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Abstract— In many applications, including logistics and man-
ufacturing, robot manipulators operate in semi-structured en-
vironments alongside humans or other robots. These environ-
ments are largely static, but they may contain some movable
obstacles that the robot must avoid. Manipulation tasks in these
applications are often highly repetitive, but require fast and
reliable motion planning capabilities, often under strict time
constraints. Existing preprocessing-based approaches are ben-
eficial when the environments are highly-structured, but their
performance degrades in the presence of movable obstacles,
since these are not modelled a priori. We propose a novel
preprocessing-based method called Alternative Paths Planner
(APP) that provides provably fixed-time planning guarantees
in semi-structured environments. APP plans a set of alternative
paths offline such that, for any configuration of the movable
obstacles, at least one of the paths from this set is collision-
free. During online execution, a collision-free path can be
looked up efficiently within a few microseconds. We evaluate
APP on a 7 DoF robot arm in semi-structured domains of
varying complexity and demonstrate that APP is several orders
of magnitude faster than state-of-the-art motion planners for
each domain. We further validate this approach with real-time
experiments on a robotic manipulator.

I. INTRODUCTION

In a wide range of environments, be it warehouses, fac-
tories or homes, robots share their workspace with humans
or other robots. While the obstacle occupancy in such envi-
ronments is largely fixed or static, yet small regions within
these environments may vary in occupancy during operation.
We categorise such environments as semi-structured. Addi-
tionally in these applications robots are often performing
repetitive tasks and require fast and reliable motion planning
capabilities.

Consider the scenario in Fig. 1. The robot must grasp the
bowl while avoiding the pitchers, table and walls. Most of the
environment (e.g. table, walls, free space above the table etc.)
can be assumed to be known, and since the task is repetitive
some information from previous planning queries can be re-
used to speedup planning. Commonly used algorithms such
as RRTs [1], [2] neither exploit the distinction between static
and movable obstacles nor take advantage of the repetitive
nature of planning problems to speedup planning.

Roadmap-based methods like Probabilistic Roadmaps
(PRMs) [3] are either limited to fully static environments
or incur considerable overheads in repair operations which
they require to handle movable obstacles. Improvements
to PRM have minimized expensive collision checks [4],
accounted for dynamic environments [5], [6], and captured
repetitive motions [7], but their performance can still vary

1NVIDIA, 2Carnegie Mellon University, 3University of Washington.

Fig. 1: Semi-structured tabletop manipulation scenario —
The robot must grasp the bowl while avoiding pitchers
and the table itself; the pitchers and bowl may be at any
position. The Alternative Paths Planner (APP) guarantees
to find a solution for any feasible configuration within few
microseconds.

dramatically depending on a planning query. Instead of
preprocessing collision information offline, another class of
planners exploits previous experiences to speed up search [8],
[9], [10]. However, these see their performance degrade when
the past information is invalidated by the changes in the
environment. All these methods therefore can not provide
fixed-time planning guarantees.

Provably fixed-time planners were recently proposed
in [11], [12] for applications that involve repetitive tasks.
Given a start state, a goal region and known model of the
environment, they precompute a compressed set of paths
that can be utilized online to plan to any goal within the
goal region in constant or bounded time. These approaches
have been used before for mail-sorting [11] and for grasping
objects moving down a conveyor belt [12] While our ap-
proach APP draws inspiration from these works, we focus on
enabling online obstacle avoidance by explicitly accounting
for movable obstacles during the preprocessing phase by
using the alternative paths planning approach.

We extend these approaches to handle movable obstacles
while still guaranteeing provably fixed-time planning via the
Alternative Paths Planner (APP). The key idea is to generate
multiple alternative paths for each planning problem, such
that for any configuration of movable obstacles, one path is

ar
X

iv
:2

01
2.

14
97

0v
2 

 [
cs

.R
O

] 
 2

7 
M

ar
 2

02
1



guaranteed to be traversable. Our approach to achieve this
is to enforce that these paths are disjoint: they are separated
enough that no single obstacle configuration can intersect two
paths simultaneously. Handling n movable obstacles requires
generating only at most n+ 1 fully disjoint paths. However,
if the required number of disjoint paths cannot be found for
the given problem, we find additional partially overlapping
paths (that do not satisfy disjointness criterion) to provide
the same guarantee.

APP can be applied to performance-critical real-world
use cases such as mail-sorting, conveyor-belt picking, and
shelving. For scenarios with multiple movable obstacles,
we demonstrate microsecond-scale path-lookup times and
achieve 100% success rate. We include experimental results
from three domains, compare with state-of-the-art existing
approaches and validate our approach with a real-world case
study.

II. ALGORITHMIC FRAMEWORK

Let X be the configuration space of the robot, sstart ∈ X
be a fixed start configuration of the robot, and G be the goal
region. G could be defined in the configuration space X (i.e
G ⊂ X ) or it could be under-defined, e.g., as the position
in R3 or pose in SE(3) of a target object or the robot end-
effector. G is discretized to have a finite set of goals G.

Let W be a 3D semi-static world in which the robot
operates. W contains a fixed set of movable obstacles O =
{o1, o2, o3, ..., on}, that occupy WO ⊂ W , and can be
displaced in between different planning queries. A movable
obstacle oi can attain any configuration within a space Q(oi)
which is discretized into a set of configurations Q(oi).
Additionally,W has a partial occupancyWS , which is static
i.e WS = W\WO. The motion planning problem is to find
a collision-free path for the robot operating in W from sstart
to any goal g ∈ G.

A. Approach

In this work, we describe an algorithm that provides prov-
able bounds on the planning time for each planning query,
where these bounds are small enough to guarantee real-time
performance. We begin by briefly describing a strawman
algorithm which solves the aforementioned problem with
the provable bounded-time guarantee but is practically pro-
hibitive due to its memory and computational requirements.

1) Strawman Algorithm: Assume that we have access to
a motion planner P that can be used offline to find feasible
paths for the given planning problems. The naive approach
is to precompute and store paths for all possible planning
problems using P offline in a preprocessing stage. At query
time, a lookup table can answer any query in bounded time.
Specifically, we precompute the lookup table

M : G×Q(o1)×Q(o2)× ...×Q(on)→ {π1, π2, π3, ...}

that maps every configuration of goal and the n obstacles to
a unique path πi resulting in |G|.|Q(o1)|.|Q(o2)|....|Q(on)|
paths. Assuming that each object oi can be in the same
set of configurations in W , the space complexity then is

ε

sstart Proj(g)
o

π eπ
Q(o)

g

Fig. 2: Depiction of an envelope for a single movable
obstacle o: the blue rectangles represent the robot states
in SE(2) along the path π, the red circle is the movable
obstacle o that can have any position in Q(o) ∈ R2 and the
small circles show positions q(o) for which o collides with
π and thus constitute the envelope eπ

O(|G|.|Q(oi)|n) which is exponential in the number of
movable objects in O.

2) Proposed Approach: While the strawman algorithm
provides bounded-time guarantees, its memory and precom-
putation load is prohibitive for practical purposes. To this
end we propose an algorithm that can provide bounded-
time guarantees but requires significantly smaller resources
in practice.

Our key idea is that, for the given sstart and g, instead
of precomputing path for every possible configuration of
obstacles O, our algorithm systematically precomputes a
small set of paths Πg from sstart to g with the guarantee
that for any possible configuration of O in W , at least one
path π ∈ Πg will be collision free. At query time, this path
can be looked up efficiently in provably bounded time.

B. Algorithm Overview

Before we describe the approach, we introduce some
terminology.

Definition 1 (Envelope). For a path π, an envelope is a set of
all obstacle configurations eπ ⊂ Q(o1)∪Q(o2)∪ ...∪Q(on),
that collide with any robot state s ∈ π, except sstart, and are
not within ε distance of PROJ(g)

where PROJ(g) is the projection of g in R3 and ε is
in Euclidean space. Fig. 2 illustrates an envelope with a
simple example. The implementation details of envelope
construction for the manipulation domain are discussed in
Sec. III-A

Definition 2 (Disjoint paths). The paths π1, π2, ..., πn are
disjoint if their corresponding envelopes eπ1

, eπ2
, ...eπn

are
disjoint sets.

Consider finding a collision-free path from sstart to a goal
g ∈ G in the presence of a single movable obstacle o and
some static occupancy WS . We first find a path π1 from
sstart to g using P while avoiding collisions with only WS .
Next we construct an envelope eπ1

around π1, where eπ1

(by Def. 1) is the set of all configurations that o can take
that invalidate π1. If eπ1 is non-empty, we attempt to find
a second path π2 that avoids collisions with WS as well as
with the occupancy of eπ1

. This gives us two disjoint paths



π1 and π2, by Def. 2. These two paths constitute the minimal
set of paths with the guarantee that for any configuration
q(o) ∈ Q(o), one path will be collision free. At query time
given any configuration q(o), we can check if it lies within
eπ1

or not and use the path π2 or π1 respectively. By storing
envelopes as sets implemented using hash tables, we can
check it in constant time [13]. Note that if eπ1

is empty, we
only require a single path π1.

Extending to n movable obstacles: A single movable
obstacle, requires at most two disjoint paths. Extending
to n objects would require at most n + 1 disjoint paths.
Therefore, for the scenarios in which the required number
of disjoint paths exists and P can find them within a given
allowed planning time, the computational complexity of the
preprocessing phase grows linearly with number of movable
obstacles i.e O(|O|). If P fails to find the required number
of disjoint paths, however, then this method is incomplete
as is, and it would require more preprocessing efforts to
find more paths to satisfy the criterion that for any possible
configuration of the set of obstacles O, at least one of the
paths from the set is guaranteed to be collision free.

C. Algorithm Details

We now describe the two phases of our algorithm: the
preprocessing and the query phases.

1) Preprocessing: The preprocessing algorithm is de-
scribed in Alg. 1 and is illustrated in Fig. 3. It starts with
finding the first collision-free path π1 from sstart to the given
goal g ∈ G inWS . For each computed path πj , the algorithm
maintains the set of envelopes Eπj

that were avoided while
computing πj . For the first path π1, the set Eπ1

is empty
since P only considers WS for this step. The algorithm then
runs a loop for n = |O| iterations, attempting to find n
more mutually disjoint paths (loop at line 6). Another loop
at line 8 is needed for the case when n+ 1 disjoint paths do
not exist and therefore, more than one paths are computed in
a single iteration of loop at line 6. In every iteration of the
loop at line 8, the algorithm first constructs the envelope eπj

around the path πj found in the previous iteration of loop at
line 6. Next, π′

j is computed while avoiding collisions with
the occupancy of the set of envelopes E ′πj

, which is the union
of eπj

and the envelopes in Eπj
. E ′πj

thus constitutes the set
of avoided envelopes for π′

j .
For the case when P fails to find the disjoint path at any

iteration of loop at line 6, the algorithm bisects one of the
envelopes (line 18 and Alg. 2) that P attempted to avoid,
resulting in two sets of envelopes (each one containing a
bisected envelope along with the remaining envelopes). P
then tries to find paths around the occupancy of envelopes
in each of the two sets independently. Note that this process
(Alg. 2) repeats recursively until either P successfully finds
paths around all the newly created sets of envelopes or
until further recursion is not possible. The latter occurs
in the worst case, when the algorithm recurses down to
the deepest level, where each envelope contains individual
obstacle configurations. Owing to the structure of these
envelopes, we implement them as binary-trees. Because of

Algorithm 1 PREPROCESS(g)
Inputs: sstart,WS ,O
Output: Πg

1: π1 ← FINDPATH(sstart, g,WS)
2: Eπ1

← ∅
3: SETAVOIDEDENVELOPESOFPATH(π1, Eπ1 )
4: Π1 ← {π1}
5: Πg ← Π1

6: for i = 1 to n do . n = |O|
7: Πi+1 ← ∅
8: for each πj ∈ Πi do
9: eπj ← CONSTRUCTENVELOPE(πj )

10: If eπj = ∅ skip to next iteration
11: Eπj

← GETAVOIDEDENVELOPESOFPATH(πj)
12: Eπ′

j
← Eπj

∪ {eπj
}

13: π′
j ← FINDPATH(sstart, g,WS , Eπ′

j
) . Avoiding Eπ′

j

14: if success then
15: SETAVOIDEDENVELOPESOFPATH(π′

j , Eπ′
j
)

16: Πi+1 ← Πi+1 ∪ {π′
j}

17: else
18: Πi+1 ← Πi+1∪BISECTANDFINDMOREPATHS(Eπ′

j
)

19: Πg ← Πg ∪Πi+1

Algorithm 2 BISECTANDFINDMOREPATHS(E )

1: Π← ∅
2: e← E .pop() . pop an envelope to bisect
3: if CHECKSINGLETON(e) then . contains one position
4: return ∅ . no further bisection possible
5: el, er ← BISECTENVELOPE(e)
6: Eπl

← E ∪ {el}
7: Eπr

← E ∪ {er}
8: for each Eπi

∈ {Eπl
, Eπr
} do

9: πi ← FINDPATH(sstart, g,WS , Eπ′
i
) . Avoiding Eπ′

i

10: if success then
11: SETAVOIDEDENVELOPESOFPATH(πi, Eπi

)
12: Π← Π ∪ {πi}
13: else
14: Π← Π ∪ BISECTANDFINDMOREPATHS(Eπi)

15: return Π

this envelope bisection, the algorithm may compute more
than one path in a single iteration of loop at line 6. It
therefore maintains a set of paths Πi for each iteration and
attempts to compute disjoint paths for all paths πj ∈ Πi in
the following iteration.

The preprocessing algorithm (Alg. 1) returns a database
of paths Πg = Π1 ∪ Π2 ∪ ... ∪ Πn+1 from sstart to a goal
g with the guarantee that for any possible configuration of
obstacles O, one of the paths π ∈ Πg is collision free. To
cover the full goal region G, Alg 1 is called for each g ∈ G
in the preprocessing phase.

2) Query: A query is comprised of a goal g ∈ G (sstart
is fixed) and obstacle configurations q(o1) ∈ Q(o1), q(o2) ∈
Q(o2), ..., q(on) ∈ Q(on). The query phase first looks up
the datastructures stored for the queried g. It then loops
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Fig. 3: Illustration of preprocessing steps in a 2D environment with two movable obstacles {o1, o2} ∈ O for a point robot.
APP plans a set of paths from sstart to g such that for any configuration of o1, o2 at least one of the paths from the set is
collision free. Static obstacles WS are shown in green and o1, o2 are depicted as circles. The dotted region depicts Q(oi)
(identical for o1, o2). Namely, o1, o2 are confined within the dotted region. (a) APP finds the first path π1 avoiding WS

only (b) Constructs envelope eπ1
around π1. The dark shaded region shows eπ1

and the light region shows its occupancy.
(c) Finds second path π2 avoiding eπ2 . Since APP successfully finds two disjoint paths at this step, these paths are sufficient
to avoid any configuration of o1. (d) Constructs envelope eπ2 around π2. (e) Attempts to find the third disjoint path but fails
and bisects eπ1

into el and er. (f) Finds path π3 around el and eπ2
(g) Finds path π4 around er and eπ2

(h) Set of paths
needed to avoid any configuration of o1, o2.

over the set of paths Πg until it finds a collision free path.
It is important to note that while doing so, it does not
require any collision checking, which typically is the most
computationally expensive operation in motion planning.
Instead, it uses the envelope eπj

of each path πj to find the
collision free path. The following data structures are stored
for the query phase to efficiently return collision free paths.

M : [G→ {Dg1 ,Dg2 , ...}]
Dgi : < {eπ1

, eπ2
, ...} : {π1, π2, ...} > . for each gi ∈ G

Namely,M is a lookup table that maps a goal gi ∈ G to a
dictionary Dgi where Dgi contains < eπj

, πj > pairs where
πj ∈ Πgi . The query phase is a straight-forward two step
process; in the first step, the dictionary Dgi is fetched for the
queried gi from M. In the second step, the algorithm loops
through all the pairs in Dgi to search for an envelope eπj

that does not contain any of the obstacle configurations i.e.
eπj
|q(o1), q(o2), ..., q(on) /∈ eπj

in the given planning query.
By construction of the preprocessing algorithm, atleast one of
the envelopes in Dgi is guaranteed to satisfy this condition.
To efficiently check whether a configuration is contained in
an envelope or not, we store envelopes as hash tables, which
allows the algorithm to perform this check in constant time.

D. Theoretical Guarantees

Lemma 1 (Fixed-time query). The query time of APP is
upper-bounded by a (small) time limit tquery.

Sketch of Proof. The query phase includes a lookup opera-
tion on M, running a loop over the set of alternative paths

Πg to the queried g and a nested loop through O which
also only involves lookup operations since the envelopes are
stored as sets. Since with perfect hashing ( [13]), the lookup
operations can be performed in constant time. The overall
complexity thus is bounded and is given by O(|Πg| · |O|)
which bounds tquery.

Special case: When all paths in Πg are disjoint, then we
have that |Πg| ≤ n + 1 and so the complexity of the query
phase becomes O(|O|2)

In practice we have that |Πg| � Q(o1) × Q(o2) × ... ×
Q(on) (number of paths required for the naive approach) and
therefore, tquery is very small.

Lemma 2 (Completeness). If the offline motion planner P
can find a collision-free path from sstart to a g ∈ G in
a (large) timeout tpreprocess, then APP is guaranteed to
generate a path for the same planning problem in time tquery.

Sketch of Proof. For the special case when all paths in Πg

are disjoint, the proof follows from Def. 2 because, since
the envelopes of paths in Πg are disjoint sets, no obstacle
configuration q(oi) can intersect with more than one path in
Πg . Since the algorithm computes n+1 paths if required for
n obstacles, at least one path is collision free.

For the general case where not all paths in Πg are
necessarily disjoint, the lemma can be proven by assessing
the recursive bisection procedure in APP. In the Alg. 1, P
attempts to find the (n+ 1)th path which avoids n envelopes
and bisects one of the n envelopes if P fails within tpreprocess.
The bisection occurs recursively until either the path is



computed for every leaf envelope or further recursion is
not possible, thus covering all possible configurations of
obstacles in O. Since APP uses P with the timeout tpreprocess
to solve each problem, it guarantees to have precomputed
a valid path for any problem that P can solve in tpreprocess.
Furthermore from Lemma 1, we have that the query time is
guaranteed to be within tquery.

III. IMPLEMENTATION DETAILS

In this section we cover three main components of our im-
plementation for the motion planning problem of a high-DoF
robot arm, (1) envelope construction, (2) envelope bisection
and (3) computing envelope occupancy. Our implementation
approximates the geometry of the movable obstacles with
spheres. This approximation restricts the dimensionality of
Q(oi) to R3.

A. Envelope Computation using Distance Field

The naive approach of computing an envelope eπ around a
path π (recall Def. 1) requires collision checking all obstacle
configurations with each robot state s ∈ π. This can be
very expensive for a large number of configurations that the
obstacles can have. Instead, the envelope is constructed in
a simple two step process. First, the path π is voxelized
(using the collision model of the robot) and added to an
occupancy grid. Second, to compute the positions of each
oi ∈ O that collide with π, the occupancy grid is inflated
by the radius ri of oi, (approximating an obstacle oi with
a sphere of radius ri) which is efficiently done by using a
signed distance field. The intersection of the set of discrete
positions of the occupied cells with Q(oi), constitutes eπ . To
allow computing disjoint paths, following Def. 1, the obstacle
positions that collide with sstart or are within a small distance
ε from the goal position are excluded from eπ . This enforces
an assumption that an obstacle is not placed within ε distance
from the goal position.

B. Envelope Bisection

The envelope bisection refers to splitting an envelope e
into two sub-envelopes el and er (see Alg. 2 line 5).
Several schemes could be used to make this split. In our
implementation, we split the envelope along either of the
three planes x = xc, y = yc or z = zc. where the xc, yc and
zc are the means of the x, y and z components respectively
of all positions in the envelope e to be bisected. Among
the three axes, we pick the axis that has the largest span of
positions. As described earlier, each envelope is implemented
as a binary tree and this bisection results in creation of two
children el and er for the parent e in this binary tree. Note
that we remove subscripts for paths once the envelope is
bisected since the bisected envelopes no more follow Def. 1.
Alg. 2 also makes a choice at line 2 for the envelope to
be bisected from the input set of envelopes E . While this
decision does not affect the properties of the algorithm,
different heuristics can be used for this choice as well. In
our implementation, we simply select the largest envelope
for bisection.

C. Computing Envelope Occupancy

This step corresponds to an implementation detail within
procedure FINDPATH in Alg. 1. In order to find a path around
the set of envelopes E , the joint occupancy of all envelopes
in E is computed. To do so, for each obstacle oi, all of its
discrete positions in E are added to an empty occupancy grid,
followed by the inflation of the occupancy grid (as described
earlier) by the radius ri of the corresponding obstacle oi. The
joint occupancy of all these grids constitutes the occupancy
of E . 1

IV. EXPERIMENTS

We evaluated APP on the 7 DoF Franka arm in three differ-
ent semi-structured domains and compared its performance
with other state-of-the-art sampling-based and search-based
motion planning algorithms. For sampling-based algorithms
we used OMPL’s implementations [16]

We consider the problem of reaching a feasible grasp pose
φ ∈ Φ for a target object oT at configuration q(oT ), where Φ
is a set of precomputed grasps (transformed into the robot’s
frame) for oT . The resultant problem is a multi-goal planning
problem where given Φ, the robot has to find a collision free
path π to any φ ∈ Φ while avoiding obstacles in W and
meeting the success criterion. We use YCB objects [17] as
targets with the grasps from [18].

In all our experiments, we sort the grasp poses using
a distance metric selecting the next best grasp being the
one closest to the grasps already attempted so far. We use
collision-aware IK to find valid grasps. For the baselines
that support multi-goal planning (RRT* [15], BIT* [14],
LazyPRM [4]) in OMPL, the planner picks the top five
grasps from the sorted list and plans to the corresponding
goals within a single planning query. For the remaining
baselines (Lightning [9], RRT-Connect [2], E-graphs [8])
the planner sequentially iterates through all the grasps in
Φ and terminates when the success criterion is met or until
the timeout. APP uses Lightning as its underlying motion
planner P .

We define the goal region G as a space of possible
configurations of oT in the world. G is domain specific and
depends on the allowable region of oT in the world as well
as the geometry of oT . To give an example, we used the bowl
from the YCB dataset as the target object in our experiments.
Since it is symmetric about the vertical axis and can rest on
a planer surface, that limits the dimension of G to R2. For an
object like a mug, its G would be in SE(2). G is discretized
to get a discrete set of poses G of oT .

A. Experimental Scenarios

Fig. 5 shows two of our example scenarios. In both the sce-
narios, we define the goal regions G as bounded x, y planes
since the target objects that we use are symmetric about
the z-axis. The obstacle regions Q(oi) are also bounded
x, y planes and are identical for all obstacles in O. G and

1In our experiments, we consider all obstacles of the same sizes. In
that case, a single inflation operation is needed, each for the envelope
construction and computing envelope occupancy steps.



(a) (b) (c) (d)

Fig. 4: Illustration of the preprocessing steps for the mail-sorting environment with two movable obstacles on a tabletop for
a single start and goal pair. (a) APP finds the first path avoiding WS only. (b) Constructs envelope around first path and
finds the second path avoiding the first envelope. (c) Constructs a second envelope around the second path and finds the
third path avoiding the two envelopes. (d) At query time, given a random configuration of movable obstacles, APP looks
up a valid path (second path, Fig. b) among the set of precomputed paths.

Shelving Sorting Sorting (time constrained)
[248 goals] [680 goals] [680 goals]

No. of Obstacles 1 2 3 1 2 3 1 2 3
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es
s

R
at

e
[%

] APP 100 100 100 100 100 100 100 100 100
Lightning [9] 94 95 97 100 100 100 97 96 75
E-Graphs [8] 20 15 14 89 89 81 50 45 41

RRTConnect [2] 96 95 97 100 100 100 19 14 11
LazyPRM [4] 46 34 23 98 99 93 46 35 28

BIT* [14] 92 75 64 84 81 75 37 42 40
RRT* [15] 9 12 17 100 100 100 20 15 25

M
ea

n
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an
ni

ng
Ti

m
e

(s
td

,m
ax

)
[m

s] APP .005 .006 .006 .005 .005 .007 .005 .005 .006
(.001, .009) (.001, .013) (.001, .014) (.001, .008) (.001, .009) (.001, .011) (.001, .009) (.001, .009) (.001, .008)

Lightning [9] 124 149 162 31.1 37.5 48.6 70.7 77.5 98.4
(28.2, 221) (63.3, 413) (82.2, 552) (13.7, 76.8) (20.0, 96.1) (30.2, 144) (80.3, 542) (63.0, 307) (84.6, 414)

E-Graphs [8] 988 1044 904 203 273 275 162 210 176
(587, 1943) (484, 1952) (364, 1520) (92.0, 824) (290, 1936) (250, 1918) (55.2, 534) (78.1, 575) (78.6, 567)

RRTConnect [2] 168 167 260 62.0 59.5 72.9 112 110 104
(192, 1880) (71.7, 488) (228, 1363) (46.7, 364) (29.2, 151) (38.1, 194) (75.0, 311) (71.6, 272) (72.4, 279)

LazyPRM [4] 1014 1204 1196 338 480 442 219 219 224
(388, 1921) (410, 1954) (516, 1967) (265, 1454) (402, 1716) (405, 1919) (65.8, 386) (72.6, 478) (93.1, 568)

BIT* [14] 727 904 833 327 298 442 251 262 252
(256, 1997) (380, 1950) (363, 1923) (357, 1963) (305, 1555) (417, 1728) (102, 556) (92.9, 540) (109, 633)

RRT* [15] 572 539 566 137 137 137 193 187 193
(128, 893) (54.6, 616) (29.0, 617) (31.9, 196) (31.7, 199) (32.4, 214) (50.3, 289) (36.7, 261) (50.5, 290)

A
PP

Preprocessing 8.9 48.2 49.9 17.6 31.2 74.6 17.5 30.4 98.8Time [min]
Paths per Goal 2.0 (0.1) 3.2 (0.7) 4.1 (0.9) 2.0 (0.0) 3.1 (0.5) 6.1 (4.0) 2.0 (0.1) 3.1 (0.4) 5.8 (7.7)(mean, std)

Memory [Mb] 9.7 15.6 20.6 24.8 37.8 70.6 17.5 28.5 54.7

TABLE I: The table shows the success rates and planning times of APP and the baselines, as well as the preprocessing
statistics for three different domains, with 1, 2 and 3 movable obstacles. 100 random tests were run for each experiment
with the timeout of 2s. The same timeout was used for APP during preprocessing.

Q(oi) both are discretized with a resolution of 2cm. We use
occupancy grid to represent the occupancy of W which also
has a 2cm discretization. The value of parameter ε (defined
in Def. 1) in all the experiments is 20cm. Table I shows the
statistical results of all our experiments. The experiments
were run on Intel Core i7-7800X CPU @3.5Ghz with 32
GB memory.

APP shows a success rate of 100% for all the experiments,
with several orders of magnitude speedup compared to the
baselines. The baselines do well in the sorting domain but
they suffer in shelving and the time-constrained sorting

domains, which are more challenging. Lightning’s lower
success rate for the shelving domain compared to APP is
because randomly positioned obstacles can potentially create
harder planning problems, compared to the problems it solves
within the APP framework. Lightning’s lower success rate
for the time-constrained domain is due to its higher planning
time, which makes it harder to satisfy the overall time-
out ttask. The performance of preprocessing and experience-
based planners (LazyPRM, Lightning, E-graphs) drops with
the increase in the number of movable obstacles. In the
time constrained domain, optimal sampling-based planners



Fig. 5: Left: Shelving/unshelving task. Right: mail sorting
task. Both tasks involve a mix of static obstacles and obsta-
cles which may appear at many different positions. Target
object is shown in red, and approximate movable obstacles
are shown in yellow. The goal regions are depicted with
green rectangles.

(RRT*, BIT*) do not perform better than non-optimal plan-
ners, because besides being slower, their convergence rate
is not as fast as the time bound requires. Secondly more
significant cost reduction is achieved by post-processing in
our domains, which is used for all the planners.

Shelving/Unshelving: In the shelving/unshelving sce-
nario, the robot is tasked with reaching a target object placed
in the rear section of a shelf while avoiding other objects.
We approximate each oi ∈ O as a voxelized sphere of
radius 6cm. This problem is challenging because the movable
obstacles create narrow passages in the configuration space
of the robot. Since the target object is symmetric about the
vertical axis, G is a bounded plane in the rear section of the
shelve.

Mail Sorting: The robot must pick up packages from a
tabletop while avoiding collisions with other packages and
put them in a cubby. We approximate each oi ∈ O as
a voxelized sphere of radius 8cm. In addition to planning
to a grasp pose, the planner needs to search for a valid
pregrasp pose which gets harder with more clutter around
the target object. Additionally, the target cubby creates a
narrow passage for the motion planner. An example of the
preprocessing phase for a single start and goal pair for this
domain is depicted in Fig. 4

Time-Constrained Mail Sorting: We add an additional
constraint on the robot that both the planning and execution
must be completed within an overall timeout ttask = 2.0s.
Such constraints are often required for robots operating at
conveyor belts [12]. This setting makes the planning problem
even harder because the manipulation planner not only has
to plan fast but also must return a solution that is executable
within the remainder of the time.

B. Real-World Case Study

We also tested APP on a pick-and-place task inspired by
a kitchen environment, both in simulation and in the real
world. We used Isaac Gym [19] for our simulation tests.
The task is shown in Fig. 6. The goal is for the robot to pick
up the red bowl, while avoiding two obstacles: large blue
pitchers from the YCB object set [17]. We approximate the

(a) (b)

Fig. 6: Real-world case study in a kitchen environment:
(a) Snapshots of a collision-free path genearated by APP
in the real world. (b) Snapshots of a collision-free path in
simulation.

geometry of each pitcher with two spheres (one on top of
the other). The generation of paths with APP took less than
10 microseconds and was 100% successful. Object poses
were estimated by PoseCNN [20]. On average, perception
took 0.22 ± 0.3 seconds to return accurate poses; the high
variance was due to some obstacle configurations being more
challenging than others. For videos, see the supplementary
materials.2

V. CONCLUSION AND FUTURE WORK

APP extends the applicability of existing fixed-time plan-
ning algorithms from highly-structured to semi-structured
environments by explicitly accounting for movable obstacles
during preprocessing. A noteworthy limitation of APP is that
its preprocessing times can grow drastically if the movable
obstacles increase beyond a certain number. An interesting
future direction is to develop an “anytime” variant of APP
which tries to maximize the number of possible queries that it
can handle at query time, within the allowed preprocessing
time. Another direction is to relax our assumption on the
obstacle geometry. Our real world experiment is a step
towards this direction.
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