also performs well on
lr-kt1, lr-kt2 and of-kt3 sequences, but the method also loses
tracking in other sequences. As the dataset contains large
structured areas, the Manhattan-based methods LPVO and
L-SLAM are able to get a good estimate of the orientation
and provide good results throughout. However, they usually



Sequences Ours ORB-SLAM2 length
Corridor-A 1.62 3.13 88
Stair-A 0.94 1.44 66
Entry-Hall 1.33 2.22 80

TABLE IV
COMPARISON OF THE ACCUMULATED DRIFT (M) IN DIFFERENT LARGE

SCALE SEQUENCES.

need two planes, or alternatively, one plane and a vanishing
direction to be visible at all times to estimate a good
Manhattan frame. As shown in Figure 6, there are several

Fig. 6. Results in lr-k3. (a) input image; (b) point-line features and the
segmented plane; (c) reconstructed 3D map and trajectory.

challenging scenes in lr-kt3, where only a white wall and
two leaves from a plant are captured when the camera is
close to the wall. In this situation, OPVO and L-SLAM are
unable to yield a good performance. When a bad initial pose
is obtained in our system due to the scene not being a rigid
MW, the refinement step based on point-line-plane features
allows us to recover the pose nevertheless, while L-SLAM
ignores optimizing rotation in the LKF module. Moreover,
while DVO, being a dense method, may struggle because
of the large areas of walls, floor etc. not containing enough
gradient for the photometric error, ORB-SLAM2 and PS-
SLAM perform well, as both environments contain sufficient
ORB features extracted from furniture, objects etc. As our
method takes advantage of all geometric elements, it is able
to perform robustly in most sequences. In addition, Figure 4
shows the relative pose error for ORB-SLAM, PS-SLAM and
our method. Our method obtains notably better results than
the other two in relative translation and rotation. Especially
the rotation error is much lower for our method, due to the
use of the decoupled MW rotation estimation.

B. TUM RGB-D Dataset
The TUM RGB-D benchmark [35] is one of the most

popular datasets for RGB-D SLAM systems, which provides
indoor sequences under different texture and structure condi-
tions. This allows us to separately test sequences which have
structure, texture or both. In order to evaluate our method in
challenging environments, we select four structured image
sequences, the first three with low texture and the last one
with a large scale environment. As all sequences listed in
Table I have structure, but the large-cabinet sequence is not
a rigid Manhattan scenario. Manhattan-based methods are
able to provide good pose estimates on snot-far sequence, but
the results degenerate in large-cabinet and cabinet sequences.
The first two sequences include the same environment con-
sisting of multiple non-textured planes. Here ORB-SLAM2

is not able to find enough point correspondences along the
sequence and loses tracking. Our method, which additionally
uses lines and planes for translation estimation, achieves
better results. As shown in Figure 4, cabinet and large-
cabinet are challenging sequences because of several low-
texture frames. Our method’s tracking strategy limits the
relative rotation error to under 2 degrees, which is better
than ORB-SLAM2 and PS-SLAM. The statistics of the time
spent for each operation are shown in Table II, where we use
different CPU threads to deal with points, lines and planes
in the feature extraction and refinement modules.

C. Large scale sequence
The TAMU dataset [36] provides large-scale indoor se-

quences (constant lighting). While it does not provide
ground-truth camera poses, the start and end point are the
same, which can be used to evaluate the overall drift by
computing the final position errors. As shown in Figure 5,
the trajectory in the sequence Stair-C is a loop between
two floors, where the improvement of our method over the
whole trajectory length is 34.7% in drift compared to ORB-
SLAM2. Similar situations can also be found in Corridor-A
and Entry-Hall. More qualitative results are provided in the
supplementary material.

D. Reconstruction Accuracy
We reconstruct models from ICL-NUIM and compare

the results with state-of-the-art mapping methods, as shown
in Table III. The accuracy of the reconstruction results is
defined as the mean difference between the predicted model
and the ground-truth model [34]. We compare the proposed
mapping module against RGB-D SLAM [37], ElasticFu-
sion [9], InfiniTAM [38], and SuperpixelFusion [10].

The SuperpixelFusion method is constrained by using
ORB-SLAM for pose estimation, whereas our method also
works well in low-textured environments. InfiniTAM obtains
the best results in kt2, but shows worse performance on
the kt0 and kt3 sequences, potential due to the large low-
textured regions. ElasticFusion shows a similar behavior. Our
method reconstructs more accurate maps than the others,
but InfiniTAM and ElasticFusion provide more complete
models than our map since we ignore small objects even
though features based on points, lines and planes cover most
of the pixels. Remarkably, all fusion methods, except for
SuperpixelFusion and ours, rely on GPU based acceleration.

VII. CONCLUSIONS

We have proposed a RGB-D SLAM system based on
points, lines and planes. Using the MW assumption for
rotation estimation, and point, line and plane features for
translation estimation, we achieve state-of-the-art perfor-
mance. Also, a novel instance-wise meshing approach can
reconstruct planar regions in the environment efficiently.
The resulting dense map allows for interactions with the
environment in robotic and AR/VR applications. In the future
we would like to extend the planar reconstruction with a
meshing of the non-planar parts in the environment to allow
the complete reconstruction of more complex scenes.
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