
Generalizing Object-Centric Task-Axes Controllers using Keypoints

Mohit Sharma1 and Oliver Kroemer1

Abstract— To perform manipulation tasks in the real world,
robots need to operate on objects with various shapes, sizes
and without access to geometric models. It is often unfeasible
to train monolithic neural network policies across such large
variance in object properties. Towards this generalization
challenge, we propose to learn modular task policies which
compose object-centric task-axes controllers. These task-axes
controllers are parameterized by properties associated with
underlying objects in the scene. We infer these controller
parameters directly from visual input using multi-view dense
correspondence learning. Our overall approach provides a
simple and yet powerful framework for learning manipulation
tasks. We empirically evaluate our approach on 3 different
manipulation tasks and show its ability to generalize to large
variance in object size, shape and geometry.

I. INTRODUCTION

Manipulation tasks in the real world involve objects of
varying, and often unknown, shapes and sizes. Learning to
perform manipulation tasks across such a wide range of
objects, without access to their underlying geometric models,
is a challenging problem. Recent work has shown how simple
keypoint representations can be used to obviate the need of
known geometric models [1], [2]. These keypoint representa-
tions, which are learned purely from visual data, are easy to
acquire and provide accurate and robust intra-category gen-
eralization capabilities. Such keypoint representations have
been utilized to formulate optimization problems, whose
solutions results in a one-step SE(3) action that is performed
by the robot [1], [2]. Alternately, they have also been used
for state estimation [2], [3], wherein the keypoints are often
directly used as inputs to monolithic neural networks that
output the action to be performed at each step.

Instead of using monolithic policies for task learning,
recent work [4] has proposed a more modular approach
by defining task-axis controllers for each possible subtask.
These controllers are attached to different objects (or their
parts) in the scene, such as the normal of a table or middle
of the door handle. This object-centric nature of controllers
provides important invariances to certain object properties
such as a controller that reaches close to an object will be
invariant of its position. More importantly, these controllers
are reusable across multiple different tasks and provide a
structured action space for the robot to explore and act. This
approach results in improved sample complexity and much
better generalization for manipulation tasks, and is referred
to as object-centric task-axes controllers.

1Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
Correspondence to mohits1@cs.cmu.edu

Parameterized Task-Axes
Controllers

Position Attractor (,)
Force Attractor (,)

Step 1: Generate Dense Object Descriptors
using Multi-View Dense-Correspondences

Step 2: Annotate Reference Pixels on some
Reference Image.

Pre-Training

Find Unknown Task-Axes Controller Parameters

Given new scene with a different object
of same category

Find Keypoint Parameters Using
Pre-Trained Dense Object Descriptors

Generate Axes Parameters

Position Attractor (,)
Force Attractor (,)
Position Attractor (,)
Force Attractor (,)

<latexit sha1_base64="j9JFVFD3Ckskm1EQysQQdgqvyJU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh14i+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1EPjdE=</latexit>⇡

Learned Policy to Select
Task-Axes Controllers

Policy Training

Use Generated Parameters to
Create Task-Axes Controllers

<latexit sha1_base64="B1pwU2JRVAB4dpn6t+NGyIzL2QQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMF+wFtKJvNpl272Q27k0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbITFMcMkayFGwdqoZSULBWuHwbua3RkwbruQjjlMWJKQvecwpQSs1u6NIoemVK17Vm8NdJX5OKpCj3it/dSNFs4RJpIIY0/G9FIMJ0cipYNNSNzMsJXRI+qxjqSQJM8Fkfu3UPbNK5MZK25LoztXfExOSGDNOQtuZEByYZW8m/ud1MoxvggmXaYZM0sWiOBMuKnf2uhtxzSiKsSWEam5vdemAaELRBlSyIfjLL6+S5kXVv6p6D5eV2m0eRxFO4BTOwYdrqME91KEBFJ7gGV7hzVHOi/PufCxaC04+cwx/4Hz+AMzBj0Y=</latexit>...

<latexit sha1_base64="B1pwU2JRVAB4dpn6t+NGyIzL2QQ=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6LHoxWMF+wFtKJvNpl272Q27k0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGpVpyhpUCaXbITFMcMkayFGwdqoZSULBWuHwbua3RkwbruQjjlMWJKQvecwpQSs1u6NIoemVK17Vm8NdJX5OKpCj3it/dSNFs4RJpIIY0/G9FIMJ0cipYNNSNzMsJXRI+qxjqSQJM8Fkfu3UPbNK5MZK25LoztXfExOSGDNOQtuZEByYZW8m/ud1MoxvggmXaYZM0sWiOBMuKnf2uhtxzSiKsSWEam5vdemAaELRBlSyIfjLL6+S5kXVv6p6D5eV2m0eRxFO4BTOwYdrqME91KEBFJ7gGV7hzVHOi/PufCxaC04+cwx/4Hz+AMzBj0Y=</latexit>...

Keypoint Parameter
Axes Parameter

Unknown Controller Parameters

Fig. 1: Overview of our proposed approach. We extend task-
axes controllers to operate on visual input and use them
to present a simple and generalizable approach for learning
manipulation tasks.

One limitation of [4] is that they do not infer the controller
parameters directly from the observed data. Instead, they use
heuristics to define the set of possible controller parameter-
izations for each task. These controller parameters include
both the position targets, i.e., 3D positions for relevant
objects or other semantically meaningful points on the object
such as edges or corners, as well as the relevant axes, i.e.,
the axes along which the controller acts.

Our aim in this work is to extend [4] to allow it to infer
the controller parameters directly from visual input. Thus we
avoid the use of fixed heuristics to find the position-target
parameters for the controllers. This is important since such
heuristics are often defined as functions of object parameters,
and thus assume direct knowledge of an object’s shape, size,
and overall geometry, which might not be easily available
in the real world. Instead, we propose to use keypoint
representations based on dense object descriptors to infer
these parameters directly from visual data. Additionally,
instead of using heuristics to provide the axes-parameters
we populate them automatically for each of the task-axes
controllers. This results in a simple approach that allows the
robot to learn complex manipulation tasks directly through
interaction.

Our overall contributions include: 1) We extend object-
centric task-axes controllers to infer the controller parameters
directly from visual input. 2) Since learning both task-
specific controller parameters and task-specific controller
combinations (i.e. task-policy) together is a challenging
problem, we show how our proposed approach solves this
problem by learning to bootstrap controller parameters using

ar
X

iv
:2

10
3.

10
52

4v
1

 [
cs

.R
O

]
 1

8
M

ar
 2

02
1

dense correspondence learning. 3) We empirically validate
our approach on multiple manipulation tasks and show its
generalization abilities across objects with different shape,
size and geometry. Video results for all tasks can be accessed
at this link.

II. RELATED WORK

Task Frames: Task frames (or task-spaces) have long been
long used by robotics community for robust task execution.
Early works of [5]–[7] formalized and used the notion of
task-axes and constraint based task-frames for different ma-
nipulation tasks. For robust task execution, roboticists often
design specific motions relative to some fixed task-frame or
task-axes [8]–[14]. More recent works, have also proposed
techniques to learn to select the appropriate task frame for
the given task [8], [11], [12], [15], [16]. These methods
use Imitation Learning (IL) combined with manually de-
fined heuristics such as inter-trial variance between human
demonstrations to rank proposed task-frames. Recent work
[4] have also proposed using Reinforcement Learning (RL)
to choose multiple different controllers both sequentially and
in parallel to complete a task. Each controller in [4] is defined
with respect to some task axes or target keypoint. To avoid
controllers at each step from interferring with each other
null-space projections are employed. In this work, we further
extend this line of research by learning controller targets
and controller axes from visual observations. We combine
task-axes controllers with recent advancements in multi-view
correspondence learning to show how the resulting technique
can generalize to a large set of scenarios.

Multi-view Correspondence Learning: We use keypoints
to define targets for the different task-axes controllers. For
this we build upon the recent work on using keypoints
for manipulation learning [1], [2], [17], [18]. Most closely
related to our work is [1] which uses supervised learning to
detect relevant keypoints on objects, which are then used to
define a specific optimization problem for each task. Solving
this optimization problem leads to a SE(3) transformation
which is executed to perform the task. In work concurrent to
ours, kPAM [1] was extended to kPAM 2.0 [18]. kPAM 2.0
uses oriented keypoints, i.e., keypoints with local orientation
information and actions that are defined with respect to
these keypoints. This leads to a modular architecture similar
to ours. However, the control policy in [18] is manually
specified or uses demonstrations while we use more general
task-axes controllers and learn their composition using RL.
Further, as we show once this RL policy is learned it can
also be used to refine/learn keypoint representations for a
new set of objects thus completing the perception/control
loop. Alternately, [19] learn task-specific keypoints to solve
tool manipulation tasks. In [19] tool manipulation is posed
as an optimization problem which uses the inferred key-
points. Although [19] does not use annotations, they rely
on a manually defined heuristic policy to initially train the
keypoint generation network. By contrast, we use multi-
view correspondence learning [20] [2] to learn dense object
descriptors which are used to infer keypoints. Also, instead

of a heuristic policy, we rely on a single human annotation,
which when combined with dense object descriptors works
well in practice. More importantly, unlike [1], [19] which
solve optimization problems, we instead solve a temporally
extended RL problem, where at each step which task-axes
controller to execute needs to be learned by interaction.

Learning with Parameterized Actions: Learning to se-
lect the task-axes controller to execute at each step (task-
policy), as well as the target and axes parameter for this
controller is closely related to learning with parameterized
actions. Parameterized action spaces consider the problem
where each action of an MDP is parameterized by a low
dimensional input. In [21], parameterized action-MDPs were
referred to as PAMDPs. PAMDPs are challenging to solve
since they require a bilevel optimization algorithm, wherein
the outer loop searches over the continuous action pa-
rameters, while the inner loop optimizes for the discrete
action selection to complete the task. Since the inner loop
requires solving an RL problem, this bilevel optimization is
challenging to perform for high-dimensional spaces. Alter-
native works [22] have been proposed that avoid this bilevel
optimization problem by exploring both, the parameter-space
and the action-selection space together. However, since these
works explore using uniform distributions over the action
parameters, they are unsuitable when these parameters need
to be inferred from high dimensional spaces, e.g., selecting
a pixel (keypoint) from an image. In current work, we avoid
the computational complexity of this bilevel optimization
by bootstrapping the controller parameters using multi-view
correspondence learning.

III. OVERVIEW

Manipulation tasks often involve different objects and
manipulating them through contact to achieve desirable ef-
fects. The use of object-centric task-axes controllers provides
a structured action space for the robot to both explore
and act in. However, as discussed previously, instead of
using heuristics to specify the parameters for these task-
axes controllers, we would like to infer them directly using
perceptual input. In the following sections we first discuss
the task-axes controllers formulation based on previous work,
along with the different types of controllers that are used and
their associated parameters. Following this, we discuss our
approach to learn these parameters directly for each task.

IV. OBJECT-CENTRIC TASK AXES CONTROLLERS

Prior work [4] defines multiple different task-axes con-
trollers, each associated with some underlying object in
the scene. Each controller is also associated with some
predefined task-axes. These task-axes are centered at some
task-specific target positions, such as object centers or other
semantically useful points on the object e.g. edges or corners.
Further, these task-axes can be oriented in different ways e.g.
along the surface normal, or along some world axes. In the
following sub-sections, we briefly discuss some of the rele-
vant controllers used in our current work and subsequently
detail their associated parameters.

https://sites.google.com/view/robotic-manip-task-axes-ctrlrs

A. Controller Types

We use three different types of controllers — position,
force, and rotational alignment controllers. We use position
controllers as attractors that move the end-effector (EE) close
to some target position on an object of interest. We also use
another set of position controllers, which are implemented
as curl attractors, that allow us to rotate around objects of
interest to align with them. In addition to position controllers,
we also use force controllers which apply a fixed force
magnitude along a particular target axes, e.g., pushing an
object down requires a force along its vertical direction.
Rotation controllers are used to align end-effector axes with
some given object axes. The position and force controllers
generate delta translation targets for the end-effector, and the
rotation controllers generate delta rotation targets.

We now discuss the exact set of parameters used for each
controller defined above. We use xc ∈ R3, Rc ∈ SO(3),
and fc ∈ R3 to denote the current end-effector translation,
rotation, and forces expressed in the robot’s base frame.

Position and Force Controllers: The position controller
is parameterized by a target position xd and an axis u
along which the controller will move the robot’s end-effector
toward the target. u can either be a fixed direction, like the
normal direction of a surface, or it can be time varying
while following xd, i.e., u = xd−xc

‖xd−xc‖2 . The translation
error for the above controller can be computed as, i.e.,
δx(xd, u, xc) = P(u)(xd − xc), where P(u) = uu> is the
projection matrix for the axis u. The force controller is also
parameterized by a force target fd and a direction u, which
can also be fixed or time-varying (as defined above).

Rotation Controller: is parameterized by unit vector u,
which selects an EE-axis using Rcu and aligns it with a
target axis rd. Together, (u, rd) parameterize the rotation
controllers. The rotation controller produces the following
delta rotation target (using the angle-axis representation),
δR(rd, u,Rc) = cos−1((Rcu)

>rd)((Rcu)× rd).
We refer the reader to [4] for more details on these

controllers as well as their visualization and implementation.
Controller Parameters: From the above discussion we

get the following parameters for each controller, (xd, u) for
position controllers, (fd, u) for force controllers and (rd, u)
for rotation controllers. Finally, since each controller is either
implemented as a PD, PI or PID controller, they also require
suitable gain parameters Kp, Kd, Ki. In this work we focus
on learning parameters that can be directly inferred from
visual input, i.e., the 3D position targets (xd), rotation target
rd and target-axes (u). While we fix the values for other
parameters. In the following discussion, we use the term
learned controller parameters to refer to this initial set of
parameters only.

V. LEARNING CONTROLLER PARAMETERS

In prior work, desired position targets xd are defined using
task-specific heuristics such as middle of the door handle
or the middle of the wall as target positions. Task-specific
knowledge is also used for task-axes parameter u and rotation
targets rd. For instance, for the door opening task we only

Fixed Parameterized
Task Policy

<latexit sha1_base64="j9JFVFD3Ckskm1EQysQQdgqvyJU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh14i+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1EPjdE=</latexit>⇡ Environment
Action

Reward

Fig. 2: The model used to learn keypoint parameters using
the bootstrapped task policy. Detailed model architecture is
in Appendix III-C.

add rotation controllers that align the downward end-effector
axes with the door normal. By contrast, we want to infer
these parameters from visual input and learn the appropriate
parameters based on task interaction instead of heuristics or
apriori information.

As noted previously, to learn both — relevant xd, u, rd
for each task-axes controller as well as the composition
of these task-axes controllers for task completion, is a
challenging problem. This is because it requires solving a
bilevel optimization problem with an inner loop that involves
solving a challenging RL problem [21]. This challenge is
further magnified when the controller parameters have to be
inferred from high dimensional input such as images. For
instance, parameters such as 3D controller position targets
can lie anywhere on the image space.

To overcome these challenges we propose to bootstrap
learning the controller position parameters xd through multi-
view correspondence learning and a few human annotations.
We simultaneously infer a set of candidate axes parameters
for both u and rd from the given objects in the scene. Using
these bootstrapped parameters we learn a task-axes controller
composition policy π using RL. With this learned π we can
subsequently learn xd parameters for novel objects for which
no human annotations are available. In the following sub-
sections we explain the proposed approach in more detail.

A. Learning to Bootstrap Controller Parameters

We now discuss our approach to bootstrapping the position
target and target-axes parameters. First, we look at the case
of 3D position parameters xd, and subsequently we look at
the axes parameters u and rd.

1) Keypoint Parameters: We refer to the 3D position
target parameters (xd) of each controller as keypoint pa-
rameters. These keypoint parameters are associated with
semantically meaningful parts of underlying objects such as
middle of the door handle, center of the button, edge of
a block. To bootstrap learning the keypoint parameters, we
propose to use multi-view dense correspondence learning.
Specifically, we use DenseObjectNets [2], [17] which learn
dense object descriptors for each pixel from multi-view data
in a completely self-supervised manner. Not only does this
setup avoid the need of any expensive manual data-labeling
procedure, prior works have shown that the learned object
descriptors are quite robust to the presence of mild occlusions
and importantly, lead to category-level generalizations [2].
As we show empirically in Section VII, such category level
generalization allows us to infer consistent controller targets

Fig. 3: The three different tasks used to evaluate our proposed
approach. From left to right: Button Press, Block Tumble,
and Door Opening.

irrespective of the object’s size and position as well as
variation in its shape and geometry.

To train dense object descriptors, we use a small set of
objects (≈ 10) relevant to each task family and learn dense
descriptors on these objects. All of these objects belong to
the same category, e.g., for the door opening task we learn
descriptors across doors with varying sizes of door handles
as well as their locations on the door frame. Thus, the learned
dense object descriptors should generalize to other novel
objects that belong to the same category, e.g., door handles
with more complex shapes. Figure 7 visualizes some learned
object descriptors. We refer to this dense-object network
model as our bootstrapped keypoint model φ.

Given φ, we infer the keypoint parameters for each con-
troller by using a reference image (Ir) from the dataset
collected for training dense descriptors. This reference im-
age is used as representative for the object category being
manipulated. To extract keypoints we manually label a set of
reference pixels on Ir, denoted as P := {p1r, p2r, · · · }. These
reference pixels pir encode semantic information about the
scene which is relevant for the task. For instance, for the
door open task we label pixels near the edge and middle
of the door handle since these keypoints afford grasping
and rotating the door handle compared to pixels closer to
the handle’s rotation joint. Similarly for the block tumble
task we label pixels near the edge instead of the middle of
the block. Figure 6 shows example keypoints for the tasks
considered in our current work. Assuming known camera
parameters we get 3D position targets {x1d, x2d, · · · } from
{p1r, p2r, · · · } directly. To get position targets for a new image,
which contains a novel object of the same category as Ir,
we use pixels that are closest to the reference pixels in the
descriptor space i.e., pi = argminp ‖φ(pir)− φ(p)‖2, where
p is any pixel on the image, and pi is used to get the i’th
controller target xid.

2) Axes Parameters: Both rotation target rd and target-
axes u parameters require valid 3D axes. To find these rele-
vant axes for each controller, we initially extract a relevant
set of 3D axes for the given scene. We refer to this as the
candidate axes set, A := {a1, a2, · · · }. There exist multiple
approaches to extract these candidate axes. For instance,
possible candidate axes include both the global (world) axes
as well as object axes. Additionally, we can also extract
candidate axes by using the local geometry of the object
around each inferred keypoint e.g., using the axes normal to
surface or along the surface. In this work, we directly use

Fig. 4: Example task variations used for training the Button
Press and Door Open tasks.

the object axes and the global axes as our candidate axes.
Given A the set of candidate axis, we can find u for

each controller by finding the most relevant axes from A.
However, this requires task-specific knowledge e.g., in the
form of user defined priors as used in previous work. Instead,
we avoid this by associating each position target with every
axis aj ∈ A. Additionally, each axes in A can be used to
create a unique rotation target rd. One drawback of this
approach is that it results in a combinatorial number of
controllers, since we associate every position target with
each axes in A. This can result in a large action space
for π to explore. In Section VII, we empirically validate
how this choice affects the sample complexity of using task-
axes controllers for different manipulation tasks. Figure 1
visualizes the pipeline of our overall approach.

B. Learning Controller Parameters via Learned Task-Policy

Using the above approach we can bootstrap controller
parameters and learn task-specific manipulation policy π.
This policy learns to compose different task-axes controllers
to achieve the overall manipulation task. As we show empiri-
cally, this combination of bootstrapped controller parameters
and learned task-policy can now be used on novel objects
with varying geometry, shape, size etc. This impressive level
of generalization is a result of both, the category level
generalization provided by dense-keypoint parameters and
the object-centric nature of task-axes controllers.

However, in some scenarios we may want to use the
learned task policy on objects that belong to a different
category as compared to objects that were used to learn
the bootstrapped keypoint parameters. For such cases, the
keypoints pi inferred by the bootstrapped dense-object net-
work based keypoint model (φ) can be unsuitable. In such
cases, instead of re-training the dense-object network on this
new set of objects and relying on human annotations to get
corresponding reference pixels P , we can utilize the learned
task policy π and learn the mapping to keypoint parameters
directly from image space. This is possible because of two
reasons. First, since π is implicitly parameterized by the
controller target parameters xd, we can learn xd’s value for
the new set of objects based on the feedback from rolling out
π. Second, this assumes that task policy π is approximately
similar across both sets of objects, i.e., the set of objects

used during bootstrap learning and the new set of objects.
This assumption holds for the tasks we consider, e.g., to
learn a door opening policy, we only need to reach close to
the handle, grasp it from a location which affords grasping,
rotate the handle and pull it.

To learn keypoint parameters for new set of objects,
we learn a new neural network ψθ, with weights θ, by
rolling out π and learning to optimize the underlying task
reward J(θ) = Eτ∼π(·|s,ψθ(Is)) [r(τ)], where ψθ(Is) denote
the keypoint parameters inferred from image Is at state
s, and π represents the learned task policy. We do not
update π during this keypoint learning stage. J(θ) can be
optimized using any policy gradient method e.g. Reinforce
[23], ∇J(θ) = Eτ [r(τ)∇ logψθ(s)]. We represent ψθ using
a fully-convolutional network, with the last layer of the
network containing as many channels as the number of
keypoint parameters to infer. We use a softmax over each last
channel and sample the appropriate pixel to get pi which is
then used to infer the controller target xid. Figure 2 provides
an overview of our approach, while Appendix III-C provides
more details about the network architecture and its training.

VI. EXPERIMENTAL SETUP

With our experiments we aim to evaluate: 1) How well
does our proposed approach using bootstrapped controller
parameters perform? Since a combinatorial mix of keypoint
and axes parameters results in a large action space, we
investigate how this affects overall task performance and
sample complexity of our approach (Section V-A Training).
2) How well does the combination of dense-object net based
keypoint model and object-centric task-axes controller gener-
alize to new objects of varying shapes, sizes and geometry?
(Section V-A Generalization), 3) How well can a learned task
policy be utilized to learn keypoint controller parameters for
new set of objects (Section V-B)?

A. Tasks

To evaluate our proposed approach we use 3 different
manipulation tasks (Figure 3) of increasing complexity –
Button Press, Block Tumble, and Door Opening.

Button Press: In this task, a 7-DoF Franka Panda arm is
used to push down a button which is positioned on top of
a box placed infront of the robot (Figure 3 left). Instead of
using only one type of button object, we verify our approach
on multiple objects with different shapes and sizes. These
variations include the button position on top of the box
object, sizes of both the button as well as its underlying box
object. Figure 4 (top) visualizes some of these variations.

Block Tumble: In this task, a 7-DoF Franka Panda arm is
required to tumble a block along a particular axis (Figure 3
middle). This task is particularly interesting since there exist
multiple different ways to accomplish it. For instance, the
robot can tumble the block by applying a downward force
anywhere along its edge. To test generalization for this task,
we vary the size of the block between 0.07m to 0.16m.

Door Opening: We also verify our approach on the door-
opening task. In this task, the Franka robot needs to open

Env EE-Space TAC (Manual)* TAC (Keypoints+Axes)

Button Press 0.98 (0.01) 1.0 (0.0) 1.0 (0.0)
Block Tumble 0.487 (0.26) 0.96 (0.03) 0.932 (0.04)
Door Opening 0.0 (0.0) 0.97 (0.01) 0.94 (0.05)

TABLE I: Mean (std) for each method on all three differ-
ent manipulation tasks. Each approach was verified on 15
different environment variations.

a door by first turning its door handle and then pulling the
door beyond an opening threshold. In contrast to [4], which
tests generalization by only varying the position of the door
handle on the door frame, we vary both the size of the
door handle as well as the location of the door handle on
the door. Additionally, we also change the door shape and
evaluate the proposed approach for both cuboidal, cylindrical
and more complex door handle shapes. See Figure 4,8 or
attached video (project page) for reference.

B. Compared Approaches

We compare our proposed approach against multiple dif-
ferent methods. In the below sections we refer to task-axes
controllers using the shorthand TAC.

1) EE-Space: We verify the utility of the structured action
space provided by object-centric task-axes controllers
by comparing against an approach that directly controls
the robot via end-effector delta targets.

2) TAC (Manual) We also evaluate our approach against
manually specified controller parameters. We note that
we do not aim to use the smallest possible number of
controllers and their parameters. Instead, we specify
the controllers and their parameters only to provide
some useful priors for overall task learning.

3) TAC (Keypoints): We evaluate one version of our
proposed approach in which we only infer the keypoint
parameters i.e. the target positions for each position or
force controller. We reuse the axes specified for TAC
(Manual) with the inferred keypoints.

4) TAC (Keypoints+Axes): We evaluate our proposed
approach wherein both the keypoints as well as the
axes parameters are inferred for each scene.

Table II shows the number of keypoints and axes param-
eters inferred for each of the tasks. We note that there exist
controllers which do not have any axes associated with them
such as the error axis controllers.

Metrics: We show qualitative and quantitative results for
two scenarios. First, we show results for learning task policy
using bootstrapped controller parameters. Second, we use
this learned task policy to show results for learning controller
parameters using direct interactions. For both scenarios we
compare approaches using the success ratio metric.

RL Training: For training the task policy we use Proximal
Policy Optimization (PPO) [24] based on stable-baselines
[25]. While for learning controller parameters we found a
simple Reinforce [23] based approach to be sufficient. All
results are run and reported for 5 different seeds. Hyperpa-
rameters for each setting are reported in the Appendix III.

Button Press Block Tumble Door Open
EE-Space TAC (Manual) TAC (Keypoints) TAC (Keypoints + Axes)

Door Open (Keypoints)

Fig. 5: Left: Task Success Rate for all 3 environments with bootstrapped controller parameters. Right: Task success rate on
two different configs (door-handle types) for learning keypoints using a learned policy for the Door-Open Task. Figure 9
visualizes both configs. The dark line shows mean sucess-ratio, shaded region plots std across 5 seeds.

Fig. 6: Visualization for reference images and pixels (left image in each column) and corresponding pixels predicted using
learned descriptors. For door open, one reference pixel is closer to door joint to show that our approach learns to not use it.

VII. RESULTS

A. Learning Task Policy

1) Training Results: Figure 5 plots success ratio for all
approaches across each task. As seen above, we observe that
for the simplest task i.e. button press, all methods are able
to learn the task quickly. Also, since the underlying task is
not complex, each method has little variance across multiple
seeds. For the Block Tumble task (Figure 5 middle), although
all methods perform well on the training task, methods that
use task-axes controllers are much more sample efficient.
This is true even when we use a much larger set of controllers
i.e. the TAC (Keypoints + Axes) approach. This is because
most of the keypoints used in the task (Figure 6) can be
used to accomplish the task. Also, since there is only one
axes along which the block needs to be flipped, the robot
is quickly able to find this relevant axes using the provided
dense rewards. Thus, even with a much larger action space
our approach of inferring the keypoints and axes performs
similarly, when compared to their manual specification.

Figure 5 (right) plots the success ratios for the door open-
ing task. From the above figure, we observe that the EE-space
is unable to solve the overall task. Similar results were also
observed in [4]. The main reason for this failure is the overall
task complexity, especially since task completion requires
many different subtasks (reaching, grasping, turning the han-
dle and pulling it back) to be performed in sequence. On the
other hand, we observe that all methods that utilize task-axes
controllers are able to learn to perform the task. However, in
contrast to the previous tasks, our proposed approach, TAC
(Keypoints+Axes), does require more samples compared to
when we manually provide these parameters, TAC (Manual).

We also observe that only inferring the keypoints and not
the axes (TAC - Keypoints) is still quite sample efficient.
This indicates that the agent in TAC Keypoints+Axes does
spend some initial time exploring different axes which can be
used to accomplish the task. This is possible because there
exist multiple ways to grasp the handle. For instance, it is
possible to grasp the handle both along the vertical as well as
the horizontal axes. However, using the vertical axes is not
robust, since it can easily collide with the door frame. Thus,
as a large number of actions are not particularly useful for
the task, the agent will have to interact and learn the most
suitable and robust ways to achieve it.

2) Generalization Results: Table I shows the general-
ization performance for three different methods. This gen-
eralization performance was recorded on 15 different en-
vironment settings with varying object sizes and shapes.
We note that for TAC (Manual) we only used primitive
shapes (cuboids and cylinders) since we need to manually
provide keypoint parameters. By contrast, for TAC (Key-
points+Axes), we directly use the visual input to infer the
relevant keypoint parameters. See Figure 8 for test configura-
tions used for TAC (Keypoints+Axes), for door open task. As
seen in Table I, both methods that use task-axes controllers
are able to generalize quite well across all of the tasks. On the
other hand, the EE action-space provides good generalization
capabilities only for the simplest task (Button Press). While
even for the moderately complex task of Block Tumble its
performance reduces significantly. One reason for this drop
in performance is the lack of any inductive bias in the EE-
space, and since we train on a small set of objects only,
the EE-space policy fails to generalize to larger changes in

Fig. 7: Dense object descriptor results for Door Open Task.

Fig. 8: Qualitative Results we show that our learned control
policy although not trained on any of the above models does
successfully transfer to them (see results in project-page).

object variations. Figure 8 shows some objects with complex
underlying geometry that were never used either for dense
descriptor or policy training. While TAC (Manual) cannot
be applied to such objects, we show in the attached video
that our method is successfully able to zero-shot generalize
to such large variations as well.

3) Qualitative Results:: In addition to the above quanti-
tative results, we also show some qualitative results for the
learned descriptors and the inferred keypoints. Figure 6 plots
the keypoints used for each of the tasks. The left image
in each column is the reference image with the annotated
reference keypoints. While the right column shows scenes
with two different objects used in the test set to evaluate the
learned policies. We visualize objects at same scale to show
their original sizes. Additionally, in Figure 7 we plot the
learned descriptors for the door opening task. As seen above,
the learned descriptors are able to approximately cluster se-
mantically meaningful regions together. For instance, the part
of door handle close to its rotation joint, the middle and end
of the door handles, as well as the right end of the hinge are
all well estimated. While in Figure 8 we see that the reference
pixels are also able to generalize to objects with very differ-
ent shapes and geometry. We also show qualitative results for
these samples in our video results. This is not surprising since
as long as the above keypoints afford grasping and rotating
the door handle, the underlying task-axes controllers should
be able to generalize. See video results for all tasks and sup-
plementary material at https://sites.google.com/
view/robotic-manip-task-axes-ctrlrs.

B. Learning Controller Parameters with Learned Task Policy

Figure 5 (right) shows results for learning keypoints using
the learned task policy. Since the door opening can be per-
formed with only 1 keypoint target, we only use one keypoint
for this task policy. This task policy is trained on simple door
handles only, as visualized in Figure 7. While the keypoint
learning policy is trained on two completely different door-
handle configurations, visualized in Figure 9. Additionally,
as seen in Figure 9, we note that for both configurations we
ensure that the door handle can lie anywhere on the image
space and thus may not necessarily be near the center of the
image or always orthogonal to the camera. This makes the
keypoint learning problem much more challenging.

Fig. 9: Keypoint Parameters learned using a learned task
policy (Section V-B). Top Row is Config-A, bottom row is
Config-B.

Although both configurations (config-A and config-B) are
visually quite similar, they result in very different sample
complexities when learning to select the appropriate key-
point. This is because for config-A there exists a much larger
region of the door handle that can be selected to perfectly
execute the learned parameterized task-policy. This can be
seen in Figure 9 (top-row) where different keypoints along
the door handle have been selected to successfully open the
door. While for config-B this valid region is quite small
(to the left of the vertical handle bar). Additionally, small
inconsistencies in keypoint predictions, such as visualized in
Figure 9 (bottom-row right) fail to open the door. This makes
the keypoint learning problem much more challenging, which
consequently results in a much larger sample complexity.

Additionally, we provide more results in Appendix IV.
Specifically, we show that directly using dense correspon-
dence learning and reference pixels does not perform well
on config-A door handles visualized above. We further report
both qualitative and quantitative results for learning keypoint
controller parameters for the block tumble task.

VIII. CONCLUSION

Our work in this paper leads to a modular architecture
which separates perceptual learning from the control policy,
i.e., although the control policy acts on perceptual input, both
models are trained separately. This stream of work is similar
to the recently proposed [1], [18], wherein the predicted
keypoints are used to solve an optimization problem whose
output is used to perform the task. Despite differences among
approaches, they all lead to an improved interpretability of
the learned models. This is a consequence of semantic key-
points in [1], while for our work this is a consequence of both
semantic keypoints as well as task-axes controllers which
operate on semantic inputs. In addition to interpretability, a
modular architecture also allows us to reuse the control pol-
icy while retraining the perceptual network on a completely
different set of objects (e.g. different geometries) and still
learn to perform the task as long as the semantic keypoints
for both object sets provide the required affordances such as
grasping, turning, pushing. This is in contrast to end-to-end
DeepRL approaches where the perceptual network is closely
tied with the control policy and it is not possible to update
one without updating the other.

https://sites.google.com/view/robotic-manip-task-axes-ctrlrs
https://sites.google.com/view/robotic-manip-task-axes-ctrlrs

REFERENCES

[1] L. Manuelli, W. Gao, P. Florence, and R. Tedrake, “kpam: Keypoint
affordances for category-level robotic manipulation,” arXiv preprint
arXiv:1903.06684, 2019.

[2] P. R. Florence, L. Manuelli, and R. Tedrake, “Dense object nets: Learn-
ing dense visual object descriptors by and for robotic manipulation,”
in Conference on Robot Learning, 2018, pp. 373–385.

[3] A. Ganapathi, P. Sundaresan, B. Thananjeyan, A. Balakrishna,
D. Seita, J. Grannen, M. Hwang, R. Hoque, J. E. Gonzalez, N. Ja-
mali et al., “Learning to smooth and fold real fabric using dense
object descriptors trained on synthetic color images,” arXiv preprint
arXiv:2003.12698, 2020.

[4] M. Sharma, J. Liang, J. Zhao, A. LaGrassa, and O. Kroemer, “Learning
to compose hierarchical object-centric controllers for robotic manipu-
lation,” arXiv preprint arXiv:2011.04627, 2020.

[5] M. T. Mason, “Compliance and force control for computer controlled
manipulators,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 11, no. 6, pp. 418–432, 1981.

[6] M. H. Raibert and J. J. Craig, “Hybrid position/force control of
manipulators,” 1981.

[7] D. H. Ballard, “Task frames in robot manipulation.” in AAAI, vol. 19,
1984, p. 109.

[8] M. Mühlig, M. Gienger, J. J. Steil, and C. Goerick, “Automatic
selection of task spaces for imitation learning,” in 2009 IEEE/RSJ
international conference on intelligent robots and systems. IEEE,
2009, pp. 4996–5002.

[9] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” The Interna-
tional Journal of Robotics Research, vol. 30, no. 12, pp. 1435–1460,
2011.

[10] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrangement planning
using object-centric and robot-centric action spaces,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 3940–3947.

[11] J. Kober, M. Gienger, and J. J. Steil, “Learning movement primitives
for force interaction tasks,” in 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2015, pp. 3192–3199.

[12] A. L. P. Ureche, K. Umezawa, Y. Nakamura, and A. Billard, “Task
parameterization using continuous constraints extracted from human
demonstrations,” IEEE Transactions on Robotics, vol. 31, no. 6, pp.
1458–1471, 2015.

[13] T. Migimatsu and J. Bohg, “Object-centric task and motion planning
in dynamic environments,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 844–851, 2020.

[14] S. Manschitz, M. Gienger, J. Kober, and J. Peters, “Learning sequential
force interaction skills,” Robotics, vol. 9, no. 2, p. 45, 2020.

[15] L. Peternel, L. Rozo, D. Caldwell, and A. Ajoudani, “A method for
derivation of robot task-frame control authority from repeated sensory
observations,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 719–726, 2017.

[16] A. Conkey and T. Hermans, “Learning task constraints from demon-
stration for hybrid force/position control,” in 2019 IEEE-RAS 19th
International Conference on Humanoid Robots (Humanoids). IEEE,
2019, pp. 162–169.

[17] P. Florence, L. Manuelli, and R. Tedrake, “Self-supervised correspon-
dence in visuomotor policy learning,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 492–499, 2019.

[18] W. Gao and R. Tedrake, “kpam 2.0: Feedback control for category-
level robotic manipulation,” IEEE Robotics and Automation Letters,
pp. 1–1, 2021.

[19] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese, “Keto: Learning
keypoint representations for tool manipulation,” 2019.

[20] T. Schmidt, R. Newcombe, and D. Fox, “Self-supervised visual
descriptor learning for dense correspondence,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 420–427, 2016.

[21] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learning
with parameterized actions,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 30, no. 1, 2016.

[22] M. Hausknecht and P. Stone, “Deep reinforcement learning in param-
eterized action space,” arXiv preprint arXiv:1511.04143, 2015.

[23] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[25] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.
com/hill-a/stable-baselines, 2018.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in ICLR (Poster), 2015. [Online]. Available: http:
//arxiv.org/abs/1412.6980

[27] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

APPENDIX I
EXPERIMENT TASK DETAILS

In the following sub-sections we give details around each
of the task used in the paper.

A. Button Press

Observation Space:
1) 7-dimensional robot arm joint angles.
2) The gripper width. This is assumed to be closed for

this task.
3) 6D pose of the end-effector.
4) End-effector contact forces.
5) 3D block position, for the block under the button.
6) 3D button position.
7) The prismatic joint between the block and the button.
Reward Function: The reward is a function of the dis-

tance to the button, the pressing of the button, a time penalty
(0.1 at each step) to perform the task as soon as possible,
and an overall task bonus to complete the task. Formally, let
dt be the euclidean-distance between the end-effector and
the button at time step t. The distance reward then is based
on distance improvement to the target i.e. dt − dt−1. Let jt
be the value for the prismatic joint between the block and
the button. Let succ define task success, which is defined by
the following indicator function succ = 1 {jt > 0.1}. The
overall reward then is

rt = 10× (dt − dt−1) + 10× (jt − jt−1) (1)
+ 100× succ− 0.1

B. Block Tumble

Observation Space:
1) 7-dimensional robot arm joint angles.
2) The gripper width. This is assumed to be closed for

this task.
3) 6D pose of the end-effector.
4) End-effector contact forces.
5) 7D block pose with position in XYZ and orientation

in quaternion.
6) Block dimensions.
Reward Function: The reward function contains a dis-

tance improvement based metric that rewards the agent to
reach close to the object center. The agent is also rewarded
when the orientation of the block is improved towards the
target orientation. Formally, let dt be the euclidean distance
between the end-effector and center of the block, θt be the
absolute angle difference between the current pose of the
block and the target pose. The reward at timestep t is then,

rt = 10× (dt − dt−1) + 10× (θt − θt−1) (2)
+ 100× succ− 0.1.

C. Door Open

Observation Space:
1) 7-dimensional robot arm joint angles.
2) The scalar gripper width.
3) 6D pose of the end-effector.

Task TAC (Manual) TAC (Keypoints+Axes) Keypoints

Button Press 5 14 2
Block Tumble 10 40 10
Door Open 8 51 4

TABLE II: Controller Statistics for each of the tasks.

4) End-effector contact forces.
5) 3D door handle position, i.e., the position where the

door handle meets the door frame.
6) The door rotation angle, i.e., the angle by which the

door is currently rotated. At t = 0, this value is 0.
Reward Function: The reward function used consists of

a distance based improvement reward for moving the end-
effector towards the middle of the door handle. The agent
is further rewarded for turning the door handle as well as
opening the door. There is also a time penalty, 0.1 at each
step, to allow the agent to complete the task as soon as
possible. There also exists a force penalty, 0.01 at each
step, to avoid the robot-arm hitting the door frame while
trying to open the door. Finally, there is a task reward for
completing the task i.e. when the door has been opened
beyond a threshold. Formally, let dt be the euclidean distance
between the end-effector and door handle. Let θt by the
rotation joint angle for the door angle and φt be the door
frame rotation angle (both angles in radians). The success of
the task is defined as succ = 1 {φt > 0.436}, i.e., if the door
has been rotated more than 25◦ degree. The door opening
task also has a locking mechanism which does not allow the
door to be rotated unless θt > 1.22, i.e. 70◦ degree. Thus,
the reward function is defined as:

rt = 10× (dt − dt−1) + 10× (θt − θt−1) (3)
+ 100× (φt − φt−1) + 100× succ− 0.1− 0.01.

APPENDIX II
CONTROLLER DETAILS

In the following sub-sections we detail the types of
task-axes controllers used for each of the previous task.
As discussed in the main paper, each task-axes controller
(TAC) is parameterized with some keypoint or axis. For
implementation details about each controller we refer the
reader to [4].

A. Button Press

For the button press task, we use the two different key-
points on the button object. For each of these keypoints we
define error-axis based position controllers. These controllers
move towards the keypoint along the shortest possible axes
and hence are only parameterized by keypoints and not axis.
Additionally, for each keypoint we also define position attrac-
tors. Each of these attractor act along one particular object
axis. This gives us a total of 6 controllers. Additionally,
we also define force controllers along each of the object
axis separately. We define force-controllers for both positive
and negative axis direction. Thus, we get a total of 6 force
controllers. Overall, we have 14 controllers for this task.

B. Block Tumble

For the block tumble task, we use 10 different keypoints
on the button object, distributed through the top surface of
the object (Figure 6 middle). Each of these keypoint helps the
robot align the block to the target orientation in a slightly
different manner. This is because if the robot approaches
the object from behind, using a keypoint towards the left
edge of the block will orient the block towards the left edge,
while using a keypoint towards the right edge will orient it
rightwards. We use a large number of keypoints for this task
to show that our approach is competitive compared to the
baseline even in presence of a large numbre of controllers.
For each keypoint we use position attractors that act along
the error axis and hence do not require an explicit axes. This
results in 10 controllers. Additionally, for each keypoint we
also use force-attractors that act along each of the object-axis
direction separately. For this task, force-attractors are more
useful as compared to position-attractors since we require a
minimum amount of force to tumble the block. This results
in 30 controllers and 40 controllers overall.

C. Door Open

For the door open task we use 4 keypoints, each of which
is labelled on the door handle (Figure 6 right). For this task,
in addition to position and force controllers we also use
rotation as well as gripper controllers. First, we use both
open and close gripper controllers. For each keypoint we
also use error-axis based position attractors. These result in 4
controllers (1 for each keypoint). We also use handle rotation
controllers, which uniformly select one of the EE-axis and
one of the handle axes and aims to orient the EE-axis parallel
to the handle axis. For these handle rotation controllers, we
choose both positive and negative axes direction. This results
in a set of 18 controllers. We also use curl-attractors for this
task, which allow the robot end-effector to rotate around
the door handle. These controllers are particularly useful
when the robot fails to grasp the door handle because of
slippage or improper grasps. We define one curl attractor for
each position and along each axis of the door handle. This
yields 12 controllers. We also define force attractors that act
indepdnent of any position and apply force in the negative
direction of the handle axes. For each keypoint we also have
force attractors that act along each of the axis, resulting in
12 controllers. This results in a total of 51 controllers for
this task.

APPENDIX III
TRAINING DETAILS

A. PPO Hyperparameters

Table III lists the hyperparameters for PPO used for
each of the experiments, to train the task policy. For each
environment the episode length is 120. Also, we run ≈ 20
environments in parallel to collect data during PPO training.

B. Reinforce Hyperparameters

We use Reinforce [23] to train the keypoint selection
policy, using the learned task policy to evaluate the proposed

Parameters Button Press Block Tumble Door-Open

num steps 120 120 240
discount factor 0.995 0.995 0.995
entropy coefficient 0.01 0.01 [0.01, 0.1]
learning rate 2.5× 10−4 2.5× 10−4 2.5× 10−4

value loss coefficient 0.5 0.1 0.5
max gradient norm 0.5 0.5 0.5
lambda 0.95 0.95 0.95
num minibatches 30 30 40
num opt epochs 4 4 4
clip range 0.2 0.2 0.2

TABLE III: PPO Hyperparameters Across All Tasks.

Fig. 10: Keypoint Parameters inferred using learned dense
object network φ for Config-A door handles. We use the
same set of reference pixels (keypoints) throughout for all
configs (see Figure 6 for reference).

keypoints. The architecture for keypoint prediction model
is presented in Section III-C. To train the keypoint model,
we use the Adam optimizer [26]. We set an initial learning
rate of 1e − 3, which is decayed by 0.3 after 200 and
1000 iterations respectively. At each iteration, we collect
keypoint predictions from 24 environments simultaneously.
We update the model based on the policy gradient loss, which
is averaged over all environments.

C. Learning Keypoint Parameters: Model Details

We learn the keypoint controller parameters from visual
input using a convolutional neural network architecture.
More precisely, the input to our model is an RGB image with
dimensions (128, 128). We initially use a series of VGG style
convolutional layers, each with 64, 128, 256, 512 channels
respectively. Each convolutional layer has a kernel of size
3x3 and padding of size 1, which is followed by the ReLU
non-linearity. Also, each convolutional layer is followed by
a MaxPool layer with kernel of size 2 and stride 2. The
output of this series of convolutional layers is passed through
another convolutional layer which downsamples the number
of channels from 512 to 32, using a kernel of size 2 and
padding of size 2. The output from this is an 8x8 image
with 32 channels.

This output is upsampled through two UnetBlocks [27],
each outputting 16 and 4 channels respectively. Finally, we
use a convolutional layer that downsamples the 4 channels
to 1 channel using a kernel of size 1, which is subsequently
passed through a softmax. Thus, our output is a 32 × 32
image, where each pixel represents the probability value of
choosing this pixel as the keypoint. Since each pixel in the
output image corresponds to a 4x4 pixel range in the original
input, we refer to the output pixels as superpixels.

To find the 3D location from the selected superpixel, we

Fig. 11: Keypoint parameters learned from raw input image
using only a learned block tumble task policy. See subsec-
tion IV-A for details.

sample all pixels within this superpixel and use the depth
values at each pixel to find their corresponding 3D positiosn.
We average these 3D positions to find the 3D location for
the selected superpixel.

block-tumble-refine-train-results.png

APPENDIX IV
ADDITIONAL RESULTS

In this section we show some additional results related
with the tasks and experiments in the main paper. First, we
show that dense object nets can fail to find semantically rele-
vant keypoints when used on objects that are not quite similar
with the objects used to train the descriptors. Figure 10 shows
the keypoints inferred by the trained dense object network φ
on Config-A door handles (see Figure 9 for reference). We
note that we use the same set of reference pixels (reference
keypoints) as in the main paper (see Figure 6. However,
given that the object shapes for both set of objects is
slightly different, the learned dense object descriptors fail to
generalize to such different objects. This is not unexpected
and shows a limitation of solely using visual correspondence
for generalization.

A. Learning Controller Parameters with Learned Task Policy
- Block Tumble

We also show results for learning position controller tar-
gets for the Block Tumble task using the learned task policy.
Although previously we used multiple keypoints to learn the
block tumble task policy (see Section VII for discussion),
most of the used keypoints are not used by the task policy.
This is because to perform the task, the agent only needs to
reach close to some point on the block and flip it. This can
be achieved by using one relevant keypoint.

We use this insight to learn a relevant keypoint parameter
from raw visual data for the block tumble task. As before
we get the task policy by bootstrapping keypoint parameters
using dense correspondence learning. However, this task
policy only uses 1 keypoint. Also, as discussed in III-C
instead of directly predicting the keypoint pixel, we predict
the relevant superpixel of size 4× 4. Figure 11 (Left) shows
the training plot for learning the relevant keypoint parameter
using reinforce. Since the task setup only involves a object on
the block, the input image for the keypoint model is not very

complex and hence the network is able to find the relevant
keypoint on or sometimes near the object. Figure 11 (Right)
shows some qualitative results for the keypoints inferred on
the block. As seen in the above image, most keypoints are
found on the object (often near to the edge).

	I INTRODUCTION
	II Related Work
	III Overview
	IV Object-Centric Task Axes Controllers
	IV-A Controller Types

	V Learning Controller Parameters
	V-A Learning to Bootstrap Controller Parameters
	V-A.1 Keypoint Parameters
	V-A.2 Axes Parameters

	V-B Learning Controller Parameters via Learned Task-Policy

	VI Experimental Setup
	VI-A Tasks
	VI-B Compared Approaches

	VII Results
	VII-A Learning Task Policy
	VII-A.1 Training Results
	VII-A.2 Generalization Results
	VII-A.3 Qualitative Results:

	VII-B Learning Controller Parameters with Learned Task Policy

	VIII Conclusion
	References
	Appendix I: Experiment Task Details
	I-A Button Press
	I-B Block Tumble
	I-C Door Open

	Appendix II: Controller Details
	II-A Button Press
	II-B Block Tumble
	II-C Door Open

	Appendix III: Training Details
	III-A PPO Hyperparameters
	III-B Reinforce Hyperparameters
	III-C Learning Keypoint Parameters: Model Details

	Appendix IV: Additional Results
	IV-A Learning Controller Parameters with Learned Task Policy - Block Tumble

