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Abstract— Concentric Tube Robots (CTRs), a type of con-
tinuum robot, are a collection of concentric, pre-curved tubes
composed of super elastic nickel titanium alloy. CTRs can
bend and twist from the interactions between neighboring tubes
causing the kinematics and therefore control of the end-effector
to be very challenging to model. In this paper, we develop a
control scheme for a CTR end-effector in Cartesian space with
no prior kinematic model using a deep reinforcement learning
(DRL) approach with a goal-based curriculum reward strategy.
We explore the use of curricula by changing the goal tolerance
through training with constant, linear and exponential decay
functions. Also, relative and absolute joint representations
as a way of improving training convergence are explored.
Quantitative comparisons for combinations of curricula and
joint representations are performed and the exponential decay
relative approach is used for training a robust policy in a
noise-induced simulation environment. Compared to a previous
DRL approach, our new method reduces training time and
employs a more complex simulation environment. We report
mean Cartesian errors of 1.29 mm and a success rate of 0.93
with a relative decay curriculum. In path following, we report
mean errors of 1.37 mm in a noise-induced path following task.
Albeit in simulation, these results indicate the promise of using
DRL in model free control of continuum robots and CTRs in
particular.

I. INTRODUCTION

Concentric tube robots (CTRs) are needle-sized robots
composed of concentric pre-curved nickel titanium alloy
tubes [1]. Individual tubes are super-elastic and have a
straight and pre-curved section. By rotating and translating
each tube individually, neighbouring tubes interact resulting
in bending and twisting of the robot backbone to create
curvilinear shapes as seen in Fig. 1. In surgical applications,
CTRs are clinically motivated for minimally invasive surgery
(MIS) where articulated robots and steerable needles can be
used to access surgical sites with minimal trauma. Examples
of CTRs in surgical applications include retinal microsurgery
[2], endonasal procedures [3], fetal surgery [4], [5] and other
procedures [6] all of which may benefit from the dexterity,
compliance and flexibility of CTRs. One of the main benefits
of CTRs is the small potential profile of the instrument that
may minimise trauma at the entry point.
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Fig. 1: Curvilinear shape of a three tube CTR.

With the benefits of CTRs, however, comes the inherent
complexity of kinematics and control because of the tube
interactions that create these curvilinear shapes. Kinematic
modelling for CTRs has been investigated thoroughly. A bal-
ance between complexity and computation time has resulted
in popular kinematic models [7], [8] that are torsionally
compliant or in other words, include the twisting of the tubes.
These methods have limitations in terms of transverse shear,
elongation and friction which are present in real systems.
Some relevant works in the field are reviewed in §II. Sig-
nificant advances have been made such as including friction
modelling [9]. However, computing the inverse kinematics
(IK) using model-based approaches can be computationally
slow, thus a model-free, deep learning approach like deep re-
inforcement learning (DRL) can include complex phenomena
yet be computationally fast and accurate when compared to
Jacobian approaches [10].

In this paper, we improve upon a previous model-free
reinforcement learning (RL) approach for control of CTRs
[11] by improving training convergence time, validating our
approach on a more accurate simulation kinematics model
and training a robust policy in a noise-induced simulation.
These improvements are done by introducing a goal toler-
ance based curriculum reward strategy, joint representation
improvements and training on a noise-induced simulation
environment. The contributions of the paper are summarized
as:

• Novel training method using a goal-based curriculum
reward to learn the control policy for CTRs.

• Train control policy using a geometrically exact kine-



matics model [8], where previous reinforcement work
employed a simplified dominant stiffness, constant cur-
vature model derived from [7].

• Train a robust control policy in simulation with added
Gaussian noise to demonstrate policy robustness.

II. PRIOR WORK AND PRELIMINARIES

Standard model-based approaches for solving IK and
control of CTRs include numerical root finding methods
[7], differential kinematics [12] and most recently, a model-
predictive controller (MPC) strategy [13]. In the numerical
root finding method, a Gauss-Newton root finding is per-
formed in real-time applied on the functional approximation
for IK. In the differential kinematics approach, a Jacobian
derivative over the arc length of the robot with respect to
changes in joints and external forces and torques is derived.
The Jacobian is used in a damped least squares differential
IK method with an objective function that includes tracking a
desired trajectory, stability, actuator velocities, actuator limits
and undesirable configurations. Additional work on task
space control using an approximate Jacobian has also been
investigated [14]. Last, in the MPC approach, a kinematics
model was used to predict unstable joint configurations in
future joint configurations of the trajectory, and adjust ac-
cordingly. A non-linear optimization problem is constructed
with a cost function defined over the range of the time
horizon K with the current trajectory, desired trajectory and
weighting matrix along with constraints to ensure stability.
The optimization is solved at each timestep with the horizon
set to K = 5. Although model-based approaches have made
significant progress, in most models, the CTR is seen as a
constant curvature pre-curved or straight sections to mitigate
the large computation for fast IK. However, during the manu-
facturing process, this is difficult to ensure. Additionally, the
most common material used for concentric tube robots in
nickel-titanium, a super-elastic material which will undergo
some amount of permanent plastic deformation over time.
Lastly, there is a trade-off of computation complexity and
model accuracy.

In model-free approaches, there have been four main
prior works with three using neural networks and one RL
approach. In the first two neural network approaches [15],
[16], for forward kinematics, the joint configuration is used
as inputs and a fully connected neural network outputs a
pose of the end-effector. The inputs and outputs are reversed
for IK. Joint configurations are limited to certain areas of
the workspace to ensure even data sampling. In the first
neural network approach [15], a variable curvature section
and constant curvature section three tube CTR was used in
simulation. In the second work [16], a novel trigonometric
joint representation is used for training which improves
accuracy in a real CTR system. Furthermore, various joint
representations are compared in the associated work [17]. In
the last neural network method [18], the joint configuration
represented in the trigonometric form is the input and the
outputs are coefficients of a orthonormal polynomial basis
function. RGB cameras are used to collect backbone shape

images which are voxelised, fitted to the basis function with
the coefficients used as training for the neural network.
The trained network can then, given a joint configuration,
estimate coefficients of the basis functions that best estimate
the backbone shape. In the RL approach [11], a policy
gradient algorithm is used to train an agent in a simplified
piecewise dominant stiffness constant curvature simulation
to output a change in joint configurations values given the
current state of the robot. The current state of the robot
included the trigonometric representation of the joint config-
uration and the current end-effector position and desired end-
effector position. It was found that separating the noise in a
multivariate way greatly improved convergence in training.
We build on this RL foundational work in CTR control
and we improve on it by using a curriculum to decrease
training time while using more complex model in simulation.
Moreover, a robust policy is trained by using a noise-induced
simulation, instrumental for hardware testing.

Generally, RL is a framework that aims to learn a sequence
of actions that maximizes a numerical reward to complete
a task. The framework consists of an agent or policy,
which maps states to actions and an environment, which
simulates the selected action in the task space and returns
the new state and a reward signal [19]. Generally, there are
a number of timesteps with which the agent can interact
with environment before it is reset. An episode consists of a
number of timesteps and a number of episodes determine the
full number of training steps. The aim of RL is to develop
a policy that outputs actions which have the the greatest
cumulative reward over before completion of an episode.
DRL is combining deep learning with RL by using neural
networks to represent reward prediction and the learned
policy.

III. METHODS

To use RL, a Markov Decision Process (MDP) consisting
of state, action and reward must be formulated.

A. MDP Formulation

In the following, the state, action, reward, and goals are
defined.

• State (st) : States are defined as the concatenation of the
trigonometric joint representation, Cartesian goal error
and current goal tolerance. As shown in Fig. 2, rotation
and extension of tube i (ordered innermost to outermost)

Fig. 2: Joint variables β and α of a 3 tube CTR. s is the
arc-length or axis along the backbone.



are αi and βi. The trigonometric representation [16] of
tube i is defined as:

γi = {γ1,i, γ2,i, γ3,i} = {cos(αi), sin(αi), βi} (1)

The rotation can be retrieved by taking the arc-tangent

αi = atan2(γ2,i, γ1,i) (2)

The extension joint βi can be retrieved directly and has
constraints

0 ≥ β3 ≥ β2 ≥ β1 (3)

0 ≤ L3 + β3 ≤ L2 + β2 ≤ L1 + β1 (4)

from the actuation side. The Cartesian goal error is
the current error of the achieved end-effector po-
sition (Gachieved) and desired end-effector position
(Gdesired). Lastly, the current goal tolerance, δ(t), is
included in the state where t is the current timestep t.
The full state, st, can then be defined as:

st = {γ1, γ2, γ3, Gachieved −Gdesired, δ(t)} (5)

• Action (at) : Actions are defined as a change in rotation
and extension joint positions.

at = {∆β1,∆β2,∆β3,∆α1,∆α2,∆α3} (6)

• Goals (G) : Goals are defined as points in Cartesian
space within the workspace of the robot. There is the
achieved goal, Gachieved and desired goal Gdesired. The
achieved goal is determined with the forward kinematics
of the model used and is recomputed at each timestep as
the joint configuration changes from the agents actions.
The desired goal updates at the start of every episode
where a desired goal is found by sampling valid joint
configurations in the workspace and applying forward
kinematics of the model.

• Rewards (rt) : The reward is a scalar value returned
by the environment as feedback for the chosen action
by the agent at the current timestep. In this work,
sparse rewards are used as they have been shown to be
more effective than dense rewards when using hindsight
experience replay (HER) [20]. The reward function used
in this work is defined as:

rt =

{
0 if et ≤ δ(t)
−1 otherwise

(7)

where et is the Euclidean distance ||Gachieved −
Gdesired|| and δ(t) is the goal-based curriculum func-
tion that determines the goal tolerance at timestep t.
The workspace and various state and reward elements
are illustrated in Fig. 3.

Fig. 3: State with starting goal and achieved goal (red),
desired goal (green), goal tolerance, δ(t). Outer tube (green),
middle tube (red) and inner tube (blue).

B. Goal-Based Curriculum

We propose three goal tolerance curriculum functions for
training. Using the starting goal tolerance, δ(0), final goal
tolerance δ(Nts), where Nts is the number of timesteps to
apply the function, we can fully define our three chosen
functions. The first function is a constant tolerance.

δconst(t) = δconst(0) = δconst(Nts) (8)

The second function is linear function, with b as the initial
tolerance and a as the slope.

δlin(t) = at+ b

a =
δlin(Nts)− δlin(0)

Nts

b = δlin(0)

(9)

The third function is an exponentially decaying function,
with a as the initial tolerance and r as the rate decay.

δexpo(t) = a(1− r)t

a = δexpo(0)

r = 1−
(
δexpo(Nts)

δexpo(0)

) 1
Nts

(10)

In the experiments, Nts is set to 200, 000 with total number
of timesteps for training set to 500, 000, the initial tolerance
δ(0), to 20.0 mm and the final tolerance δ(Nts), to 1.0
mm. The initial tolerance was chosen based on evaluation
errors during training of previous work [11]. 20.0 mm is
approximately where improvement in the policy begins to
decelerate. 200, 000 steps was chosen to have the remaining
300, 000 steps to train with the final goal tolerance. The
number of total training steps has been significantly reduced
from 2 million from previous work.



Tube 1st 2nd 3rd

Precurvature (m−1) 21.3 13.1 0.1
Inner Diameter (mm) 0.7 1.4 2.0
Outer Diameter (mm) 1.1 1.8 2.2
Straight Length (mm) 431 332 10
Curved Length (mm) 103 113 5
Young’s Modulus (GPa) 6.4 5.3 4.7
Shear Modulus (GPa) 2.5 2.2 3.0

TABLE I: Concentric tube robot tube parameters based on
[13].

C. Proprioceptive and Egocentric Joints Representation

Additionally, the use of egocentric or relative joint repre-
sentation rather than proprioceptive or absolute joint repre-
sentation is investigated. In the egocentric representation the
current joint variable is relative to the previous joint, with
the first joint is referenced from the base reference frame as
opposed to a proprioceptive representation where all joints
are referenced from a base reference. For rotations,

αrelative = {α1,∆α2−1,∆α3−2} (11)

and extensions

βrelative = {β1,∆β2−1,∆β3−2} (12)

To retrieve the absolute joint representation, the cumulative
sum is taken as shown below:

αabsolute = {α1,∆α2−1+α1,∆α3−2+∆α2−1+α1} (13)

The analysis of different representations is motivated by the
use of egocentric joint representations in most continuous
control tasks as shown in the DeepMind control suite [21].
Moreover, in an in-depth study at improving human-like
motion with RL and imitation learning, egocentric over non-
egocentric representation was chosen [22].

D. Simulation Environment

To simulate the kinematics of the CTR, as well as visualize
the backbone shape and tubes of the robot, the geometrically
exact modelling technique was chosen [8] in this work. In
previous RL work [11] for CTRs, a simplified piecewise
dominant stiffness model with constant curvature based on
[7] was used to enable the exploration study. The simulation
environment follows the framework of openAI gym [23]
with the modelling technique used to compute end effector
position or achieved goal, retrieve new desired goals with
sampled joint configurations and visualise the robot. A three
tube CTR system was chosen to train on as single and two
tube systems have analytical solutions available and four tube
systems have restricted use due to the limited workspace
available from torsional windup snapping and instability [7].
Tube parameters found in Table I are based on a three tube
hardware system [13].

E. Policy Learning

For the policy, a multilayer perceptron architecture of input
size that of the state dimension and output the size of action
dimension was used. With the MDP previously defined, any
known DRL approach that is compatible with continuous
state and actions and is off-policy can be incorporated to
train the policy. Deep deterministic policy gradient (DDPG)
[24] with hindsight experience replay (HER) [20] was chosen
because DDPG has been shown to be more stable than
other algorithms in stable environments [25]. HER with the
future goal sampling strategy was added as in a environment
where successful trajectories are sparse, the ability to add
relabelled failed trajectories into successful ones is important
for training convergence. Exploration noise was added to
actions in the form of multivariate Gaussian noise as shown
in [11].

IV. EXPERIMENTS AND RESULTS
For all training, a server cluster with Intel Gold 6130

18C 140W 2.3 GHz with 19 parallel [20] workers for
500,000 training steps with stable baselines [26] was used.
We compare combinations of proprioceptive and egocentric
representation with the three goal-based curriculum func-
tions: constant, linear and exponential decay. Following this,
path following experiments are performed with a noiseless
and noise-induced environment with Gaussian noise added to
the state. Specifically, noise is added to the joint rotation and
extension of each tube as well as the computed end-effector
or achieved goal position. We compare mean errors in the
path in a noise-induced environment with a non-robust and
robust policy. A robust policy is one where the noise-induced
environment is used as the training environment.

First, to compare proprioceptive and egocentric represen-
tations, we plot the mean errors and success rate of the
constant curriculum with both representations as shown in
Fig. 4. We define success rate as the number of successful
episodes over the total number of evaluation episodes with
the learned policy at that training step. The egocentric
representation (red) is able to perform better with a faster
convergence and lower overall final error of 2.06 mm as
compared to proprioceptive (blue) final error of 3.24 mm.
From previous CTR RL work [11], multivariate Gaussian
noise in action exploration in training is also shown for
contrast in green. There is a large gap in performance due the
starting configuration at the beginning of training. The robot
is set to full extension, where in the previous work, the robot
is set to full retraction and requiring a specific exploration
strategy for extension actions.

Next, to compare the curriculum functions, we present
errors and success rate of the constant, linear and decay
curricula with the egocentric representation. The main ad-
vantage, as shown in Fig. 5, is faster convergence in the
initial 200, 000 steps of training. As the goal tolerance starts
large, desired goals are easily achieved by the agent. As a
result, success rate of the linear and decay curriculum are
high within the first 10, 000 steps. Linear and decay curricula
also reduce errors quicker as compared to the constant



Curriculum Error (mm) Var Success rate

Proprio-
ceptive

Constant 2.43 0.09 0.85
Linear 3.31 0.15 0.87
Decay 3.16 0.12 0.80

Ego-
centric

Constant 1.97 0.05 0.87
Linear 3.38 0.15 0.89
Decay 1.29 0.03 0.93

TABLE II: Table of evaluation results for error, variance and
success rate for representation and curriculum combinations.

curriculum. Aside from the training convergence benefits,
higher success rates will reduce training times, as failed
episodes will take longer to complete than successful ones.
Illustrative examples of a successful and a failed trajectories
of egocentric decay and proprioceptive constant functions
at 125, 000 training steps are shown in Fig. 6. Although the
egocentric decay policy in Fig. 6b seems to take unnecessary
actions in this the early policy, it is able to achieve the desired
goal despite the large distance. The proprioceptive policy in
Fig. 6a on the other hand, where the policy has not had
many successful episodes for training, is unable to reach a
closer desired goal. To summarize the curriculum results,
the final learned policy is evaluated on 1000 episodes with
randomly sampled joint configurations and desired goals at
each episode with the mean errors and success rate presented
in Table II.

An additional possibility with RL and a HER based
approach is the ability to transition to new desired goals.
Since the desired goal is included in the state, as shown in
(5), it can be changed after each timestep or episode. We
set a trajectory generator to update the desired goal after the
completion of a 20 timestep episode with no feedback of
success or failure from the agent with respect to previously
set goals. This inherent controller in RL, where the goal
can be updated in the state itself, is unavailable to neural
network approaches mentioned in §II. We use this open-
loop controller to set straight line paths and circular paths
as shown in Fig. 7 and Fig. 8. First, we employ an agent
to follow a straight line in the simulation environment. In
Fig. 7, the full path is shown through Fig. 7a to Fig. 7c.
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Fig. 4: Constant curriculum training results for joint proprio-
ception (blue) and egocentric (red) and multivariate Gaussian
exploratory noise (green) from previous RL work [11]. Errors
are a solid line and success rate are dashed lines.
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Fig. 5: Constant (blue) linear (red) and decay (green) cur-
riculum with egocentric representation. Errors are a solid line
and success rate are dashed lines.

(a) (b)

Fig. 6: Failed proprioceptive constant curriculum (left) and
successful egocentric decay curriculum (right) IK solutions
at 125k training steps. Red dot is starting position, green is
desired goal, black dotted line is achieved trajectory.

In Fig. 7d a top-down view supplements visualization of
the path followed. The best performing policy of egocentric
representation with a decay curriculum was used as the agent.
The agent was able to follow the path accurately with a mean
tracking error of 0.58 mm.

To begin experimentation in hardware, a robust policy
that can deal with the inherent complexities and disturbances
must be developed. To demonstrate this, a second simulation
environment was created where noise was induced in the
state. Specifically, zero mean Gaussian noise was added
to the joint configuration (β and α) as encoder noise and
the achieved goal position as tracking noise. Encoder noise
is variable and depends on a large number of factors.
For simplicity, a 1◦ standard deviation was selected. To
determine the extension joint noise, a gear ratio of 0.001
was used. For achieved goal or tracking noise, a standard
deviation 0.8 mm is used based on an EM tracker (Aurora,
NDI Inc., CA) precision in documentation. With the noise-
induced environment, we train a new robust egocentric decay
curriculum policy. To compare the new robust policy to a
non-robust policy we compute the mean error in a circular
path following task as shown in Fig. 8. The robust policy
and non-robust policy had a mean tracking error of 1.37 mm
and 1.56 mm respectively. Although this is only a marginal



(a) Start of trajectory. (b) Middle of trajectory. (c) Trajectory complete.
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Fig. 7: Trained egocentric decay policy on simulation environment following straight trajectory. Red dot is starting position,
green is the end position, black dashed line is desired trajectory and green is achieved trajectory.

(a) Start of trajectory. (b) Middle of trajectory. (c) Trajectory complete.
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Fig. 8: Trained egocentric decay robust policy on noise-induced simulation environment following circular trajectory with
achieved trajectory (green dashed line) and desired trajectory (black dashed line).

improvement, we aim to utilise the various sim2real transfer
learning approaches available literature in the future to build
on this result. In the attached video, trajectory animations
for example IK solutions for proprioceptive and egocentric
agents at 125k training steps are provided. Also, example IK
solutions for the egocentric decay curriculum are shown. In
the last section of the video, animations for path following
of circle and line trajectories with an without a robust policy
is shown.

Our main comparison is to the previous RL work [11],
where an error 0.5 mm Cartesian error for IK solution
was reported with a simplified dominant stiffness constant
curvature model and shorter overall tubes lengths. In this
work, using a more accurate simulation environment we
report 1.29 mm mean Cartesian error in IK evaluation using
egocentric decay curriculum and 1.37 mm mean tracking
error with a robust policy in a noise-induced simulation.
In a noise-free path following task, we achieve 0.58 mm
error. In terms of training, overall training steps have been
reduced from 2 million to 500, 000. In the recent MPC work
by Khadem et al. [13], they report 0.203, 0.123 and 0.080
mm tracking error for a Jacobian-based approach, and the
MPC approach with K = 2 and K = 5 in simulation.
Although the tracking errors are higher, this preliminary
work can be improved in numerous ways. Determining

optimised goal tolerance parameters (Nts, δ(0), δ(Nts)) as
well as increasing number of training steps should improve
error metrics. Also, investigating error propagation through
rotation and goal distances may reveal further improvements
by identifying areas of under-exploration.

V. CONCLUSIONS

In this paper, DRL with a goal-based curriculum was used
to improve training convergence and robustness of learned
policies to control CTRs. Specifically, linear and exponen-
tially decaying goal tolerances combined with an egocentric
joint representation showed significant improvement in on
a more accurate model when compared to previous work
that used a simple constant curvature model. Moreover, the
curriculum presented was used to train a robust policy within
a noise-induced simulation environment.

In future work, we plan to incorporate the backbone
shape in the state representation and fully validating our
work in hardware. We also aim to investigate errors in
rotation as the accuracy of this method depends on full
workspace exploration and error propagation through goal
distances. Incorporating regions that are unexplored could
greatly improve accuracy results. Lastly, varying curricula
parameters, especially the final goal tolerance δ(Nts), could
lead to further improvement in training and error results.
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