
Generating Large-Scale Trajectories Efficiently using
Double Descriptions of Polynomials

Zhepei Wang1,2,3, Hongkai Ye1,2,3, Chao Xu1,2, and Fei Gao1,2

Abstract— For quadrotor trajectory planning, describing a
polynomial trajectory through coefficients and end-derivatives
both enjoy their own convenience in energy minimization. We
name them double descriptions of polynomial trajectories. The
transformation between them, causing most of the inefficiency
and instability, is formally analyzed in this paper. Leveraging
its analytic structure, we design a linear-complexity scheme
for both jerk/snap minimization and parameter gradient eval-
uation, which possesses efficiency, stability, flexibility, and
scalability. With the help of our scheme, generating an energy
optimal (minimum snap) trajectory only costs 1 µs per piece
at the scale up to 1,000,000 pieces. Moreover, generating large-
scale energy-time optimal trajectories is also accelerated by an
order of magnitude against conventional methods.

I. INTRODUCTION

Smooth polynomial trajectories generated from minimiz-
ing jerk/snap are widely used in the navigation of quadro-
tors [1]–[3]. Among these applications, the double descrip-
tions of polynomial trajectory are frequently involved. One
description, consisting of piece coefficients and piece times,
is convenient for cost evaluation and trajectory configuration.
Another description, consisting of piece end-derivatives and
times, is convenient and stable for cost minimization [4].

Although these double descriptions offer an efficient and
accurate way to obtain energy-optimal trajectories, the over-
head and instability are often inevitable caused by numerical
transformations between them [5]. Besides, piece times are
coupled into transformations. Without knowing its structure,
directly optimizing times becomes hard or quite inefficient.
In this situation, many perturbed energy-optimal trajectories
are often generated to obtain gradient information [6], thus
ruining the convenience from descriptions.

To overcome these drawbacks, we study the transforma-
tion between double descriptions. Its concrete structure and
analytic expression are clearly provided, which is indeed a
diffeomorphism. Leveraging its analytic form, we first de-
sign a scheme for linear-complexity jerk/snap minimization.
Unnecessary computation on transformation is eliminated
from this scheme, making its speed faster than many known
schemes by at least an order of magnitude. Utilizing the
smoothness, we also derive an analytic gradient for way-
points and times, which also enjoys minimal complexity.
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Fig. 1. Large-scale energy-time optimal trajectories generated by the
proposed scheme and the benchmarked scheme which is the global trajectory
optimization in Teach-Repeat-Replan [7]. The proposed one takes 0.43
seconds while the other takes 7.70 seconds. The energy-time cost is 2643.43
for the proposed one while it is 3269.76 for the other. The efficiency is
improved by an order of magnitude.

The exact gradient information makes it possible to directly
optimize all parameters under complex constraints.

In this paper, we propose a framework based on the above
results. Provided with a collection of waypoints and piece
times, the minimization of jerk/snap is taken as a black box
with promising efficiency. Through the cheap exact gradient,
our framework directly optimizes intermediate waypoints and
piece times to meet the safety constraints and dynamic limits,
respectively. Its flexibility and efficiency are validated by ap-
plications and benchmarks on classic problems. Summarizing
our contributions in this work:
• An analytic transformation between double descriptions

is derived.
• A linear-complexity minimum jerk/snap solution is de-

signed with extreme efficiency.
• An analytic gradient for waypoints and piece times is

provided with linear complexity.
• Applications and benchmarks on classic problems are

provided to validate the superiority of our framework.
• High-performance implementation of solution and gra-

dient computation are open-sourced for the reference of
the community1.

II. RELATED WORK

Quadrotor trajectory planning using polynomials has been
prosperous since Mellinger et al. [6]. They eliminate differ-
ential constraints from quadrotor dynamics via differential
flatness. Then, enough smoothness of flat output trajectories

1Source code: https://github.com/ZJU-FAST-Lab/large_
scale_traj_optimizer
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guarantees the constraint satisfaction by default. It is thus
quite different from common robotics trajectory generation
where standard Nonlinear Programming (NLP) approaches
must be employed to enforcing complicated dynamic con-
straints. Consequently, they conduct snap minimization for
smooth flying trajectories with description of the first kind,
where the coefficients are optimized through a Quadratic
Programming (QP) with prescribed times and waypoints. The
gradient for time is roughly estimated by solving perturbation
problems. Richter et al. [1] propose the description of the
second kind which eliminates equality constraints in the QP,
thus forming a closed-form solution. For large problems, its
efficiency deteriorates because of the involved sparse matrix
inverse. Safety constraints and dynamic limits are heuris-
tically enforced, which can cause low trajectory quality.
The two methods above provide many insights in quadrotor
trajectory planning, even though there are weaknesses.

Many schemes are proposed to improve the above two
frameworks. To improve efficiency, Burke et al. [8] first
propose a linear-complexity scheme to solve primal and
dual variables of the QP, which generates trajectories with
500, 000 pieces in less than 3 minutes. However, its ef-
ficiency is still not satisfactory because of the redundant
problem size and block inverses. Optimizing waypoints and
times is still not considered. Burri et al. [2] and Oleynikova
et al. [3] directly optimize all end-derivatives of inner pieces
through NLP, where piece times are fixed. Almeida et al. [9]
train a supervised neural network to learn time allocation
offline. Thus relatively good piece times can be allocated
online. Our previous work [10] proposes an efficient op-
timization scheme for piece times, while the handling for
safety constraints lacks flexibility.

Due to the seeming inflexibility in raw polynomial splines,
other methods describe trajectories via control points of B-
Splines and Bézier curves [11]–[13]. The safety constraints
and dynamic limits can be easily enforced via the convex
hull property. Tordesillas et al. [14] utilize the property and
optimize the interval allocation. A Mixed Integer Quadratic
Programming (MIQP) is formulated to assign each trajectory
piece into a convex region. However, the property can be
conservative since the temporal profile of the trajectory is
limited by the geometrical profile. To handle the issue, Gao et
al. [7] propose a convex formulation to improve the dynamic
performance of an already-known geometrical curve.

III. PRELIMINARIES

Since the differential flatness of quadrotor has been vali-
dated in [6], polynomial trajectories are widely used in the
continuous-time motion planning for quadrotors. Consider
an (N + 1)-order M -piece spline whose i-th piece is indeed
an N -degree polynomial pi(t) = cTi β(t), t ∈ [0, Ti], where
ci ∈ R(N+1) is a coefficient vector of this piece and β(t) =
(1, t, t2, · · · , tN )T a natural basis. The entire spline on the
duration [0, τM ] is defined by p(t) := cTi β(t − τi−1) where
t ∈ [τi−1, τi] and τi =

∑i
j=1 Tj .

For any given differentially flat quadrotor, high-order
continuity is required to satisfy the differential constraints

induced by the dynamics. Besides, the smoothness is also
ensured by penalizing the integral of square of the high-order
derivative. Assuming the order of the penalized derivative to
be s, the cost function can be written as

J(c, T ) =

∫ τM

0

p(s)(t)2dt, (1)

where c = (cT1 , . . . , c
T
M )T ∈ RM(N+1) is a coefficient vector

of the entire spline and T = (T1, . . . , TM )T ∈ RM is a
piece time vector. The cost J implicitly decouples for each
dimension [4], thus we only consider 1-dimensional splines.
According to the Linear Quadratic Minimum-Time (LQMT)
problem [15], we set the degree as N = 2s − 1 hereafter
because it is the optimal degree for the minimizer of J .

A spline p(t) can be naturally described by the collection
{c, T}, i.e, the first description. Consider the minimization of
J(c, T ) with fixed T and some derivatives specified at certain
timestamps. It can be formulated as a QP [6] if c is taken
as a vector of decision variables. The second description is
denoted by the collection {d, T} where d ∈ R2Ms is an
end-derivative vector d = (dT

1 , . . . , d
T
M )T where

di = (pi(0), . . . , p
(s−1)
i (0), pi(Ti), . . . , p

(s−1)
i (Ti))

T. (2)

Bry et al. [4] leverage the convenience of {d, T} to elim-
inate equality constraints in the QP so that a closed-form
solution for the optimal d is constructed. Obviously, the
double descriptions of polynomial trajectories provide a lot
of convenience for energy minimization.

IV. EFFICIENT SOLUTION AND GRADIENT
COMPUTATION WITH DOUBLE DESCRIPTIONS

In this section, we derive an explicit diffeomorphism be-
tween double descriptions of polynomial trajectories. Based
on the transformation, we construct the solution for J(c, T )
with any T in O(M) linear complexity. Utilizing its prop-
erties, we obtain the analytical gradient for problem param-
eters, i.e., specified derivatives and T , which offers much
flexibility to further improve the trajectory quality.

A. Explicit Diffeomorphism Between Double Descriptions

First, we explore the relation between parameterization
spaces of both descriptions. We denote by Pc : R2Ms×RM>0

the space for {c, T} and by Pd : R2Ms ×RM>0 the space for
{d, T}. The relation between Pc and Pd is given as below.

Proposition 1. For a polynomial trajectory, denote by {c, T}
its parameters in Pc and by {d, T} its parameters in Pd. The
map from {c, T} to {d, T} is a C∞-diffeomorphism between
Pc and Pd. An explicit diffeomorphism consists of an identity
map on T and a smooth bijection between c and d:

d = AF(T )c, c = AB(T )d, (3)

where AF(T ) = ⊕Mk=1Af (Tk), AB(T ) = ⊕Mk=1Ab(Tk),
and ⊕ is the direct sum stacking all diagonal sub-matrices.
The forward and backward sub-matrices are

Af (t) =

(
E 0

F(t) G(t)

)
, Ab(t) =

(
U 0

V(t) W(t)

)
, (4)



which are partitioned into four blocks in Rs×s. The entry at
the i-th row and j-th column of any block is defined by

Eij =

{
(i− 1)! if i = j,

0 if i 6= j,
(5)

Fij(t) =

{
(j − 1)!/(j − i)! · tj−i if i ≤ j,
0 if i > j,

(6)

Gij(t) =
(s+ j − 1)!

(s+ j − i)!
· ts−i+j , (7)

Uij =

{
1/(i− 1)! if i = j,

0 if i 6= j,
(8)

Vij(t) =

∑s−max (i,j)
k=0 (−1)k

(
s
i+k

)(
2s−j−k−1

s−1

)
(j − 1)! (−1)i · ts+i−j

, (9)

Wij(t) =

∑s−max (i,j)
k=0

(
s−k−1
i−1

)(
2s−j−k−1

s−1

)
(j − 1)! (−1)i+j · ts+i−j

. (10)

Proof. The forward sub-matrix Af (t) given in (4), (5), (6),
and (7), comes from the definition of di in (2). Actually,
Af (t) is a general confluent Vandermonde Matrix generated
from two variables λ0 = 0 and λ1 = t, both with multiplicity
s. According to Spitzbart’s Theorem [16], the inverse of
Af (t) always exists for λ0 6= λ1, whose entries are exactly
coefficients of a set of polynomials constructed from λ0 and
λ1. The backward sub-matrix Ab(t) given in (4), (8), (9), and
(10), is derived following [16]. The process only involves
lengthy but mechanical derivation thus is omitted here for
brevity. Obviously, the map from ci to di and the inverse
are always smooth at any T ∈ RM>0. The bijectivity and the
smoothness imply a diffeomorphism.

Proposition 1 gives analytic transformations between dou-
ble descriptions, which have long been evaluated unwisely.
In [1], Ab(t) is numerically computed by inverting Af (t)
for any given t. In [2], the structure of Af (t) is exploited so
that Ab(t) is evaluated efficiently and stably via Schur com-
plement, where only the inverse of a sub-matrix is needed.
Our previous work [10] has the fewest online computations,
where coefficients in Ab(t) is offline numerically computed
by setting t = 1. However, all of these schemes involve
numerically unstable matrix inverse. Proposition 1 is free
of these drawbacks for the exact analytic expression. The
diffeomorphism structure can be further utilized to greatly
improve the efficiency and quality of trajectory generation.

B. Linear-Complexity Trajectory Generation

Consider the following trajectory generation problem,

min
c,T

J(c, T ) =

∫ τM

0

p(s)(t)2dt, (11)

s.t. p(j)(0) = d0,j , 0 ≤ j < s, (12)

p(j)(τM ) = dM,j , 0 ≤ j < s, (13)
p(τi) = qi, 0 ≤ i < M. (14)

The initial and terminal derivatives are specified by d0 =
(d0,0, . . . , d0,s−1)T and dM = (dM,0, . . . , dM,s−1)T, respec-
tively. Each qi is a specified intermediate waypoint at τi. The

s− 1 times continuous differentiability of p(t) on [0, τM ] is
implicitly required by the definition of J(c, T ), which is not
explicitly formulated as equality constraints here.

Although a closed-form solution of (11) is given by Bry
et al. [4], its efficiency is limited by the numerical evaluation
of Ab(t) and the sparse permutation matrix inverse. To attain
the linear complexity, Burke et al. [8] leverage the problem
structure to calculate both primal and dual variables through
a block tridiagonal linear equation system. However, it still
needs frequently inverting sub-blocks. The size of the system
is also redundant because of the dual variables. Therefore,
we give a linear-complexity scheme with minimal problem
size, where the matrix inverse is totally eliminated.

Consider the {d, T} description of p(t). We only need to
obtain all unspecified entries in d, which are indeed p(j)(τi)
for 1 ≤ i < M and 1 ≤ j < s. Rewrite d as

d = P(d̄+ Bd̃) (15)

where d̃ ∈ R(M−1)(s−1) is a vector containing all unspecified
entries. The constant vector d̄ ∈ R(M+1)s is defined as

d̄ = (dT
0 , q1, 0s−1, . . . , qM−1, 0s−1, d

T
M )T. (16)

where 0s−1 ∈ Rs−1 is a zero vector. The permutation matrix
P = (PT

1 , . . . ,P
T
M )T is defined as

Pi =
(
02s×(i−1)s, I2s,02s×(M−i)s

)
. (17)

The matrix B = (B1, . . . ,BM−1) is defined as

Bi =
(
0(s−1)×is,D,0(s−1)×(M−i)s

)T
, (18)

where D = (0s−1, Is−1). It should be noted that computing
(15) only involves orderly accessing entries. We do not really
need to compute the matrix product considering that P and
B is highly structured.

The cost function J(c, T ) indeed takes a quadratic form

J(c, T ) = cTQΣ(T )c (19)

in which QΣ(T ) = ⊕Mi=1Q(Ti). Note that the symmetric
matrix Q(t) has an analytical form whose entries are simple
power functions of t. Its analytical form is provided by Bry
et al. in the appendix of [4], to which we refer for details.
Substituting (3) and (15) into (19) gives

J = (d̄+ Bd̃)TPTHΣ(T )P(d̄+ Bd̃) (20)

in which HΣ(T ) = ⊕Mi=1H(Ti) is a symmetric matrix. All
its diagonal blocks is fully determined by the matrix function

H(t) = AT
b (t)Q(t)Ab(t). (21)

Obviously, the analytical form of H(t) can be easily derived
for a fixed s by combining our Proposition 1 and the result
from Bry et al. [4]. Therefore, we omit the parameter T and
denote HΣ = ⊕Mi=1Hi hereafter because it is trivial to obtain
all diagonal blocks for any given T in linear time and space.

Differentiating J w.r.t. d̃ gives

dJ/dd̃ = 2BTPTHΣP(Bd̃+ d̄). (22)



The optimal d̃ satisfies ‖dJ/dd̃‖ = 0, i.e.,

Md̃ = b̄ (23)

where M = BTPTHΣPB and b̄ = −BTPTHΣPd̄.
Actually, the computation for M and b̄ is quite easy. We

partition each Hi into four square blocks as

Hi =

(
Γi Λi

Φi Ωi

)
. (24)

Expanding M gives

M =



α1 β2 0 · · · 0 0
γ2 α2 β3 · · · 0 0
0 γ3 α3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · αM−2 βM−1

0 0 0 · · · γM−1 αM−1


(25)

where

αi = D(Ωi + Γi+1)DT, (26)

βi = DΛiD
T, γi = DΦiD

T. (27)

Similarly, we partition d̄ as

d̄ = (κT
0 , κ

T
1 , . . . , κ

T
M−1, κ

T
M )T (28)

where each κi ∈ Rs is a constant vector. Expanding b̄ gives

b̄ = (bT1 , b
T
2 , . . . , b

T
M−2, b

T
M−1)T (29)

in which the i-th part can be computed as

bi = −D (Φiκi−1 + (Ωi + Γi+1)κi + Λiκi+1) . (30)

Now we conclude the procedure to obtain the optimal
trajectory. Firstly, compute each Hi for any given T using the
analytical function H(t) defined in (21). Secondly, compute
d̄ according to its definition (16) for the specified derivatives.
Thirdly, compute nonzero entries in M and b̄ according to
(26), (27) and (30). Fourthly, solve the linear equation system
(23) using Banded PLU Factorization [17]. Finally, recover
the optimal coefficient vector c through (15) and (3).

The above-concluded procedure only costs O(M) linear
time and space complexity. There is no numerical matrix in-
verse needed in the whole procedure because Ab is overcome
by deriving its analytical form. Moreover, the linear equation
system needed to be solved only involves necessary primal
decision variables, thus achieving the minimal problem size.

C. Parameter Gradient Computation in Double Descriptions

Although the double descriptions make it possible to
obtain the solution of (11) in a cheap way, the resultant
trajectory quality is still determined by the parameter of the
problem, i.e., intermediate waypoints q = (q1, . . . , qM−1)T

and piece times T . Further optimization on q and T is
needed to improve the trajectory quality while maintaining
feasibility. Therefore, we utilize the diffeomorphism between
double descriptions of the trajectory to derive the analytical
gradient w.r.t. q and T . The gradient helps to obtain optimal

q and T , which bridges the gap in many traditional trajectory
planning methods such as [18] and [19].

For any pair of q and T , denote by d̃(q, T ) the correspond-
ing optimal d̃, which satisfies

d̃(q, T ) = arg min
d̃

J(AB(T )P(d̄+ Bd̃), T ). (31)

Then, the optimal c, denoted by c(q, T ), is computed as

c(q, T ) = AB(T )P(d̄+ Bd̃(q, T )). (32)

Define a new cost as Ĵ(q, T ) := J(c(q, T ), T ). The gradient
we concern is indeed for Ĵ(q, T ), i.e., ∂Ĵ/∂q and ∂Ĵ/∂T .

Without causing ambiguity, we temporarily omit the pa-
rameters in Ĵ(q, T ), J(c, T ), d̃(q, T ), c(q, T ), AB(T ) and
AF(T ) for simplicity. As for the cost function in (31), d̃ is
a stationary point, which means its gradient w.r.t. d̃ satisfies
‖(∂J/∂c)TABPB‖ = 0. Now we know that the gradient
computation in either Pc or Pd possesses its convenience.
In Pc, the gradient ∂J/∂Ti and ∂J/∂ci both have easy-to-
derive analytic expressions. In Pd, the gradient of the cost
(31) by d̃ is already zero. Thus, we first express ∂Ĵ/∂T and
∂Ĵ/∂q by ∂J/∂Ti and ∂J/∂ci. Then, the diffeomorphism
in Proposition 1 is utilized to transform them into Pd such
that terms relevant to d̃ can be eliminated.

As for the gradient of Ĵ w.r.t. Ti, we have

∂Ĵ

∂Ti
=

∂J

∂Ti
+

(
∂J

∂c

)T
∂AB

∂Ti
P(d̄+ Bd̃)

+

(
∂J

∂c

)T

ABPB
∂d̃

∂Ti

=
∂J

∂Ti
+

(
∂J

∂c

)T
∂AB

∂Ti
AFc

=
∂J

∂Ti
+

(
∂J

∂ci

)T

Ȧb(Ti)Af (Ti)ci. (33)

As for the gradient of Ĵ w.r.t. qi, we have

∂Ĵ

∂qi
=

(
∂J

∂c

)T

ABP

(
∂d̄

∂qi
+ B

∂d̃

∂qi

)

=

(
∂J

∂c

)T

ABP
∂d̄

∂qi

=
∑
k=0,1

(
∂J

∂ci+k

)T

Ab(Ti+k)e(1−k)s+1. (34)

where ej is the j-th column vector of I2s. As for ∂J/∂Ti
and ∂J/∂ci, their analytic expressions are clearly derived in
the appendix of [4].

It is obvious that the gradient computations given in (33)
and (34) are both irrelevant to the piece number M . Thus,
computing the gradient w.r.t. q and T only costs O(M) linear
time and space complexity. Besides, all involved formulas
have smooth analytic forms for T ∈ RM>0, which much
increase the efficiency of gradient computation.

Aside from efficiency, our analytical gradient scheme en-
joy advantages in numerical stability. Specifically, the major
numerical issue comes from the structure of Ĵ(q, T ) on T . As



Fig. 2. Benchmark of small-scale trajectory generation. Pink lines are from
Mellinger’s scheme [6]. Lightblue lines are from Bry’s scheme [4]. Green
lines are from its sparse version. Red lines are from Burke’s scheme [8].
Darkblue lines are from the proposed scheme. Solid lines are for jerk
minimization. Dashed lines are for snap minimization.

analyzed in [10], if any piece time goes to zero, the trajectory
energy goes to infinity, thus making Ĵ behave like a barrier
function. Consequently, any scheme that evaluates gradient
indirectly suffers instability from bad accuracy because this
requires unrealistically small step size for finite difference [6]
near the barrier. In comparison, ours is free from this issue
because of the available accurate gradient.

V. APPLICATIONS

A. Fast Minimum Jerk/Snap Trajectory Generation

One natural application of the previous linear-complexity
solution scheme is that we can compute minimum-jerk/snap
trajectory with extreme efficiency. Actually, there are already
many reliable trajectory generation schemes for this topic.
One thing that really matters is whether we can use a scheme
as a black box without even worrying about its computation
burden. We show that our scheme almost satisfies the re-
quirements on this black box.

To demonstrate the efficiency of our scheme, we bench-
mark it with several conventional schemes, including the QP
scheme by Mellinger et al. [6], the closed-form scheme by
Bry et al. [4] and the linear-complexity scheme by Burke
et al. [8]. As for Mellinger’s scheme, we use OSQP [20]
to solve the QP formed by linear conditions and quadratic
cost. As for Bry’s scheme, both the dense and sparse linear
system solvers are implemented to calculate the closed-form
solution. As for Burke’s scheme, we implement an optimized
version of our own for the sake of fairness. More specifically,
it only costs several seconds to calculate a minimum-snap
trajectory with 500, 000 pieces, while the one in their paper
is reported to cost more than 2 minutes [8]. All schemes
are implemented in C++11 without any explicit hardware
acceleration.

We benchmark all these five schemes on 3-dimensional
minimum jerk (s = 3) and minimum snap (s = 4) problems.
All comparisons are conducted on an Intel Core i7-8700
CPU under Linux environment. For small-scale problems,
the piece number ranges from 2 to 27. In each case, 100
sub-problems are randomly generated to be solved by these

Fig. 3. Benchmark of large-scale trajectory generation. Red lines are from
Burke’s scheme [8]. Darkblue lines are from the proposed scheme. Solid
lines are for jerk minimization. Dashed lines are for snap minimization.

schemes. The results are provided in Fig. 2. For large-
scale problems, we only benchmark two linear-complexity
schemes, where the piece number is sparsely sampled from
210 to 220. The results are given in Fig. 3.

As shown in Fig. 2, Bry’s closed-form solution and
Burke’s scheme are faster than Mellinger’s scheme for small
piece numbers. The dense version of Bry’s scheme becomes
the slowest since the cubic complexity for the dense solver
dominates the time. Its sparse version still retains the effi-
ciency as piece number grows. Due to the linear complexity,
Burke’s scheme and our scheme consume significantly less
time than all other schemes. Moreover, ours is nearly an
order of magnitude faster than Burke’s at any problem scale
in Fig. 2 or Fig. 3. Intuitively, ours is able to generate
trajectories with 106 pieces in less than 1 second.

B. Fast Global Trajectory Optimization

Now we give another application for the linear-complexity
solution and gradient. We provide a simple example here
to significantly improve the efficiency of large-scale global
trajectory optimization.

A drawback in traditional minimum snap based schemes is
the lack of flexibility to adjust the piece times and waypoints.
Such kind of scheme can only obtain gradient information
unwisely by solving several perturbed problems [6]. To avoid
this drawback, Gao et al. [7] propose a more flexible frame-
work. It alternately optimizes the geometrical and temporal
profile of a trajectory through two well-designed convex
formulations. This framework generates high-quality large-
scale trajectories within safe flight corridors while it cannot
be done in real-time.

We assume that a polyhedron-shaped flight corridor has
been generated as in [7]. The flight corridor F is defined as

F =

M⋃
i=1

Pi (35)

where each Pi is a finite convex polyhedron

Pi =
{
x ∈ R3

∣∣∣ Aix � bi
}
. (36)

Besides, locally sequential connection is also assumed{
Pi ∩ Pj = ∅ if |i− j| = 2,

Pi ∩ Pj 6= ∅ if |i− j| ≤ 1.
(37)



Fig. 4. Each intermediate waypoint qi is confined within the intersection
of two polyhedra Pi∩Pi+1 using barrier functions. All piece times Ti and
intermediate waypoints qi are decision variables to be optimized.

For such a F , the start and goal position is located in P1

and PM , respectively. As is shown in Fig. 4, we assign each
3-dimensional intermediate waypoint qi in the intersection
Pi ∩ Pi+1, which roughly ensures the trajectory safety.

To obtain the spatial-temporal optimal trajectory within F ,
we optimize the following cost function

JΣ(q, T ) = Ĵ(q, T ) + JF (q) + JD(q, T ). (38)

The cost term Ĵ(q, T ) is also the 3-dimensional version. The
cost term JF (q, T ) is just a logarithmic barrier term to ensure
that each qi is confined within Pi ∩ Pi+1, defined as

JF (q) = −κ
M−1∑
i=1

i+1∑
j=i

1T ln [bj −Ajqi], (39)

where κ is a constant barrier coefficient, 1 an all-ones vector
with an appropriate length and ln [·] the entry-wise natural
logarithm. Actually, any C2 clamped barrier function is an
alternative to further eliminate the potential of the barrier in
the interior of Pi ∩ Pi+1, which can be easily constructed
by following [21]. The cost term JD(q, T ) is just a penalty
to adjust the trajectory aggressiveness. It is defined as

JD(q, T ) = ρt

M∑
i=1

Ti+ (40)

ρv

M−1∑
i=1

g

(∥∥∥∥qi+1 − qi−1

Ti+1 + Ti

∥∥∥∥2

− v2
m

)
+

ρa

M−1∑
i=1

g

(∥∥∥∥ (qi+1 − qi)/Ti+1 − (qi − qi−1)/Ti
(Ti+1 + Ti)/2

∥∥∥∥2

− a2
m

)
where g(x) = max {x, 0}3 is a C2 penalty function, vm
the velocity limit and am acceleration limit. The constant
ρt prevents the entire duration from growing too large.
Constants ρv and ρa prevent the trajectory from being too
aggressive. It also costs linear-complexity time for the value
and gradient computation on JΣ(q, T ). Then, we utilize the
L-BFGS [22] with strong Wolfe conditions as an efficient
quasi-Newton method to minimize the cost function.

As for constraints, it is possible that the interior part
of a piece becomes unsafe or violates the limit too much.
To handle such situations, we first utilize the feasibility
checker proposed in [10] to locate such a piece. Then, the
corresponding Pi is split into two intersecting parts, Pi,0 and
Pi,1, as shown in Fig. 5. An intermediate waypoint qi−1,i is
added as decision variables. Accordingly, we increase the
corresponding penalty or barrier coefficient only for these
two new pieces. In general, a larger penalty coefficient and

Large Vel/AccUnsafe Piece Middle Point

Fig. 5. If constraints are much violated on the piece between qi−1 and
qi, the corresponding polyhedron Pi is split into two intersecting polyhedra
Pi,0 and Pi,1. where the barrier/penalty coefficients are also increased. Two
perturbed planes near the perpendicular bisector of qi−1 and qi are chosen
as new facets. A new waypoint qi−1,i is also added in Pi,0 ∩ Pi,1.

Fig. 6. Benchmark of spatial-temporal trajectory optimization in safe flight
corridor. The red line is from Teach-Repeat-Replan [7]. The green line is
from FASTER [14]. The blue line is from the proposed one. FASTER only
supports small-scale corridors since the computation time of its MIQP grows
approximately in an exponential way.

shorter piece length make the soft constraint JD(q, T ) tighter.
A larger barrier coefficient in JF (q) makes qi−1,i more likely
to be in the interior of Pi,0 ∩ Pi,1, which helps to ensure
the safety. Empirically, these operations are seldom needed
according to our simulations.

We benchmark our simple scheme with the global trajec-
tory optimizer in Teach-Repeat-Replan [7] which minimizes
J(c, T )+ρt

∑M
i=1 Ti under the same constraints. The interval

allocation optimization in FASTER [14] is also compared
here since it supports polyhedron-shaped corridor constraints.
Due to the fact that it does not optimize time, we initialize
it using total time from Teach-Repeat-Replan. We set s = 3,
ρt = 32.0, vm = 4.0 and am = 5.0 for all schemes and
ρv = ρa = 128.0 for the proposed one. The relative cost
tolerance is set as 10−4 for ours and the default value for
the other two open-source implementations. The time out is
set as 1.5s. For each size, the computation time is averaged
over 10 randomly generated corridors. The results from three
methods is shown in Fig. 6. An intuitive comparison for
large-scale trajectory generation is also provided in Fig. 1
where a spatial-temporal optimal trajectory is generated by
our scheme using significantly less time.

VI. CONCLUSION

In this paper, we explore and exploit the relation between
double descriptions of quadrotor polynomial trajectory. The
resultant linear-complexity solution and gradient computa-
tion provide much flexibility and efficiency in classic trajec-
tory generation problems. Simple applications are provided
to demonstrate their promising performance. Our future work
focus on incorporating our results into existing local planners
that use polynomial trajectories. It remains to be validated
whether our results can greatly improve the trajectory quality
in these planners without sacrificing the efficiency.
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