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Abstract— Model Predictive Control (MPC) is a classic tool
for optimal control of complex, real-world systems. Although
it has been successfully applied to a wide range of challenging
tasks in robotics, it is fundamentally limited by the prediction
horizon, which, if too short, will result in myopic decisions.
Recently, several papers have suggested using a learned value
function as the terminal cost for MPC. If the value function is
accurate, it effectively allows MPC to reason over an infinite
horizon. Unfortunately, Reinforcement Learning (RL) solutions
to value function approximation can be difficult to realize for
robotics tasks. In this paper, we suggest a more efficient method
for value function approximation that applies to goal-directed
problems, like reaching and navigation. In these problems, MPC
is often formulated to track a path or trajectory returned by
a planner. However, this strategy is brittle in that unexpected
perturbations to the robot will require replanning, which can
be costly at runtime. Instead, we show how the intermediate
data structures used by modern planners can be interpreted as
an approximate value function. We show that that this value
function can be used by MPC directly, resulting in more efficient
and resilient behavior at runtime.

I. INTRODUCTION

In this paper, we revisit the classic planning and control
paradigm ubiquitous in robotics. In this paradigm, behavior
is generated hierarchically. First, a planner computes a high-
level solution to a simplified global problem, typically solved
offline and in advance. Then, at runtime, a controller follows
that plan locally using a more detailed dynamics model.
This strategy arises from the difficulty of solving the entire
behavior generation approach at once. Often, this approach
works very well [1], [2].

In some applications, this approach can be brittle. Global
information is often condensed into a single plan and the con-
troller’s cost is defined relative to that information. Stochas-
ticity in the environment, or mismatch between the models
used for planning and control, can mean that the controller
deviates irrecoverably from the plan. When possible, it is
common to rerun the planner from the current location. This
can be dangerous or expensive if replanning takes too long.

Compare the above approach to reinforcement learning
(RL) [3]. RL typically attempts to tackle the entire problem at
once, building a global value function or policy that encodes
the best action at any state in the environment. Compared
with plans, value functions are much more informative. A
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controller with access to a value function could resolve the
best immediate action based on value anywhere in the state
space, resulting in more robust behavior and eliminating the
need to replan. While some robotics problems have been suc-
cessfully solved with RL [4]–[6], learning an accurate value
function over the entire space space is typically infeasible
due to computational and modeling limitations.

We would like to find an approach that lies between these
extremes: more robust than following a single plan, but less
expensive than computing a full value function. Recent work
on combining Model Predictive Control (MPC) with RL has
indeed started to move in this direction. MPC is a classic
tool for controlling complex, real-world systems that solves
an online optimization problem to choose an action that will
minimize predicted future cost. While MPC has been applied
to a wide range of challenging tasks in robotics [7]–[9], it
is fundamentally limited by the prediction horizon, which, if
too short, will result in myopic decisions.

Recently, several papers have suggested using a learned
value function as the terminal cost for MPC [10]–[12]. In
particular, [11] calculates offline the exact value function
along a limit cycle, then uses this to compute a piecewise
quadratic approximation to the value function everywhere.
Since the resurgence of deep reinforcement learning, other
authors have investigated approximating value functions for
MPC using neural networks. For example, POLO [13] uses a
kind of fitted value iteration where the regression targets are
found using trajectory optimization. Another recent example
is model-predictive Q-learning (MPQ) [14], which shows
a theoretical connection between soft Q-learning [15] and
information-theoretic MPC [16]. Like POLO, MPQ learns
a value function with the help of trajectory optimization.
Other examples include [17]–[20]. All of these approaches
incorporate global value function information into MPC,
effectively allowing MPC to reason over an infinite horizon.

Unfortunately, RL solutions to value function approxima-
tion can be infeasible for many robotics tasks. For goal-
directed navigation or reaching tasks, using approaches like
POLO [13] or MPQ [14] to compute a terminal cost for
MPC makes little sense. These methods are time consum-
ing and expensive, even for simple problems. By contrast,
planning algorithms can generate a rough trajectory quickly.
This leads to a natural question: can planning algorithms
be exploited to generate better, more robust terminal cost
functions for MPC? This leads to the key insight in this work:
modern planning algorithms conveniently already compute
an approximate value function as an intermediate step toward
generating a solution. Consider, for example, RRT* [21]
searching backwards from the goal. This algorithm produces
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not just a path from the starting location, but also an
entire tree of paths to the goal, each node annotated with
its distance from the goal—an approximate value function.
The algorithm RRT# [22] makes this connection even more
explicit by fully solving the Bellman optimality equations at
each iteration, to ensure that the value function is the optimal
one for the current planning graph.

In this work, we propose using entire planning trees as
approximate value functions that can be used as the terminal
cost in MPC. This results in a strategy that is more robust
than the classic robotics planning and control paradigm,
but much faster than RL approaches to the same prob-
lems. Specifically, we focus on the interface between two
commonly used algorithms in robotics, the stochastic MPC
algorithm Model Predictive Path Integral control (MPPI) [16]
and the sampling-based planning algorithm RRT# [22]. We
propose treating the terminal point of each sampled MPC
rollout as a node of the planning tree and using the corre-
sponding cost-to-go as the terminal cost in MPC. In other
words, we use the value function computed as a by-product
of planning to extend the horizon of MPC. This information
improves the performance of MPC in several ways. First,
MPC can be made more accurate, as each terminal state
can be evaluated using the most relevant planning node.
Second, MPC can be made more robust. When the controller
is perturbed, it simply uses existing nodes in the planning
tree—there is no replanning time. Third, the value returned
by RRT#, while approximate, lies in a sweet spot: it is fast
to compute and useful to MPC in practice.

II. BACKGROUND

A. Bellman Backups on Directed Graphs

We begin by providing a brief background discussion on
value iteration and its relation to planning algorithms. In RL,
Bellman backups are used by value iteration (among other
algorithms) to compute a value function. In the simplest
setting, value iteration works on a discrete state space S
and action space A. For each state s ∈ S , each action
a ∈ A has some cost c(s, a) and deterministically transitions
to a new state f(s, a). To compute the value function V :
S → R, we perform sweeps through the states, computing
an (undiscounted) Bellman backup at each state:

V (s)← min
a
c(s, a) + V (f(s, a)) (1)

Equivalently, we can formulate this problem as finding
the minimum-cost path along a weighted, directed graph.
The vertices of the graph are the states S, and the edges
are the pairs (s, f(s, a)) for a ∈ A, with edge weight
ĉ(s, f(s, a)) := c(s, a). Let N (s) denote the out-neighbors
of s. Then the Bellman backup looks like this:

V (s)← min
s′∈N (s)

ĉ(s, s′) + V (s′) (2)

B. Connection between Bellman Backups and Planning

Finding the minimum-cost path along a directed graph is
precisely what planning algorithms do. However, they vary
in how they construct this graph. In this paper, we focus

on the stochastic graphs constructed by RRT* [23]. Briefly,
RRT* iteratively constructs a graph by sampling states in
configuration space and connecting them to all existing ver-
tices within some search radius. It then performs a Bellman
backup for the new vertex and all of the neighboring vertices.

Much prior work has investigated the connection between
graph-based planning and Bellman backups. Like all value
iteration methods, RRT* is not guaranteed to produce a glob-
ally consistent value function after each Bellman backup. To
address this, RRT# [22] incorporates graph search techniques
from D* [24] to efficiently update the entire value function
after adding each new vertex. This line of reasoning has
produced a number of follow-up works; e.g. [25], [26].

In LPA* [27], an incremental heuristic search technique
like D*, Bellman backups are instead called “vertex expan-
sions”. A vertex is considered “consistent” in LPA* precisely
when it satisfies the local Bellman optimality equation—that
is, when performing a Bellman backup does not change the
value of the vertex. After performing a Bellman backup,
LPA* decides which neighboring vertices might now be
inconsistent, and adds those vertices to a priority queue.

III. APPROACH

In this work, we consider behavior generation problems
in robotics that are typically solved by invoking a planner
to generate a path and a closed-loop controller that follows
the path online. This includes many goal-directed problems
including reaching (in manipulation) and vehicle navigation.

We will frame these problems formally as reinforcement
learning. Specifically, we consider the problem of learning a
policy in an infinite-horizon undiscounted Markov Decision
Process (MDP) with terminal states. Such an MDP is defined
by a tuple M = {S,A, c, f, sstart, Sgoal} where S is the
state space,1 A is the action space, c(s, a) is the per-step
cost function, st+1 ∼ f(st, at) is the stochastic transition
function, sstart is the start state, and Sgoal ⊆ S is the goal
region. A policy π(·|s) outputs a distribution over actions
given a state. Let µπM be the distribution over state-action
trajectories obtained by running policy π on M. The value
function for a given policy π is defined as

V πM(s) = Eµπ
M

[
∑∞
t=0 c(st, at) | s0 = s]

and the action-value function as

QπM(s, a) = Eµπ
M

[
∑∞
t=0 c(st, at) | s0 = s, a0 = a]

Although we have written these as infinite undiscounted
sums, the MDP terminates once st ∈ Sgoal for some t, after
which time no cost is accumulated. The objective is to find
an optimal policy π∗ = arg min

π
V πM(sstart).

A. An RL Perspective on Model Predictive Control

MPC is widely used in robotics and can be viewed as an
online learning approach to synthesizing action sequences
for MDPs [28]. Instead of solving for a single globally

1We use S and A to denote continuous state and action spaces, as opposed
to S and A for discrete ones.



optimal policy that prescribes the action to take at any state,
MPC is a pragmatic approach of optimizing simple, local
action sequences at test time. At each timestep, MPC uses
an approximate transition model to search for an action
sequence that minimizes cost over a finite horizon. The first
action from the sequence is executed on the system, and the
process is then repeated from the next state.

Following [29], we formalize this process as solving
a surrogate MDP whose parameters may differ from the
parameters of the true underlying MDP that we wish to solve.
The surrogate MDP is M̂ = {S,A, c, f̂ , sstart, Sgoal, H}
with approximate or simplified dynamics f̂ and, importantly,
a finite horizon H . M̂ is repeatedly solved at every state
encountered, resulting in a receding horizon method.

In many problems, solving M̂ with the limiting horizon H
would result in myopic behavior with respect to the original
MDP M. This can be especially pronounced in tasks with
sparse rewards and the goal-directed tasks considered in this
paper, which naturally require reasoning about longer hori-
zons. To contend with the limited horizon, infinite horizon
MPC [14] sets the terminal cost in MPC as a value function
V̂ that adds global information to the problem.

MPC can, therefore, be viewed as iteratively constructing
an estimate of the Q-function of the original MDPM, under
the policy πφ induced by the action sequence φ [29]:

Qφ
H(s, a) = E

µ
πφ

M̂

[∑H−1
i=0 c(si, ai) + V̂ (sH) | s0 = s, a0 = a

]
(3)

MPC then iteratively optimizes this estimate (at current
system state st) to update the action sequence

φ∗t = arg min
φ

QφH(st, πφ(st)) (4)

Several popular MPC algorithms, including MPPI [29] and
receding-horizon linear quadratic regulators [28] can be
viewed through this lens.

B. Adding Value from Planning

The main challenge is obtaining the value function V̂
in Eq. 3. Previous approaches have attempted to learn it
from data via Q-learning [13], [14]. This can be costly, as
it requires a large number of interactions with the system.
For goal-directed problems, it is often significantly cheaper
to find a plan that MPC can follow to the goal [1], [2]. As
discussed in the introduction, if cost-to-go values along this
path are provided by the planner, then it implicitly defines
an approximation of the value function along the path. If
the approximation is “good enough,” then we can use it as
the terminal cost V̂ in Eq. 3. Our key insight is that many
modern planning algorithms construct a planning tree over a
much larger subset of the state space as an intermediate step
toward finding the optimal plan, thereby improving the value
function estimate. The connection between planning and RL
has been made in many prior works, but none of these have
discussed the connection with MPC [22], [25]–[27].

Require: Configuration space S
Require: Free space Sfree ⊆ S
Require: Control space A
Require: Horizon H
Require: Stochastic dynamics f : S× A→ S
Require: Model f̂ : S× AH → SH+1

Require: True cost c : S× A→ [0,∞)
Require: Kinematic planning cost ĉ : S×S→ [0,∞)
Require: Maximum steering radius M
Require: Maximum search radius R > M
Require: Subroutine nearest(s,S, ĉ, L, r): Re-

turns the L points in the set S that are nearest to
s according to the cost function ĉ. Excludes any
points s′ for which ĉ(s, s′) > r.

Fig. 1. Notation used in algorithms.

IV. ALGORITHM

In our experimental results in Section V, we use MPPI, a
stochastic MPC algorithm, as our closed-loop controller [16].
We use RRT# to compute an approximate value function
via a planning tree that grows backwards from the desired
configuration to the current robot configuration [22]. The
implementation details of these algorithms are provided
below. Please refer to Fig. 1 for notation.

A. RRT#

The RRT# planning algorithm as used in this paper is
shown in Fig. 2. The pseudocode requires two additional
subroutines:
• steer(ssample, snear, ĉ,M): Projects the point
ssample to the ball of radius M around snear according
to the distance function ĉ.

• value iterate(S, E ,V, ĉ): Performs sweeps of
Bellman backups (Eq. 2) on the graph (S, E), with
edge weights defined by ĉ. Returns the optimal value
function. The parameter V is used to initialize the value
function for faster convergence.

A few things are noteworthy about our implementation.
First, we search backwards from the goal to the start state.
This enables us to treat the search tree as a value function for
MPC, since the goal state does not change during execution.

Second, rather than using D* to update the value function,
we simply perform brute-force sweeps of Bellman backups
over the state set S using value iterate. Practical im-
plementations may wish to implement D* to speed up the
planning time, but the end result is the same.

Third, we perform collision checking only on the start
and end points of each edge. We assume that the maximum
steering radius M is small enough to ensure that no edges
travel through thin obstacles. The motivation for this is that
we need to perform this operation with an even larger search
radius R > M during MPC, so it needs to be fast.

Fourth, we require P (sstart) > 0 in order to bias the
samples towards the start state and to guarantee that the
algorithm will terminate (assuming a feasible path exists).



Require: Start and goal states sstart, sgoal ∈ S
Require: Distribution P over S such that
P (sstart) > 0
Initialize vertices S = {sgoal}
Initialize edges E = {}
Initialize value function V = {(sgoal, 0)}
while sstart /∈ S do

Sample state ssample ∼ P
snear ← nearest(ssample,S, ĉ, 1,∞)
s← steer(ssample, snear, ĉ,M)
if s ∈ Sfree then
N ← nearest(s,S, ĉ,∞,M)
E ← E ∪ {(s, s′) : s′ ∈ N}
E ← E ∪ {(s′, s) : s′ ∈ N}
V(x)←∞
V ← value iterate(S, E ,V, ĉ)

end if
end while
return S,V

Fig. 2. Function rrt sharp(sstart, sgoal, p). The goal state sgoal can
be chosen arbitrarily from the goal region Sgoal of the original MDP. For
notational simplicity, we omit the details of how the steering radius M
decreases as a function of the number of vertices |S|.

Require: Start state s
Require: Control sequence a0:H−1
Require: Planning tree S with value function V

Roll out s0:H = f̂(s, a0:H−1)
Find step costs cstep =

∑H−1
t=0 c(st, at)

Initialize terminal cost cterm =∞
Find neighbors N = nearest(sH ,S, ĉ,∞, R)
if N 6= ∅ then
cterm ← mins′∈N ĉ(sH , s

′) + V(s′)
end if
return cstep + cterm

Fig. 3. Function value(s, a0:H−1,S,V). For notational simplicity, we
assume that collision detection is incorporated into the cost function c(s, a).

B. Extending the Horizon of MPPI

The main technical contribution of our approach is the
value function shown in Fig. 3, which gives the exact
process for interpreting the planning tree as a value function.
Given a starting state s and control sequence a0:H−1, it
essentially temporarily adds the terminal point of the rollout
to the planning tree:

1) Collect a list of the planning nodes within radius R
of the terminal point sH , according to the distance
function ĉ used by the planner.

2) For each of these nodes, calculate the exact cost of
traveling to that node according to ĉ,2 plus the value
function V at that node according to the planner.

2To save computation during MPC, we ignore obstacles when calculating
the cost of traveling to a node. We assume that the search radius R is small
enough that the set of neighboring nodes does not include nodes on the
other side of thin obstacles.

Require: Initial state sstart
Require: Goal region Sgoal
Require: Planning tree S with value function V
Require: Control covariance Σ
Require: Temperature λ > 0
Require: Number of trajectory samples Q

Initialize ā0:H−1 = 0, . . . , 0
Initialize s = sstart
while s /∈ Sgoal do

for i = 1 to Q do
Sample ai0:H−1 ∼ N (ā0:H−1,Σ)
ci ← value(s, ai0:H−1,S,V)
wi ← exp(− 1

λc
i)

end for
ā0:H−1 ←

(∑
i w

iai0:H−1
)
/
(∑

i w
i
)

Execute s← f(s, ā0)
Shift ā0:H−1 ← ā1, ā2, . . . , āH−1, 0

end while

Fig. 4. Function mppi(sstart, Sgoal,S,V,Σ, λ,Q). The distribution
N (µ,Σ) is a multivariate Gaussian with mean µ and covariance Σ.

3) Then the (approximate) value function V̂ (sH) is given
by the lowest of these summed costs.

Note that if there are no planning nodes within radius
R of sH , then the cost of that rollout is infinite. Hence, the
MPC controller must stay close to the planning tree S during
execution, else it risks becoming irrecoverably lost.

Fig. 4 shows how the value function is used by MPPI.

V. EXPERIMENTS

A. Kinematic 2D Environments

We begin with several simple experiments using fully
actuated planar robot models. We consider both a simple
point robot with state s = (x, y) and a “stick” robot (shown
in Fig. 6 in blue) with an additional rotational degree of
freedom, θ. Controls are state differences a ∈ S with cost

c(s, a) =

{
I[s /∈ Sgoal] + (aTWa)1/2 s ∈ Sfree
∞ otherwise

(5)

where I is a 0/1 indicator function, and W � 0 is a diagonal
weight matrix. We use MPPI for the MPC controller (cf. Fig.
4) with the one-step dynamics model f̂(s, a) = s + a. The
true dynamics f are identical except that they implement
noise by adding a small Gaussian perturbation to the control
a. During MPC execution, actions a are clamped to have
small norm (aTWa)1/2 < ε for some ε > 0.

The kinematic planning cost function is

ĉ(s1, s2) =


 x2 − x1
y2 − y1
θ2 − θ1

T W
 x2 − x1
y2 − y1
θ2 − θ1




1/2

(6)

which is similar to the MPC cost c(s, a) except that it does
not include the indicator term I[s /∈ Sgoal]. Instead, in the
surrogate MDP that RRT# is implicitly solving, progress to
the goal is encouraged by the fact that we must take a step in



the graph at every time step until we reach the goal. Hence,
the optimal policy is to take the shortest path to the goal.

We consider three different controllers:

• min: MPPI with the subset of the planning tree S
consisting of only the minimum-cost path

• full: MPPI with the full planning tree S
• naive: A simple waypoint-based controller that simply

aims straight at each subsequent node in the minimum-
cost path.

For each of the four task environments shown in Fig. 5,
we run the RRT# planner 50 times, to obtain a total of 200
planning trees. For each planning tree, we run each controller
for five trials. We report three statistics from these trials:

• Failure %: We consider a trial to “fail” if the robot does
not reach the goal within two minutes. This can happen
either because the robot got stuck behind an obstacle,
or because it drifted too far away from the planning tree
and got lost.

• Collision %: Of the successful trials, what percentage
collided with an obstacle before reaching the goal?

• Normalized Cost: For a given planning tree, we cal-
culate the normalized cost as follows. We compute the
average cost accumulated by each controller over the
five trials. (Failed or collided trials are not used in
these averages. If a controller did not have at least
three successful, collision-free trials, we exclude that
planning tree from the the computation.) We divide each
of these averages by the average for the min controller.
Thus, the min controller always has normalized cost
1.0. We report the mean and standard deviation over
the 200 planning trees.

Results are shown in Table I. As expected with randomized
planning and control algorithms, there is a wide variance in
normalized cost for the full controller. However, overall it
seems that in these very simple environments, the full con-
troller slightly outperforms the min controller. The naive
controller collides with static obstacles on about one third of
the trials, because it does not account for noise. Interestingly,
when it doesn’t collide, it tends to find shorter paths than the
MPC-based controllers. Even though it cannot take shortcuts
along the planned path like MPPI can, it seems like the
stochasticity of MPPI (or its ability to account for and avoid
obstacles when the planned path goes near them) makes
MPPI’s paths longer.

Computationally, the full controller requires roughly 15
milliseconds (ms) of wall clock time per iteration. This is
only about twice as expensive as the min controller (7 ms).

B. Dynamic 2D Environments

The usefulness of a value function becomes more obvious
in environments where it is infeasible to stop and replan in
the case of unforeseen circumstances. To demonstrate this,
we modify the previous experiments to incorporate second-
order dynamics. We use state state s = (p, ṗ) so that instead

Fig. 5. Planar planning environments. Clockwise from upper left: gate,
bugtrap, forest, blob. The goal configuration is shown in magenta
on the right side of each image. Also shown is the final RRT# search tree
for the point robot at the moment when a solution is found.

TABLE I
STATIC EXPERIMENT RESULTS

Failure % Collision % Normalized Cost

Point
naive: 0.0
min: 0.0
full: 0.0

naive: 34.6
min: 0.0
full: 0.0

naive: 0.950± 0.023
min: —
full: 0.987± 0.029

Stick
naive: 0.0
min: 2.2
full: 1.8

naive: 34.0
min: 1.0
full: 1.0

naive: 0.917± 0.090
min: —
full: 0.983± 0.084

of the kinematic transition f(s, a) = s+ a we have

f

([
p
ṗ

]
, a

)
=

[
p+ ṗ∆t
ṗ+ a

]
(7)

where ∆t is the control timestep. After applying the up-
date in Eq. (7), the velocity ṗ is clipped to have norm
(ṗTWṗ)1/2 < ε, so that we retain the same velocity limit as
in the kinematic experiments. We again implement noise by
perturbing the action a, and we use the same cost function
c(s, a) with the same weights W as in Eq. (5) except that
the action a is now in velocity space. The planner still uses
the kinematic model and cost function ĉ from Eq. (6), so in
this case c and ĉ are only distantly related.

We further experiment with dynamic (i.e. moving / non-
static) spherical obstacles which were not considered during
planning, shown in Fig. 6 as red circles. At each timestep,
we perturb their velocity according to a uniform distribution
and then clamp it to a maximum speed.

Results are shown in Table II. The results from Table I are
summarized in the row “First / Static” (meaning first-order
dynamics / static obstacles). Since the naive controller



Fig. 6. Visualization of MPC execution for the stick robot in the forest
environment. The start and goal configurations are shown in blue and
magenta, respectively. The thin, jagged line is a 2D projection (ignoring
rotational pose) of the plan returned by the planner. Note that it is not the
full planning tree; rather, it is the shortest path from start to goal within that
tree. The red circles are dynamic obstacles. The nominal MPPI trajectory is
shown in in green. The planning node that gives the optimal terminal value
for the nominal trajectory (cf. Fig. 3) is shown in red. Finally, the very light
lines near the end of the nominal trajectory are examples of terminal points
xH from the most recent set of MPPI samples (cf. Figs. 3, 4).

cannot handle dynamic obstacles or second-order dynamics,
we report results only for min and full. Interestingly, we
see that both controllers are more successful and collide less
frequently when the dynamics are second-order. This may
be because our implementation of noise in the second-order
simulation is less aggressive, or because MPC execution
tends to take fewer time steps for the second-order system.
Perhaps the MPPI shift operator (cf. Fig. 4) is more accurate
for second-order systems.

The results with dynamic obstacles are very different.
For both first- and second-order systems, dynamic obstacles
cause a dramatic increase in failure rate for the min con-
troller, but only a small increase in failure rate for the full
controller. Because we calculate normalized cost based on
successful, collision-free trials, the normalized cost of the
full controller with dynamic obstacles varies considerably.
In fact, in the case of the second-order system, full
finds slightly higher-cost trajectories than min on average.
Qualitatively, this is because during unlucky encounters
with dynamic obstacles, full is able to find (high-cost)
alternative paths to avoid the dynamic obstacles, while min
simply collides or flies off of the planned path and cannot
recover. Failure can be interpreted as infinite cost, and is not
included in normalized cost averages.

Qualitative results are here and source code is here.

C. 3D Skid Steering Environment

Finally, we demonstrate the generality of this approach by
showing a few examples in a 3D environment designed to
simulate a real-world robot. The Clearpath Warthog (see Fig
7, left) is a four-wheeled, skid-steered robot designed for off-
road navigation. The dynamics of this robot are difficult to
model accurately, so we used a simple first-order kinematic
model for both the RRT# planner and the MPPI controller.
We implemented the algorithm proposed in this paper in the
navigation stack for this robot, and we tested it in simulation
(see Fig 7, right).

TABLE II
DYNAMIC EXPERIMENT RESULTS

Failure % Collision % Normalized Cost

First /
Static

min: 1.1
full: 0.9

min: 0.5
full: 0.5

min: —
full: 0.985± 0.063

First /
Dynamic

min: 6.8
full: 1.4

min: 2.0
full: 3.3

min: —
full: 0.947± 0.273

Second /
Static

min: 0.5
full: 0.5

min: 0.0
full: 0.0

min: —
full: 0.973± 0.049

Second /
Dynamic

min: 3.0
full: 0.6

min: 0.5
full: 0.4

min: —
full: 1.009± 0.274

Fig. 7. Left: The University of Washington Clearpath Warthog robot.
Right: The 3D skid steering environment that simulates the Warthog. A
video of this environment can be found here. The source code for this
environment is not publicly available.

Fig. 8 shows qualitative results. The lower screenshot was
taken approximately one second after the upper one. We see
that, due to stochasticity and/or modeling errors, the robot’s
position has changed such that the optimized MPC rollout
now uses a different branch of the planning tree. Without
access to the full planning tree, the MPC controller would
not be able to make such optimizations.

VI. CONCLUSION
In this paper, we have drawn a connection between re-

inforcement learning, control, and planning by interpreting
them all as searching for a value function. The concept of a
Bellman backup is central to all three, although historically
they have each used idiosyncratic names—e.g. dynamic
programming, vertex expansion—for this concept. This fun-
damental connection allows us to recognize planning trees as
approximate value functions and reuse them as the terminal
value function for MPC at no additional computational cost.
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