arXiv:2101.00531v1 [csLG] 2 Jan 2021

Context-Aware Safe Reinforcement Learning
for Non-Stationary Environments

Baiming Chen, Zuxin Liu, Jiacheng Zhu, Mengdi Xu, Wenhao Ding, Ding Zhao

Abstract— Safety is a critical concern when deploying re-
inforcement learning agents for realistic tasks. Recently, safe
reinforcement learning algorithms have been developed to
optimize the agent’s performance while avoiding violations of
safety constraints. However, few studies have addressed the
non-stationary disturbances in the environments, which may
cause catastrophic outcomes. In this paper, we propose the
context-aware safe reinforcement learning (CASRL) method,
a meta-learning framework to realize safe adaptation in non-
stationary environments. We use a probabilistic latent variable
model to achieve fast inference of the posterior environment
transition distribution given the context data. Safety constraints
are then evaluated with uncertainty-aware trajectory sampling.
The high cost of safety violations leads to the rareness of unsafe
records in the dataset. We address this issue by enabling pri-
oritized sampling during model training and formulating prior
safety constraints with domain knowledge during constrained
planning. The algorithm is evaluated in realistic safety-critical
environments with non-stationary disturbances. Results show
that the proposed algorithm significantly outperforms existing
baselines in terms of safety and robustness.

I. INTRODUCTION

Reinforcement learning (RL) is a promising way to solve
sequential decision-making tasks. For example, RL has
shown superhuman performance in competitive games like
Go [1] and Starcraft [2]. RL has also been used for the
control of complex robotic systems [3], [4] such as legged
robots [5]. However, most well-known RL algorithms [6],
[7], [8] do not consider safety constraints during exploration.
Moreover, they are usually not adaptive to non-stationary
disturbances, which are common in many realistic safety-
critical applications [9]. These two weaknesses of current
RL algorithms need to be addressed before their deployment
in safety-critical environments.

Several recent studies have been proposed to address the
lack of safety [10], [11], [12], [13] and the lack of adapt-
ability [14], [15], [16] issues of RL algorithms, respectively.
However, the above two issues are entangled in realistic ap-
plications, because the environment disturbances may change
the system dynamics and affect the region of safety. In other
words, disturbances may cause unexpected safety violations
if not properly handled. A typical example is shown in Fig.[T}
where a healthcare robot is trying to deliver the medicine

*(Corresponding author: Ding Zhao)

Baiming Chen is with Tsinghua University, Beijing, China. This
work was done during his visit in Carnegie Mellon University (e-mail:
cbm17@mails.tsinghua.edu.cn)

Zuxin Liu, Jiacheng Zhu, Mengdi Xu, Wenhao Ding and Ding
Zhao are with the Department of Mechanical Engineering, Carnegie
Mellon University, USA (e-mail: {zuxinl, jzhu4, mengdixu, wenhaod,
dingzhao} @andrew.cmu.edu)

—»

forward

rotate

—

i (b) without adaptive safety

(a) with adaptive safety

Fig. 1: Healthcare environment with and without adaptive
safety. Red dots indicate direct contacts between the robot
and the patient which should be avoided.

(or food) to the patient while avoiding any direct contact.
The disturbance in this environment mainly comes from
the patient’s movements. To safely finish the delivery, the
robot must be able to quickly identify the patient’s moving
preference and adaptively generate safe control decisions.
To the best of our knowledge, there hasn’t been a general
framework or a complete algorithm to fully address this
entangled problem.

In this paper, we propose the context-aware safe reinforce-
ment learning (CASRL) framework to realize safe adaptation
in non-stationary environments and resolve the above entan-
gled problem. Our major contribution is threefold:

1) Fast adaptation. We study this problem under the
model-based RL framework for sample efficiency. Un-
like previous models that predict the next state only
based on the current state and action, we use a context-
aware latent variable model to infer the disturbance of
the non-stationary environment based on the historical
transition data, allowing task-agnostic adaptation.

2) Risk-averse control. We achieve risk-averse decision
making with constrained model predictive control.
Constraints are used for guarantees of safety in un-
certain environments. To improve exploration safety
in the early stage of training, we incorporate domain
knowledge to make conservative decisions with prior
models. We also enable prioritized sampling of rare
unsafe data during the model training to alleviate
the data imbalance problem in safety-critical environ-
ments. Combined with a context-aware probabilistic
model, this control regime can realize safe adaptation
in non-stationary environments and resolve the afore-
mentioned entangled problem.

3) Extensive evaluation. We conduct experiments in a
toy example and a realistic high-dimensional environ-



ment with non-stationary disturbances. Results show
that the proposed method can (i) realize fast adaptation
for safe control in unseen environments, (ii) scale to
high-dimensional tasks, and (iii) outperform existing
approaches in terms of safety and robustness.

II. RELATED WORK

Safe reinforcement learning has attracted long-term in-
terest in the RL community [17]. The Constrained Markov
Decision Processes (CMDPs) [18] is often used to model
the safe RL problem, where the agent aims to maximize its
cumulative reward while satisfying certain safety constraints.
Several approaches, such as the Lagrangian method [19]
and constrained policy optimization [10], [20], have been
proposed to solve CMDPs. Gaussian Processes (GPs) have
also been used to approximate the dynamics of the envi-
ronment for safe exploration [21], [22]. Particularly, Wachi
and Sui [23] discussed the situation where the safety bound-
ary is unknown. However, most existing safe RL methods
assume a consistent environment and cannot deal with time-
varying disturbances. In contrast, our method aims to realize
safe control in non-stationary environments, which is more
realistic for safety-critical applications.

Robust adversarial learning addresses the environment
disturbance problem by formulating a two-player zero-sum
game between the agent and the disturbance [24], [25],
[26]. However, the robust policies trained in this way may
overfit to the worst-case scenario, so the performance is not
guaranteed in other cases [27].

Meta-learning for RL has recently been developed to
realize adaptive control in non-stationary environments [28],
[14], [29], [15], [16], [30]. Since unsafe data are particularly
rare in safety-critical environments, we focus on model-based
methods for sample efficiency [8]. S@mundsson et al. [29]
proposed to use Gaussian Processes to represent dynamics
models, which may suffer from poor scalability as the dimen-
sion and the amount of data increases. Nagabandi et al. [15]
integrated model-agnostic meta-learning (MAML) [14] with
model-based RL. The dynamics model is represented by a
neural network that uses a meta-learned initialization and
is quickly updated with the latest data batch. However, the
uncertainty is not estimated by the model, and we show that
this may degrade the performance. Later studies from Xu et
al. [16] and Nagabandi et al. [3] achieved online continual
learning with streaming data by maintaining a mixture of
meta-trained dynamics models. These approaches may suffer
from the model explosion in complex environments where
the potential number of dynamics type is large. We overcome
this issue by constructing a probabilistic latent variable
model that learns a continuous mapping from the disturbance
space to the latent space.

Neural Processes (NPs) [31] have been proposed for few-
shot regression by learning to map a context set of input-
output observations to a distribution of regression functions.
Comparing to the Gaussian processes, NPs have the advan-
tage of efficient data-fitting with linear complexity in the
size of context pairs and can learn conditional distributions

with a latent space. A later study [32] proposed Attentive
Neural Processes (ANPs) by incorporating attention into
NPs to alleviate the underfitting problem and improve the
regression performance. NP-based models have shown great
performance in function regression [33], image reconstruc-
tion [32], and point-cloud modeling [34]. As probabilistic
latent variable models, ANPs naturally enable continual
online learning in continuously parameterized environments.
In this paper, we will show how to incorporate ANPs for
dynamics prediction and safety constraint estimation.

The rest of the paper is organized as follows. In Sec.
we formulate the safety-critical problem that we aim to solve
in this paper. In Sec. we show the inference process
of unknown environment disturbances with a latent variable
model. In Sec. [V] we show how to perform safe adaptation
with a sampling-based model-predictive controller. The ex-
periment results and discussions are presented in Sec.

III. PROBLEM STATEMENT

We consider non-stationary Markov Decision Processes
(MDPs) with safe constraints. An MDP is defined as a tuple
(S, A, f,r,v, po) where S denotes the state space, A denotes
the action space, f(s’|s,a) is the transition distribution of
the environment dynamics that takes into the current state
s € § and action a € A, and outputs the distribution of
the next state s’ € S. r(s,a) is the reward function, -y
is the reward discount factor, and pq is the distribution of
the initial state. To simulate the disturbances in real-world
environments, we consider non-stationary MDPs where the
transition dynamics f(s'|s,a, ) depends on certain hidden
parameters § ~ T, where 7 denotes the distributions of
environments parameters. For simplicity, we assume that
the environment is episodically consistent - the change of
f only happens at the beginning of each episode. This
setting is commonly used in related papers and can be easily
generalized to other consistent time-horizons.

Denote a safe state set by Ss,¢ and a safe action set by
Asare. The goal of safe RL is to find the optimal action se-
quence ag.7 to maximize the discounted accumulated reward
>oi—o'r(se,ar), without violating the safety constraints
(i.e., keeping s; € Sgafe and a; € Agqpe for every time
step t). v is a discount factor and 7 is the task horizon.
Throughout this paper, we assume Sgqf. and Agqf. are
known a priori.

IV. CONTEXT-AWARE MODEL INFERENCE

We address the proposed problem under the model-based
RL framework, where the tasks are solved by learning
a dynamics model f(s'|s,a) to approximate the ground-
truth environment dynamics f(s'[s, a). However, when the
environment dynamics f is non-stationary, f(s|s,a) may
fail to make accurate predictions since some hidden features
of the environment are not identified. To handle this problem,
we propose to learn a context-aware model f(s'|s, a, C) that
performs state predictions based not only on the current state
s and action a but also on the contexts C' - the historical
data collected in the current episode. In this way, the hidden
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Fig. 2: The flow of the proposed context-aware safe reinforcement learning (CASRL) framework. A context-aware model
is used to perform conditional dynamics predictions based on the context data.

information of the environment is first inferred from C,
and then the posterior distribution of the next state s’ is
calculated.

To incorporate domain knowledge for adaptive learning,
we divide the dynamics model f(s'|s,a,C) into two parts:

s' =5}, + s, (1a)
with  sj, ~ h(:|s,a), (1b)
sy~ g(:ls,a,C). (1c)

The model A in Eq. (ID) is referred to as the prior model.
Such model can be obtained by leveraging domain knowl-
edge without necessarily interacting with the environment,
e.g., training the dynamics model in a simulator [8] or using
first principles modeling [35]. However, the drawback is that
they are usually context-unaware.

The model g in Eq. is called the disturbance model
(or the error model). It represents the error between the prior
model h and the overall dynamics model f. It is the model
we aim to learn by interacting with the target non-stationary
environment. The disturbance model is context-aware and
should be able to capture the hidden information of the
environment based on the contexts C. To achieve that, the
disturbance model g should have the following properties:

« Flexibility: g should be able to condition on arbitrary
number of contexts to make predictions.

o Uncertainty awareness: g should estimate the uncer-
tainty in its predictions to balance exploration and
exploitation.

o Scalability: g should be able to scale to high-
dimensional environments.

In this paper, we use an Attentive Neural Process
(ANP) [32] to represent the disturbance dynamics model
g for its desirable properties and implementation simplic-
ity. The ANP model is defined as a (infinite) family of
conditional distributions, in which an arbitrary number of
observed input-output contexts (xc,yc) = (@i, Yi)icc is
used to model an arbitrary number of input-output targets
(x7,yr) == (zi,yi)icT, Where C denotes a set of observed
points and 7" denotes a set of unobserved points (the output

yr is unknown). The ANP transforms the original condi-
tional likelihood to a hierarchical inference structure:

o (yrlorsvo,yo) = / plyrler.2)q(zlic)dz @)

where z is a global latent vector describing uncertainty
in the predictions of yp for given observations (z¢,yc),
and is modeled by a factorized Gaussian parameterized by
le = l(xc,yc), with | being a deterministic function that
aggregates (z¢,yc) into a fixed dimensional representa-
tion. In ANP, [ consists of a multilayer perceptron (MLP),
self-attentions, and a mean aggregation layer to produce
permutation-invariant representations.

For dynamics prediction, the input z is the state-action pair
(s,a), and the output y is the state at the next time step s’. At
time ¢, the contexts (vc,yc) = (si, @i, 8})ie[1:¢+—1) contain
the state-action information of the previous time steps, the
target input zp = (s, at) is the current state-action pair, and
we aim to predict the target output y7 = s} that represents
the next state. The flow of using context-aware model for
model-based RL is shown in Fig. 2] A constrained MPC
controller is used for safe planning and will be introduced
in the next section.

The training of ANP is based on the amortized variational
inference. The parameters of the encoders and the decoder
are updated by maximizing the following evidence lower
bound (ELBO) with the reparametrization trick [36]:

log g (yr|rr, 20, yc) >
3)
Eq(2i7) log g(yr |z, 2)] — Dxo (q (2]i7) || g (2]lc)) -

where I := l(z7,yr), with [ being a deterministic function
introduced before. The training objective of ANP can be
interpreted as improving the prediction accuracy on the
targets while regularizing the Kullback-Leibler divergence
between the latent encoding of the contexts and the targets.

The contexts and the targets are randomly sampled from
a replay buffer that stores transition data from the same
disturbance dynamics. However, the rareness of unsafe data
may lead to low prediction accuracy in the unsafe state
region. To alleviate this issue, inspired by [37], we enable
prioritized experience sampling during model training - to



train the context-aware model with a certain data batch, the
unsafe data in this data batch are first added into the target
set T, and then other safe data are uniformly sampled and
appended to C and T'. We found that this trick can effectively
increase the prediction accuracy in the unsafe region, which
is discussed in Sec.

V. SAFE ADAPTATION WITH MPC

We formulate the safe adaptation as a constrained nonlin-
ear optimization problem:

T

max Zr(shat) (4a)
R—

st ap € Agage (4b)

St41 ™~ f('|8t, Gy, C) (4¢)

Pr(s; ¢ Ssafe) <9 (4d)

Spy1 ~ h('|§t,at) (4e)

Pr(gt ¢ Ssa,fe) S 6 (4f)

for t=0,...,7

Eq. (@a) shows that the objective is to maximize the cumu-
lative reward, Eq. {@Db) represents the safety constraint on
actions, and Eq. (c| [Ad) define the safety constraint on the
states s; that predicted by the learned model f . Eq. @)—
form the general problem of safe RL in most previous
literature [21]. However, with the non-stationary environment
disturbances, the learning process of the prediction model f
may be unstable, and it is difficult for the agent to keep
safe when f is not accurate. To alleviate this problem, we
formulate the prior safety constraint shown in Eq. Z5i)8
where a sequence of auxiliary states s; is predicted only
with the prior model h, and the high-probability safety
constraint is applied to it (59 = sp). Though not accurate,
the prior safety constraint provides extra protection for the
agent based on the static prior model h. Applying the
prior safety constraint is an effective way to incorporate
domain knowledge to improve safe learning, especially when
the unsafe data are expensive to obtain. Experiment results
show that it can effectively reduce the safety violation rate
especially in the early stage of training (Sec. [VI-C.I).

Direct solving the optimization problem Eq. () is in-
tractable since f is a high-dimensional nonlinear stochastic
function. Previous work has used approximated uncertainty
propagation techniques like sigma-point transform [38] and
Taylor expansion [21] to model the state distribution as a
single Gaussian distribution, and then solve Eq. (@) with non-
linear solvers such as the IPOPT [39]. However, Deisenroth
et al. [40] showed that the Gaussian moment matching could
corrupt after long-term propagation due to the multi-modal
distribution of states, inducing huge prediction errors. Also,
IPOPT cannot provide an alternative plan if no solution for
Eq. @ is found in limited time.

In this paper, we propose to solve Eq. (@) with a sampling-
based model-predictive control (MPC) approach. We use
MPC for its implementation simplicity, time flexibility, and
risk aversion. Also, this sampling-based method makes no

Algorithm 1 Trajectory sampling

procedure TRAIJSAMPLING(A, h, g, C, to)
for SamplingTime = 1, N do
for t =19, tg + 7, do
Sth ™~ h("stfla atfl)
Stg ™~ 9(‘|8t71, a1, C)
St = Sth + Stg

return {s¢,.¢,4+r f1:n

assumptions on the pattern of state distributions. Denoting
the planning horizon with 7, we first define the augmented
objective function for an action sequence A = ay,.¢,, as:

to+T7p

R(A) =Y [ (st,ae) = A[(L(Pr(s; ¢ Seage) > 0)

PG ¢ Seape) > 8) + Mar & Asaye))]

where 1(Z) is the indicator function that returns 1 if Z is
true, otherwise 0. s; and §,; are the state particles defined
in Eq. @) and are produced by the trajectory sampling
procedure where the uncertainties are propagated (Alg [I).
A serves as the Lagrangian multiplier of the dual problem of
Eq. @). In this paper, we regard X as a fixed hyperparameter
and make it sufficiently large

(&)

A > max(|r|) x T (6)

so that the augmented performance is monotonically de-
creasing w.r.t. the safety violation number. Considering the
uncertainty in the probabilistic model, we evaluate A with
the Conditional Value at Risk (CVaR) [41] of R(A) to make
the solutions risk-averse:

CVaR, (R(A)) =E [R(A)|R(A) < va(R(A)] (D

where a € (0, 1) and v, is the a-quantile of the distribution
of R(A). In other words, we prefer action sequences with
higher CVaR. We then take the first action in the most pre-
ferred action sequence and execute it. Instead of uniformly
sampling A every time, we utilize the Cross-Entropy Method
(CEM) as suggested in [8] to keep the historical information.
The complete algorithm along with the model-learning part
is shown in Alg.

VI. EXPERIMENT

For the evaluation of the proposed algorithm, we aim
to answer the following questions through empirical ex-
periments: can CASRL 1) adapt faster to unseen environ-
ments with a stream of non-stationary data than existing
approaches? 2) reduce the safety violation rate with prior
safety constraints? 3) scale to high-dimensional tasks?

A. Environments

To answer the above questions, we test CASRL in
two continuously-parameterized non-stationary environments
with safety constraints. The setup of the environments
(Fig. 3 is introduced below.



Algorithm 2 Context-Aware Safe Reinforcement Learning (CASRL)

Input: prior model h, state safe set Xy, e, action safe set Ay, fe, task distribution 7°

Output: disturbance model g, episodic replay buffer R
g < go, R« {}
for Episode = 1, M do
p~ T, C + {}, reset CEM(-), get s
fort =1, 7 do
for A ~ CEM(-) do
St:t4+7, = TRAISAMPLING(A, h,g,C,5;_1,1)
Stitqr, = TRAJSAMPLING(A, h, ,C’ St—1,1)
A* = argmax, CVaR,, (R (A))
Update CEM(-)
Execute af, get s¢q1
C+Cu (st,a,’{, St+1)
R+ RUC
Update g by maximizing the ELBO in Eq. (3) with R

> Initialize the disturbance model and the replay buffer
> Environment sampling and episode initialization
> Sampling action sequences

> State propagation in the learned model
> State propagation in the prior model

> The optimal action sequence is selected based on the CVaR

> ay is the first element of A*

> Record context

> Update the episodic replay buffer
> Model learning

Environments

o
(a) cart-pole swingup (b) healthcare feeding robot

-

cart mass, pole length & mass

e

R

(5

Disturbances

head movement & rotation

Fig. 3: Tasks with non-stationary disturbances and safety
constraints.

o cart-pole. (S C R* A C R') This is the cart-pole
swingup experiment proposed in [29]. The goal is to
swing the pole upright by applying force on the cart
while keeping the cart close to the center of the rail.
We add constraints on the pole angle 6 € [—10°, 225°]
so that the pole should be swung up from the right
side without too much overshoot. We make the task
non-stationary by changing the pole length [, the pole
mass p,,, and the cart mass c,, at the beginning of
each episode. The observation includes the position z
and velocity & of the cart, as well as the angle 6 and
angular velocity 6 of the pole. The reward function
is 7 = exp (—(IflSine)Q;(lflcose)Q and the highest
reward r = 1 is acquired when the cart is at the center
of the rail (z = 0) and the pole is upright (§ = 0). The
simulation frequency is 20 Hz.

« healthcare feeding robot. (S C R23, 4 C R7) The
environment is provided by [42]. The goal is to deliver
the medicines to the patient’s mouth with a control arm.
To keep safe, there should be no direct contact between
the patient and the robot. In each episode, the patient

moves forward and rotates his head in 4 degree-of-
freedom with randomly sampled speeds (a s, ag, ag, Gy),
which is the disturbance we designed to simulate dif-
ferent preferences. This is a relatively high-dimensional
environment and is used to test the scalability of the
algorithms. The observation includes the position of the
robot joints and the spoon, as well as the position and
orientation of the human head. The reward function has
three parts: r = rg;s +Tmed +Tact, Where rg;s penalizes
the distance between the spoon and the target position,
Tmed 18 a large positive value if medicine particles are
successfully delivered or a large negative value if they
are spilled, and r,. penalizes the magnitude of the
control input. The simulation frequency is 10 Hz.

B. Baselines

We compare our method with the following baselines:

o Projection-Based Constrained Policy Optimization
(PCPO): A projection-based safe RL algorithm [43].
The learned policy is projected to the safe region during
training.

« Probabilistic Ensemble and Trajectory Sampling
(PETS): To evaluate the importance of context-aware
adaptation, we compare to PETS [8], a state-of-the-art
model-based RL approach.

o Model-Agnostic Meta-Learning (MAML): We use the
gradient-based MAML [14], [15] to learn the dynam-
ics of the non-stationary environments. The dynamics
model is represented by a neural network which is
initialized from a pre-trained meta-model and updated
online with the nearest context data. [1]

o CASRL without prior safety constraint: To show
whether the prior safety constraint can effectively re-
duce the safety violation rate, we add another baseline
that follows the same structure of CASRL but does not
apply the prior safety constraint.

'We used a publicly available implementation at https://github.
com/iclavera/learning_to_adapt,


https://github.com/iclavera/learning_to_adapt
https://github.com/iclavera/learning_to_adapt

Each algorithm (including the proposed method) is first
pre-trained in non-safety-critical simulators without any dis-
turbances (7,,.) to learn the prior model h, where the safety
constraints are not applied so that we have enough data from
both safe and unsafe regions. We then use these initialized
models to safely adapt in disturbance spaces Tgggp: tO
learn the disturbance model g, with constraints applied.
As introduced in Sec. we re-sample the parameters
of the environments from 7,44+ at the beginning of each
episode. The results will reflect the adaptability of the tested
algorithms. 7T,.. and Taqap: used in the experiments are
shown in Table [

TABLE I: Disturbance Space. U(-) denotes uniform distri-
bution.

Environment Tpre Tadapt Unit
=06 T~ U[0.2, 1.0 m

cart-pole pm = 0.6 | pm ~U[0.2,1.0] kg
em =06 | cm~U0210] | kg

af =0 ay ~U[-1.0,1.0] | °/s

ag =0 ag ~U[—2.0,2.0 °/s

healthcare "o | a4 ~ u[[—2.0, 2.0]} °/s
ap =0 | ay ~U[-2.0,2.0] | /s

In the implementation, we use a hidden size of [128,128]
for all MLP networks. The latent dimension is 8 for the
deterministic encoder and latent encoder in the ANP model
for both experiments. The planning horizon 7 is set to be 20.
Each experiment was run with 10 random seeds. We make
the controller risk-averse by setting § = 0 in Equ. 5] All
hyperparameters are fine-tuned manually and are provided
in our submitted code base.

C. Result Analysis

1) During Adaptive Training: The average returns and
safety violation rates during adaptive training are shown in
Fig. f] The violation rate represents the proportion of safety
violation time steps in the whole episode. For PCPO, we only
plot the highest average performance after its convergence
since it requires a lot more samples to train than other
model-based methods. It is shown that the performance of
PCPO is limited since it cannot deal with non-stationary
environment disturbances. Though PETS outperforms other
methods in most environments during the early stage of
training, it fails to continue improving due to the lack of
adaptability in non-stationary environments. The proposed
approach, CASRL, outperforms MAML in both average
returns and safety violation rates, especially in the healthcare
environment. There are two possible reasons. One is that the
adaptation of MAML relies on online training of a high-
dimensional neural-network model in each step, which is
very sensitive to the learning rate and could be unstable in
high-dimensional spaces. On the other hand, CASRL only
performs online inference. The other possible reason is that
MAML cannot model the uncertainties in the environment,
which is accomplished by CASRL with a probabilistic latent
variable model.

Return in cart-pole

Violation rate in cart-pole (%)

00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14
timesteps led timesteps led

Return in healthcare Violation rate in healthcare (%)

0 1 2 3 4 5 6 0 1 2 3 4 5 6
timesteps le4 timesteps led

--- PCPO  ~—— PETS ~——— MAML ~——— CASRL w/o prior safety CASRL

Fig. 4: Return and violation rate during adaptive training. The
proposed method CASRL greatly reduces safety violation
rate while outperforming MAML in average return.

We can also observe that the prior safety constraint can
significantly reduce the violation rate with minimal perfor-
mance degradation.

2) After Adaptive Training: We evaluate the performance
of models after adaptive training by experiment in the whole
disturbance space Tgqqpt (Tab. . The results of average
returns and safety violation rates in cartpole-swingup and
healthcare are shown as heatmaps in Fig. [5] It is interest-
ing to observe that different constraint functions can lead
to different patterns of heatmaps. In the cartpole-swingup
environment, most constraint-violation cases concentrate at
the corners of the disturbance space (Fig. [5b) because the
dynamics models in the corners are the most different from
the center. In the healthcare environment, however, most
constraint-violation cases take place when the human head
has a high velocity of forward movement (Fig. [5d), which is
reasonable since forward movement decreases the distance
between the human head and the robot, increasing the risk
of direct contact. Among the methods tested, CASRL shows
great robustness and adaptability to disturbances compared
to other baselines.

3) Effect of pre-training: The pre-training phase is es-
sential for CASRL. The pre-trained prior model A not only
provides a start point for adaptive learning but also forms
the prior safety constraint that improves the safety of the
learning process. To show this, we compare the performance
of CASRL with and without pre-training in Fig. [(f MAML
provides a baseline. It is clearly shown that the pre-training
phase significantly benefits the learning process, especially
for CASRL.

For the healthcare experiment, the violation rate experi-
enced a big jump in the early stage of training for both
methods. The reason is that the robot needs to learn to control
its arm before it can approach the patient and possibly violate
the safety constraint.
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Fig. 5: Return and violation rate after adaptive training in cart-pole and healthcare environments.
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Fig. 6: Comparison of CASRL and MAML with and without
the pre-training phase.

4) Effect of prioritized sampling: We evaluate the ef-
fectiveness of prioritized sampling by comparing the mean
square error (MSE) of dynamics predictions in safe and un-
safe regions. The results are shown in Fig. [7] The prediction
accuracy in the unsafe state region is improved by prioritized
sampling, while the performance in the safe state region is
not influenced. The reason could be that without prioritized
sampling, the model is biased towards the safe data due to
the rareness of the unsafe samples.

VII. CONCLUSION

In this paper, we propose the context-aware safe rein-
forcement learning (CASRL) method as a meta-learning
framework to realize safe adaptation in non-stationary en-
vironments. The non-stationary disturbances are identified
with a probabilistic latent variable model by online Bayesian
inference. A risk-averse model-predictive controller is used
for safe planning with uncertainties, where we incorporate
prior safety constraints to enable fast adaptation with prior

MSE in safe region MSE in unsafe region

0.0018
0.0030
0.0016 -
0.0014 0.0025 A
.0012 +
0.00 0.0020 -\/
0.0010 1
=2 -1 0 1 2 -2 -1 0 1 2

rotation speed ag rotation speed ag

——— CASRL w/o prioritized sampling = CASRL w prioritized sampling

Fig. 7: The MSE of single-step dynamics predictions by
CASRL in healthcare environment. The prediction accuracy
in the unsafe region is improved by prioritized sampling.

knowledge. We also utilize prioritized sampling of unsafe
data to alleviate the data imbalance in safety-critical environ-
ments. The algorithm is evaluated in both toy and realistic
high-dimensional environments. Results show that CASRL
significantly outperforms existing baselines in terms of safety
and robustness.

Although CASRL is potentially beneficial for RL applica-
tions in safety-critical tasks, it may have its limitations. For
example, the disturbance space could be much larger if we
use image inputs with noises. Although the ANP model has
been shown to work for image reconstruction tasks [32], it
may fail for dynamics prediction in complex environments.
In that case, one potential solution is to conduct dynamics
prediction in the latent space as in Dreamer [44], which is
directly applicable for CASRL. The hyperparameter-tuning
for learning rates, network structures, and especially the
latent dimensions could be another challenge for CASRL.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484-489,
2016.

[2] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg,
W. M. Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell,



[3

=

[4]

[6]

[7]

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

et al., “Alphastar: Mastering the real-time strategy game starcraft ii,”
DeepMind blog, p. 2, 2019.

A. Nagabandi, C. Finn, and S. Levine, “Deep online learning via meta-
learning: Continual adaptation for model-based 1l,” arXiv preprint
arXiv:1812.07671, 2018.

B. Chen, M. Xu, L. Li, and D. Zhao, “Delay-aware model-
based reinforcement learning for continuous control,” arXiv preprint
arXiv:2005.05440, 2020.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv  preprint
arXiv:1707.06347, 20117.

K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” in Advances in Neural Information Processing Systems, 2018,
pp. 4754-4765.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 1EEE, 2017, pp.
23-30.

J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” arXiv preprint arXiv:1705.10528, 2017.

T.-H. Pham, G. De Magistris, and R. Tachibana, “Optlayer-practical
constrained optimization for deep reinforcement learning in the real
world,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 6236-6243.

Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
lyapunov-based approach to safe reinforcement learning,” in Advances
in neural information processing systems, 2018, pp. 8092-8101.

G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv
preprint arXiv:1801.08757, 2018.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” arXiv preprint arXiv:1703.03400,
2017.

A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel,
S. Levine, and C. Finn, “Learning to adapt in dynamic, real-world
environments through meta-reinforcement learning,” arXiv preprint
arXiv:1803.11347, 2018.

M. Xu, W. Ding, J. Zhu, Z. Liu, B. Chen, and D. Zhao, “Task-agnostic
online reinforcement learning with an infinite mixture of gaussian
processes,” arXiv preprint arXiv:2006.11441, 2020.

J. Garcia and F. Ferndndez, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437-1480, 2015.

E. Altman, Constrained Markov decision processes. CRC Press, 1999,
vol. 7.

E. Altman, “Constrained markov decision processes with total cost
criteria: Lagrangian approach and dual linear program,” Mathematical
methods of operations research, vol. 48, no. 3, pp. 387-417, 1998.
Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and
M. Ghavamzadeh, “Lyapunov-based safe policy optimization for con-
tinuous control,” arXiv preprint arXiv:1901.10031, 2019.

T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 2018, pp. 6059—
6066.

L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive
control using gaussian process regression,” IEEE Transactions on
Control Systems Technology, 2019.

A. Wachi and Y. Sui, “Safe reinforcement learning in constrained
markov decision processes,” in International Conference on Machine
Learning. PMLR, 2020, pp. 9797-9806.

A. Nilim and L. Ghaoui, “Robust markov decision problems with
uncertain transition matrices,” Advances in Neural Information Pro-
cessing Systems, 2003.

L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversar-
ial reinforcement learning,” arXiv preprint arXiv:1703.02702, 2017.

[26]
[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

W. Ding, B. Chen, M. Xu, and D. Zhao, “Learning to collide: An
adaptive safety-critical scenarios generating method,” 2020.

L. Rice, E. Wong, and J. Z. Kolter, “Overfitting in adversarially robust
deep learning,” arXiv preprint arXiv:2002.11569, 2020.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “R12: Fast reinforcement learning via slow reinforcement
learning,” arXiv preprint arXiv:1611.02779, 2016.

S. Semundsson, K. Hofmann, and M. P. Deisenroth, “Meta reinforce-
ment learning with latent variable gaussian processes,” arXiv preprint
arXiv:1803.07551, 2018.

W. C. Cheung, D. Simchi-Levi, and R. Zhu, “Non-stationary reinforce-
ment learning: The blessing of (more) optimism,” Available at SSRN
3397818, 2019.

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende,
S. Eslami, and Y. W. Teh, “Neural processes,” arXiv preprint
arXiv:1807.01622, 2018.

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum,
O. Vinyals, and Y. W. Teh, “Attentive neural processes,” arXiv preprint
arXiv:1901.05761, 2019.

S. Qin, J. Zhu, J. Qin, W. Wang, and D. Zhao, “Recurrent attentive
neural process for sequential data,” arXiv preprint arXiv:1910.09323,
2019.

J. Gordon, W. P. Bruinsma, A. Y. Foong, J. Requeima, Y. Dubois,
and R. E. Turner, “Convolutional conditional neural processes,” arXiv
preprint arXiv:1910.13556, 2019.

J. R. Pati, “Modeling, identification and control of cart-pole system,”
Ph.D. dissertation, 2014.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” arXiv preprint arXiv:1511.05952, 2015.

C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained
learning-based nmpc enabling reliable mobile robot path tracking,”
The International Journal of Robotics Research, vol. 35, no. 13, pp.
1547-1563, 2016.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25-57, 2006.
M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE transactions
on pattern analysis and machine intelligence, vol. 37, no. 2, pp. 408—
423, 2013.

A. Tamar, Y. Glassner, and S. Mannor, “Optimizing the cvar via
sampling,” in Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015, pp. 2993-2999.

Z. Erickson, V. Gangaram, A. Kapusta, C. K. Liu, and C. C.
Kemp, “Assistive gym: A physics simulation framework for assistive
robotics,” IEEE International Conference on Robotics and Automation
(ICRA), 2020.

T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge, “Projection-
based constrained policy optimization.” in /CLR, 2020.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to con-
trol: Learning behaviors by latent imagination,” arXiv preprint
arXiv:1912.01603, 2019.



	I Introduction
	II Related Work
	III Problem Statement
	IV Context-Aware Model Inference
	V Safe Adaptation with MPC
	VI Experiment
	VI-A Environments
	VI-B Baselines
	VI-C Result Analysis
	VI-C.1 During Adaptive Training
	VI-C.2 After Adaptive Training
	VI-C.3 Effect of pre-training
	VI-C.4 Effect of prioritized sampling


	VII Conclusion
	References

