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Abstract— We present a control architecture for real-time
adaptation and tracking of trajectories generated using a
terrain-aware trajectory optimization solver. This approach
enables us to circumvent the computationally exhaustive task
of online trajectory optimization, and further introduces a
control solution robust to systems modeled with approximated
dynamics. We train a policy using deep reinforcement learning
(RL) to introduce additive deviations to a reference trajectory
in order to generate a feedback-based trajectory tracking
system for a quadrupedal robot. We train this policy across
a multitude of simulated terrains and ensure its generality
by introducing training methods that avoid overfitting and
convergence towards local optima. Additionally, in order to
capture terrain information, we include a latent representa-
tion of the height maps in the observation space of the RL
environment as a form of exteroceptive feedback. We test the
performance of our trained policy by tracking the corrected set
points using a model-based whole-body controller and compare
it with the tracking behavior obtained without the corrective
feedback in several simulation environments. We also show
successful transfer of our training approach to the real physical
system and further present cogent arguments in support of our
framework.

I. INTRODUCTION

Legged locomotion has largely been approached using
model-based control methods such as short-horizon motion
planning (e.g., one gait cycle ahead) which can be performed
online for predefined gaits to optimize target footholds and
center of mass (CoM) trajectories in a model predictive
control (MPC) manner [1], [2]. Such a method enables
humanoid and quadrupedal robot systems to instantly recover
from unexpected disturbances or to blindly adapt to rough
terrains [3]. In contrast, long-horizon nonlinear trajectory
optimization can be performed efficiently to optimize for
base trajectories (i.e., base pose and twist), target footholds,
feet trajectories, contact forces and timings [4]. Despite its
minimal parameterization, the computational performance of
such methods are not yet suitable for fast online motion
planning. In this regard, much of the research focuses on
either improving the convergence rate of this formulation
by exploiting learnt initial guess [5], [6] or by introducing
feasibility constraints in order to account for the dynamic
limits of the actual hardware [7]. In both these cases, the
successful execution of the pre-determined motion plan relies
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Fig. 1. The ANYmal quadruped we used for evaluating the performance
of our control architecture. Among a series of tasks, we tested the response
of the WBC by performing blind locomotion over randomly placed wooden
tiles using corrective trajectory feedback and compared it against the
baseline comprising of non-adaptive trajectory tracking. Accompanying
video can be found at: https://youtu.be/GieUI6WLv7U

on a whole-body controller (WBC) used to compute the feed-
forward joint torques, target joint velocities and target joint
positions in order to track the generated reference trajectories
online.

While long-horizon approaches have shown impressive
results in controlled environments [4], their usage outdoors
has been very limited mainly due to the slow response
time associated with these methods making them unreliable
in presence of unexpected disturbances, perturbations and
inaccurate whole-body tracking. Recent work on RL for
quadrupedal locomotion [8], [9] has shown great promise for
development of robust and dynamic model-free data-driven
control techniques which directly map sensory information
into desired robot states enabling extremely fast control
response. However, in order to be used in safety-critical
environments, the RL training setup necessitates constrained
exploration and control behaviour [10] which requires sig-
nificant platform-specific engineering thereby increasing the
complexity of the RL training environment.

In this regard, we propose a new control architecture
which utilizes long horizon motion plans generated using
trajectory optimization solvers, corrected online using an
RL policy then tracked by a model-based WBC. The WBC
ensures that the necessary safety-critical constraints such as
joint kinematic limits and peak joint torques are enforced
during operation. The corrective RL policy generates additive
deviations to the reference trajectories with the objective of
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prioritizing stability over tracking extremely dynamic (and
possibly infeasible) trajectories in addition to directing the
robot towards the desired state. We evaluate the performance
of our control architecture and show that introducing the
corrective feedback in the tracking loop results in more stable
and feasible locomotion plans. We use the ANYmal [11]
quadruped to perform these tests, both, in simulation and on
the physical robot system as shown in Fig. 1.

A. Related Work

A significant amount of research in RL and optimal control
(OC) domains has focused on tackling shared objectives
using a unified approach [12], [13] including contributions
in the form of model-based RL [14], guided policy search
(GPS) [15], [16] and even a reformulation of the stochastic
optimal control problem in terms of KL divergence mini-
mization [12].

Further contributions which address certain issues asso-
ciated with RL algorithms such as sample inefficiency and
reward engineering, have been presented. Such methods rely
on using a baseline controller so as to accelerate model-free
learning as a solution [17], [18].

There has also been work which directly builds on the
baseline controller in order to learn a corrective control be-
havior. These corrective controllers have been employed for
manipulation tasks [19] and also for legged locomotion [20].
In the case of [20], a model-based controller is implemented
to efficiently solve the rigid body dynamics while the model-
free data-driven controller is used to capture properties such
as contacts and friction which are difficult to model.

B. Contributions

Our work extends upon the above research to incorporate
an RL-based trajectory correction module that performs
online adaptation of the given reference trajectories. In this
regard, our contributions are listed below.
• For terrain-aware locomotion, we introduce latent rep-

resentations of height maps as a form of exteroceptive
feedback in order to capture terrain information. We
approximate this latent space representation using an
unsupervised auto-encoder training strategy for dimen-
sionality reduction and feature extraction.

• To perform successful transfer of the policy trained in
simulations to the physical system, we model the actu-
ation dynamics of the robot using an actuator network.
We extend the approach detailed in [8], to generate
effective joint torques for measured and commanded
joint position, velocity and feed-forward torques, and
also for different sets of PD gains.

• To generalize over a wide range of observation domains,
we introduce a method to generate a large set of pro-
cedurally generated terrains. We introduce these terrain
in our simulated RL environment setup.

• In order to perform sample-efficient reinforcement
learning, we introduce a dense reward function that
incorporates a robot stability metric. This is important to
account for the delayed rewards which may occur when

the robot becomes unstable before certain termination
criteria are reached.

Finally, we show that this corrective control architecture
can be transferred on to a real robot to improve its robustness
to perturbation while tracking highly dynamic trajectories.

II. OVERVIEW

We use a trajectory optimization technique to generate
long-horizon base and end-effector task space motion plans.
Then, during the online execution of such trajectories, we
use the feedback generated using the corrective RL policy
for a history of tracking errors to modify the base and end-
effector motion plans which are tracked using a WBC. The
WBC finally generates the desired joint position, velocity
and feedforward torque commands which are then tracked by
the actuators using a PD controller. This motion generation
scheme is illustrated in Fig. 2.

While the approach presented in this paper could be
applied to continuous motions generated by re-running the
trajectory optimization online, this paper limits its study to
motions that are optimized offline and then tracked by the
whole-body controller.

A. Trajectory Optimization

In this work, we utilize the trajectory optimizaztion solver
TOWR [4] together with the smoothing costs described
in [6] to generate base and end-effector (feet) motion plans.
The TOWR framework formulates the locomotion prob-
lem of legged robots as a non-linear optimization problem
which can generate dynamic trajectories for locomotion over
complex 3D terrains. The problem is discretized into a
numerically-solvable formulation using a direct-collocation
transcription method which is then solved using an interior
point approach [21].

To stabilize the behavior of the optimizer on uneven
terrains, we consider the friction cone axis aligns with
the gravity axis. This limits TOWR, which uses a local
optimization approach, from considerable divergence during
optimization around regions with high deviations in terrain
slope. Moreover, we introduce a cost term which penalizes
the gradient of the terrain at each contact in order to generate
motion plans which avoid stepping on inclined surfaces and
edges.

B. Whole Body Control

In order to track the motion plan set points, we use
the whole-body controller based on the work of [3] which
employs a hierarchical optimization approach to compute
the feed-forward joint torques. It is important to note that,
while the trajectory optimization computes contact forces for
generating the trajectories, in our setup, these forces are only
used to enforce a feasible motion at the trajectory generation
stage and are not used by the whole-body tracking controller.
Instead, the WBC takes the feet and base trajectories as
inputs and recomputes the contact forces using the full
dynamics model of the robot. Moreover, as in the case of
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trajectory optimization, we consider the friction cone axis
aligns with gravity so as to avoid unstable behaviors.

To improve the robustness during online motion plan
tracking, we use the approach detailed in [22] to adapt the
PD gains of the actuators and the friction coefficient used
in the whole-body controller for a limb whose end-effector
slips while in contact with the ground.

The WBC forwards the desired joint states and the feed-
forward joint torque in addition to the PD gains (dependent
on the foot contact states: support, swing or slip) to the
actuator for low-level joint state tracking.

C. Online Trajectory Correction

Despite the introduction of cost terms and contact force
constraints in the TOWR problem, the assumptions relating
to robot dynamics considered in the formulation to ease on its
computational complexity potentially results in generation of
highly dynamic trajectories which cannot be tracked by the
whole-body controller. Moreover, inaccurate tracking due to
system delays in low-level actuation controllers and possible
perturbations while interacting with the environment, could
result in tracking errors which cannot be corrected by the
WBC eventually resulting in a failure. As a solution, we
introduce an online trajectory correction aimed at improving
the feasibility of the reference trajectory, so as to perform
stable whole-body motion tracking. We represent the online
trajectory adaptation problem in the framework of a discrete
time stochastic Markov decision process (MDP) defined as
a tuple (S,A,R,P,µ), where S represents a set of states, A
a set of actions, R : S× A× A → R the reward function,
P : S×A× S→ [0,1] the state transition probability, and µ

the initial state distribution. We define a stationary policy
π : S→P (A) which, in our work, is approximated using a
multi-layer perceptron (MLP), as a function mapping states
to probability distributions over actions such that π (a|s)
denotes the probability of selecting action a in state s. We
represent the expected cumulative discounted return,

J (π) .
= E

T ∼π

[
∞

∑
t=0

γ
tR(st ,at ,st+1)

]
, (1)

where γ ∈ [0,1) is the discount factor and T denotes a
trajectory dependent on π . We employ a policy gradient
based method, proximal policy optimization (PPO) [23]
along with generalized advantage estimate (GAE) [24] so
as to obtain a policy π which maximizes J (π).

As detailed in Section III, we use the policy π to map a
set of robotic system state parameters to actions representing
the desired corrective deviations to the reference trajectory
at each time step. The modified set point is then tracked by
the model-based whole-body controller. Both, the corrective
feedback and the whole body control output are computed
sequentially at 400 Hz.

III. TRAINING

This section details upon the RL environment setup for
training the corrective-tracking policy.

Fig. 2. Block diagram of the trajectory generation and tracking framework.

A. Action Space

The corrective policy outputs a 36-
dimensional action vector comprising of{

δPbase,δObase,δvbase,δωbase,δPf eet ,δv f eet
}

where the
{δPbase} ∈ R3 vector represents the deviation in base
position, {δObase} ∈R3 is the deviation in base orientation,
{δvbase} ∈ R3 is the deviation in linear base velocity,
{δωbase} ∈ R3 is the deviation in angular base velocity,
{δPf eet} ∈R12 represents the deviation in the 4 end-effector
positions and {δv f eet} ∈ R12 represents the deviation in the
4 end-effector velocities. At each control step, we introduce
these additive deviations to the desired set point obtained
from the reference trajectory generated offline.

During training, the policy outputs are sampled from a
normal distribution clipped in the range [−1.0,1.0] with the
mean representing the output of the policy network and the
varying standard deviation representing policy exploration.
We further perform action scaling for these deviations and
obtain the scaling factors empirically. It is important to
note that, during evaluation, we utilize the policy in a
deterministic setting by only considering the output mean.

B. Observation Space

The observation space in our training environment com-
prises of the proprioceptive sensory information which can
be computed by sensors and state-estimators on the physical
system. For the task of terrain-aware corrective trajectory
tracking, we further utilize an exteroceptive feedback in the
form of an encoded representation of the terrain elevation
relative to the robot’s base.

1) Proprioceptive Sensory Information: The propriocep-
tive state information consists of a 486-dimensional vector
defined as

{Cm
t, t−4, t−8,Vm

t, t−4, t−8,C
tra j
t+8, t+4, t+1, t, t−4, t−8,

V tra j
t+8, t+4, t+1, t, t−4, t−8,C

corr
t−1, t−4, t−8,Vcorr

t−1, t−4, t−8,C
tra j
t+200}

where Ct refers to the generalized coordinates at time t, Vt
refers to the generalized velocities at time t and the super-
scripts m, tra j and corr refer to the measured robot state,
reference trajectory set point and the corrected trajectory set
point respectively. The delay between t+1 and t corresponds
to 2.5 ms. All of the state parameters are represented in the
robot’s base frame. Moreover, the robot base orientation is
represented in the observation as a 6-dimensional vector. For
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this, we consider the first and the third row of the robot’s
rotation matrix. This helps avoid the problems associated
with discontinuities in the 3-dimensional and 4-dimensional
representations of orientation. We introduce the short-horizon
goal Ctra j

t+200 in order for the corrective policy to generate
outputs which prioritize stable tracking of long-term trajec-
tory plans as opposed to aggressive tracking of the reference
trajectory.

2) Exteroceptive State Representation: We introduce la-
tent encoding of the height maps in the state vector s. These
height maps represent the terrain elevation local to the robot’s
base. We use 80× 80-dimensional height maps, along the
robot’s heading and lateral axes respectively, corresponding
to an area of 1.0× 1.0 m2 centered at the robot’s base
position. The elevation of the height maps is clipped between
[−2.0,2.0] m.

In order to perform sampling-efficient RL [25] we reduce
the dimensionality of our sparse height maps using a con-
volutional autoencoder network [26] to learn an encoding
h = f (x) such that the decoder, approximated as g, is able
to regenerate the input x ≈ g(h). We then use the encoder
network f to encode our 80× 80-dimensional height maps
into a 60-dimensional representation.

The encoder comprises of 3 convolutional layers each
with a kernel size of 3, and a depth mapping from 1 to
16 in the first layer, 16 to 24 in the next and 24 to 32
in the last layer. We append a 60-dimensional dense layer
to output the encoded representation of the height maps.
For training, we use a decoder network comprising of the
deconvolutional layers with reversed depth mapping as that
of the encoder convolutional layers to regenerate the original
height map from the encoded vector. We train the auto-
encoder to minimize the regeneration error using a dataset
of procedurally generated height maps. The generation of
height maps is detailed in Section III-E.

C. Policy Network

For the combined proprioceptive and exteroceptive state
representation, our network input is 546-dimensional, and the
output is 36-dimensional. We use 3 hidden layers comprising
of 1024, 584 and 256 nodes in the first, second and third layer
respectively. Furthermore, we use the hyperbolic tangent
non-linear activation for our policy network.

D. Reward Signal

As detailed in our previous work [10], RL algorithms re-
quire significant reward function tuning to achieve a desired
control behaviour. Therefore, we use some of the reward
terms described in [8], [9], [10] that have been demonstrated
to result in smooth quadrupedal locomotion behavior. We
further add and empirically tune reward terms relevant to
our task of correcting trajectories online so as to reach the
trajectory horizon. These reward terms are shown in Table I
(the notation is consistent with [10]).

One of the critical aspects of our task setup is to ensure the
robot remains dynamically stable throughout the trajectory
tracking duration. Despite significant research that has been

TABLE I
REWARD TERMS USED IN OUR MDP FORMULATION. HERE τ REFERS TO

THE JOINT TORQUE, v f oot
world,t IS THE FOOT VELOCITY IN WORLD FRAME

AT TIME t , Ff oot IS THE FOOT CONTACT FORCE, Jt IS THE JOINT

POSITION AT TIME t , Obase
x,y,z IS THE BASE ORIENTATION ALONG THE x,y,z

AXES, fh, f oot REPRESENTS THE FOOT HEIGHT, f des
h REPRESENTS THE

DESIRED FOOT CLEARANCE, Pm
base REPRESENTS THE MEASURED BASE

POSITION, Ptra j
base IS THE DESIRED BASE POSITION OBTAINED FROM THE

REFERENCE TRAJECTORY AND Ptra j,H
base,t REPRESENTS THE DESIRED BASE

POSITION AT THE SHORT-HORIZON (IN OUR CASE AT t +200) IN THE

ROBOT’S BASE FRAME AT TIME t .

Term Expression
Torque ‖τ‖2

Foot Acceleration ||v f oot
world,t − v f oot

world,t−1||
2

Foot Slip ||v f oot
world ||

2 ∀ Ff oot > 0

Smoothness ||Jt −Jt−1||2

Orientation ||Obase
x,y,z −{0,0,Obase

z }||2
Joint Velocity ‖J̇t‖2

Joint Acceleration ‖J̈t‖2

Foot Clearance ∑ f oot
(

fh, f oot − f des
h

)2
∥∥∥v f oot

world

∥∥∥2

Trajectory Tracking ‖Pm
base−Ptra j

base‖
2

Short Horizon Goal ∑{Ptra j,H
base,t−1−Ptra j,H

base,t }

performed to handle sparse rewards [27] in the RL setup, it is
still desirable to have a dense reward curve. In this regard, we
utilize a stability analysis method, detailed below, to generate
a reward signal. In our RL environment setup, we introduce
self-collision and collision of the base with another object
as a termination criteria. Additionally, we define termination
criteria based on thresholds on the joint position, velocity and
acceleration and base orientation, velocity and acceleration.

In order to assess the stability of the robot we employ a
criterion based on the feasible region [28] which depends on
the endogenous properties of the robot, such as joint-torque
limits and legs’ dynamic model, on exogenous properties
such as possible external wrenches applied to the base of the
robot and on environmental conditions such as the friction
coefficient and the orientation of the surface in the contact
location.

We define the stability margin m∈R as the signed distance
between the instantaneous capture point (ICP) ζ [29]:

ζ = cx,y + ċx,y

√
cz

g
(2)

and the edges of the feasible region. Here, cx,y ∈R2 refers to
the horizontal position component of the robot’s CoM. The
stability margin is positive when the ICP ζ lies within the
feasible region and negative if outside. We define the robot
to be dynamically stable whenever m > 0. We then introduce
a reward term given by max(m,mmax) so as to maximize the
stability margin m. For ANYmal, we used mmax = 0.13.

E. Rough Terrain Simulation

We use the RaiSim [30] physics simulator to train our RL
policy. For a detailed analysis on our choice of the simulation
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Fig. 3. top: Terrain visualization in the RaiSim simulator. bottom:
The corresponding 16-bit PNG images representing the height maps. The
colorbar represents the terrain elevation in m.

platform, we defer the reader to our previous work [10].
In order to obtain a robust policy for terrain-aware refer-

ence trajectory tracking we train our RL policy across a mul-
titude of procedurally generated terrains. RaiSim lets the user
import portable network graphics (PNG) images and converts
them into height maps. Users also have the flexibility to
scale and offset these height maps during simulation runs.
We leverage this feature of the simulator to randomize our
simulation environment and perform trajectory optimization
over multiple terrains. We store the trajectories obtained for
each of the terrains for multiple configurations of the robot’s
initial and final positions in a replay buffer and utilize them
during training. We randomly sample the stored trajectories
and reset the simulation environment for corresponding ter-
rain and robot pose, and perform multiple training runs over
a single trajectory. This enables us to ensure that the trained
RL policy generalizes over multiple terrains for different
reference trajectories. For training our RL policy we used
a total of 1000 different simulated terrains.

Each height map contains at least 1 and at most 4 objects
randomly positioned and rotated within the image area.
These objects include staircase, planks, bricks, unstructured
terrain and wave terrain. Examples of these images and the
corresponding height maps are represented in Fig. 3.

F. Policy Transfer to the Physical System

In order to make the trained policy robust and generaliz-
able to unaccountable factors we introduce several domain
randomization methods during training. We adapt some of
the strategies we used in our previous work [10]. Moreover,
as detailed in [10], an accurate actuation model significantly
effects the behavior of the RL policy and also helps ease the
policy sim-to-real transfer process. In this regard. we employ
the following schemes during training.

Fig. 4. The kernel density estimate plot representing the torque prediction
error for different foot contact states.

1) Actuator Modelling: As introduced in [8], we train an
actuator network to model the actuation dynamics of the
physical system. However, unlike in the case of [8], [10]
where the actuators were modelled only for joint position
targets with a predefined set of PD gains, in this work, we
trained the actuator network using supervised learning to
take as inputs the joint position and velocity targets along
with the desired feed-forward torques. Since the whole-body
controller utilizes different set of PD gains for joints of
legs with foot in contact, swing and contact-invariant (slip)
states, we further include the foot contact state information as
an input to the approximated actuator model. The actuator
network consists of an 18-dimensional input given by the
vector

{δJ i
t, t−4, t−8,δ J̇ i

t−1, t−5, t−9,δτ
i
t−1, t−5, t−9,

J̇ des,i
t, t−4, t−8,τ

des,i
t, t−4, t−8,F

state, f
t, t−4, t−8}

where δJ i
t represents the error between the measured and

desired joint position for joint i at time t, δτ i
t represents the

error between the measured and desired feed-forward joint
torque for joint i at time t, J̇ des,i

t represents the desired joint
velocity for joint i at time t, τ

des,i
t represents the desired

feed-forward joint torque for joint i at time t and Fstate
t is

the contact state of foot f at time t. The duration between
t + 1 and t corresponds to 2.5 ms. The network contains 2
hidden layers with 48 nodes in each of the layers and a
1-dimensional output layer representing the estimate of the
joint torques observed on the physical system. We forward
pass through the network at each time step for each of the
12 joints of the quadrupedal robot.

To train the actuator network, we collected data from
the real system using the dynamic gaits controller [31]. We
used dynamic gaits to generate the desired joint positions,
velocities and feed-forward torques in order to track desired
reference base velocity commands. We executed the con-
troller at 400 Hz and recorded the actuation commands, the
measured joint states and the measured torque for each of the
12 actuators at each control step. As a result, we generated
a dataset comprising of 4.32M samples in 15 minutes. This

CONFIDENTIAL. Limited circulation. For review only
IEEE RA-L submission 20-1594.1

Preprint submitted to IEEE Robotics and Automation Letters as Submission for RA-L and ICRA
Received October 15, 2020 08:31:28 PST



Fig. 5. Block diagram representing the modules that constitute the RL
training environment of the corrective policy.

was sufficient to approximate the actuation dynamics using a
neural network. As represented in Fig. 4, the absolute mean
error for torque prediction using an actuator network is less
than 0.8 N·m for each of the foot contact states.

2) Shifting Initial Position: Upon environment resets, we
randomly shift the base position along the horizontal axes
with a mean of 0 m and a standard deviation of 0.03 m.

3) Changing Gravity: We uniformly sample acceleration
due to gravity between [0.95g,1.05g], where g = 9.81 m·s−2

to emulate inertial scaling.
4) Actuator Torque Scaling: We randomly scale the out-

put torque of our actuator network with the scaling coeffi-
cient st ∈ [0.95,1.05] to account for differences between the
real actuators and the approximated model.

5) Adding Actuator Damping: We emulate actuator
damping using a complementary filter given as J des′

t =
KdampJ des

t +(1−Kdamp)J des′
t−1 where the gain Kdamp is ran-

domized between [0.85,1].
6) Perturbing the Robot Base: We apply external forces

to the robot’s base along its heading and lateral axes during
trajectory tracking. This enables the policy to learn a recov-
ery behavior so as to maximize the robot stability margin.

We sample the external forces from a normal distribution
with a mean 0 N and a standard deviation of 15 N. We apply
these forces for duration sampled randomly between [1,3] s.

IV. RESULTS

Training the terrain-aware corrective policy required 3.5B
simulation steps with computation of 29.82M steps per hour
on a desktop housing an Intel i7-8700K and an Nvidia RTX
2080Ti with 12 parallel environment executions. Addition-
ally, we trained a blind corrective policy for which we do not
include the exteroceptive feedback in the observation space
in less than 250M simulation steps for locomotion over flat
ground. We tested its performance in simulation and on the
physical system.

A. Simulation results

For evaluation of the corrective policy we compare the
locomotion behaviors obtained by the baseline motion gen-
eration strategy (offline trajectory optimization with WBC)
with the same control architecture enhanced by our proposed
online corrective RL policy. Table II represents the success
rate, defined as the percentage of experiments that lead the

TABLE II
SUCCESS RATES OBSERVED FOR TRACKING REFERENCE TRAJECTORIES

WITH AND WITHOUT FEEDBACK FOR 1000 RUNS EACH OVER 3
DIFFERENT TERRAINS. THE INITIAL BASE POSITION ALONG THE

HEADING AND LATERAL AXES IS RANDOMLY SHIFTED BY A MEAN OF

0 m AND A STANDARD DEVIATION OF 0.085 m

No Feedback Blind Feedback Perceptive Feedback
Flat 72.7 94.6 92.4

Modular Pallet 47.5 59.3 80.3
Stacked Pallet 38.8 46.2 67.1

robot to perform the whole trajectory without eventually
falling down, observed over 1000 runs each for tracking pre-
computed reference trajectories over 3 different terrains - flat,
modular pallet and stacked pallet. In this experiment, we
randomly shifted the initial base position of the robot along
the heading and lateral axes by a mean of 0 m and a standard
deviation of 0.08 m. The run was considered a success if the
robot managed to reach the trajectory horizon with a base
tracking error of less than 0.05 m along the horizontal axes
and remained at the goal for 3 seconds without resulting in
termination. We considered the run a failure if any contact-
pairs apart from the feet and ground were detected. In case of
flat terrain, we observed that most of the failures occurred
during high base-position tracking error phases where the
WBC aggressively attempted to correct the base position
tracking error without recomputing plans for feet motions.
For the case of the corrective policy, we observed trajectory
tracking with extended feet position directly corresponding to
a higher stability margin. This behavior is evident from Fig. 7
which represents the 2nd order regressive approximation of
the modified trajectory and measured feet position along the
x and y axis of the world frame for 1000 runs of the robot
tracking a 1.5 m long pre-computed trajectory with actuation
torque output randomly scaled between [0.975,1.02].

For the case of locomotion over modular pallet, we ob-
served failures mainly due to foot slip. The addition of the
corrective policy resulted in a recovery behavior which we
also observed during tests on the physical robot as shown in
Fig. 8. In the case of the stacked pallet problem, we observed
that the physical dimension of the robot was a limiting factor.
The failure occurred mostly due to the base colliding with
the limbs. The extended stance introduced by the corrective
policy resulted in a higher success rate.

We further conducted experiments to test the ability of the
corrective policy to perform state recovery. We used an
offline pre-computed trajectory 1000 times over different
terrains. The terrains were generated as an undulated environ-
ment where each bump and gap (see Fig. 3) has a different
height sampled from a random uniform distribution in the
range [−hmax,hmax] where hmax represents the maximum
terrain height. In all cases the WBC is required to track
a reference base and feet trajectory corresponding to 16
steps, for a total distance of 1.5 m and a duration of 3.5 s.
This motion plan is optimized offline for flat ground and
is therefore not aware of the undulated terrain. Fig. 6 (left)
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Fig. 6. left: Success-rate observed for tracking pre-computed trajectory on undulated terrains with varying height for 1000 runs each. middle: Success
rate obtained for locomotion on flat ground in presence of unexpected external forces. right: Success rate observed for tracking reference trajectory on flat
ground for different actuation torque scaling.

Fig. 7. Comparison of the feet position computed using a trajectory
optimization solver with the 2nd order regressive approximation of the
trajectory modified online by a corrective RL policy.

represents the success rate observed for hmax ranging between
[0.0,0.05] m.

Figure 6 (middle) represents the success-rate obtained
during the execution of a predefined trajectory of 3.5 s on flat
terrain while perturbing the robot with a horizontal external
force for a duration of sampled in the range [1.5,2.5]s. The
intensity of this force is gradually increased with a step of
5 N in the range of [0,25]N. Also the start time of application
of the external disturbance since the beginning of the run was
randomly sampled in the range [1.75,2.25]s. Each success
rate was computed using 1000 runs. We observed that the
blind corrective policy performed better than the perceptive
policy. This was largely due to the blind policy having
significantly more experience to disturbances over flat terrain
during training.

Figure 6 (right) shows the success rate obtained when we
scaled the actuation torque generated by the actuator network
by a scaling factor between [0.85,1.15] while tracking a
pre-computed reference trajectory on flat-terrain for 1000
runs each. The effective joint torque was limited between
[−40,40]N·m and the initial robot base position was ran-
domly shifted along the heading and lateral axes by a mean

of 0 m and a standard deviation of 0.08 m. We observed that
reducing the joint torque results in WBC failing to effectively
track the desired set points whereas increasing the torque
results in aggressive tracking and overshooting eventually
resulting in failure.

B. Hardware results

We transferred the blind policy to the ANYmal robot and
tested its performance for tracking a pre-computed reference
trajectory of 3.5 s on flat ground. The reference trajectory
used for this first test is highly dynamic wherein the robot
travels 2.0 m in 3.5 s and achieves a maximum velocity
of 0.7 m·s−1 with significant acceleration and deceleration
along the motion plan. For the case without feedback track-
ing, we observed a success rate of 33.33% over 15 trials.
With the introduction of blind feedback, we observed a
success rate of 60.0%. We further tested the performance
of our policy to recover from an undesirable state by in-
troducing perturbations. Figure 1 shows the ANYmal robot
walking over wooden tiles using the corrective policy. In this
experiment, we observed that without feedback, the WBC
failed to track the reference trajectory for each of the 5 trials.
In comparison, for corrective tracking, we observed a success
rate of 40% with most failures occurring due to foot slippage.
We further introduced an unexpected wooden block along the
robot’s path and observed no success without feedback. We
observed a success rate of 66.67% using the RL policy with
most of the failures occurring due leg blockage. Furthermore,
Fig. 8 presents an example of a trial that almost fails due to
foot slippage but eventually succeeds to recover.

V. CONCLUSION AND FUTURE WORK

In this work we presented a control architecture to perform
online corrective trajectory tracking. We observed a higher
success rate for the case of tracking trajectories with feed-
back in both simulation and on the real robot. However, we
observed that executing the policy on the physical system
necessitates a WBC which is robust to physical parameters
such as contact and actuation friction. Therefore, our future
work includes training an RL policy which outputs actuator
tracking gains in addition to the deviation in set points.
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Fig. 8. Time frame of the robot recovering with the corrective controller.

Despite having been tested with motion plans generated
offline, our control architecture can be extended for use with
motion planners which optimize trajectories online in an
MPC manner. As part of future work, we aim to obtain a
perceptive policy which functions with asynchronous sensory
feedback for execution on the physical system.
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