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Abstract— This paper presents a reactive legged locomotion
generation scheme that enables our quadruped robot CEN-
TAURO to adapt to varying payloads while walking. The
center-of-mass (CoM) trajectories are generated in real time
in a model predictive control (MPC) fashion, trading off
large stability margins against evenly stretched legs. Vertex-
based zero-moment-point (ZMP) constraints are imposed to
ensure quasi-static walking stability. A Kalman filter is then
implemented to estimate the CoM states and the impact of
external payloads which can vary online and affect/disturb the
locomotion differently. The CoM estimation is used to update
the MPC motion planner at every replanning instant so that
the robot can react to unknown and time-varying payloads on
the fly.

We validate the proposed scheme through experimental trials
where the robot walks on flat ground or steps on different
surface levels while carrying heavy payloads. It is shown that
the proposed reactive locomotion strategy enables the robot to
carry 20 kg payloads, which is close to the maximum capacity
of the robot arms.

I. INTRODUCTION

CENTAURO is a wheeled-legged quadruped robot with
a dual-arm upper body [1], [2], as shown in Fig. 1.
Compared with other mobile manipulation robots, e.g. [3]–
[5], it features significant physical capabilities that enable the
robot to perform demanding tasks such as manipulation and
transportation of heavy payloads, with a maximum of 12 kg
payload on each arm and a 60 kg payload on its pelvis [2].
Different from legged/tracked robots, the hybrid mobility of
CENTAURO, which combines articulated legs with wheels
permits the robot to traverse terrains of difficult geometry.

One of the commonly adopted approaches in generating
quasi-static walking locomotion is to have the zero-moment
point (ZMP) always inside the support polygon (SP), which
has been employed on both biped and quadruped robots [6]–
[8]. When the robot is modeled as a linear inverted pendulum
model (LIPM), the ZMP is typically calculated from the
positions and accelerations of the center-of-mass (CoM).
Herdt et al. [9] propose an MPC-based scheme for generation
of bipedal walk. The CoM dynamics are captured by a LIPM,
and the footholds are determined online together with the
CoM motions by solving a single quadratic program (QP)
problem. The walking stability is ensured by constraining the
ZMP always lying inside the SP, which has been proved to be
a necessary condition for LIPMs by Wieber [10]. Laurenzi et
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Fig. 1. CENTAURO, a wheeled-legged quadruped robot with two arms.

al. [11] develop an MPC-based framework to generate legged
locomotion for quadruped robots with automatic footstep
placement and explicit stability guarantee. A recent work
of Sun et al. [12] presents a scheme that produces legged-
wheeled hybrid locomotion for CENTAURO using MPC.

However, it is observed that the CoM position of
CENTAURO could be shifted by about 10 cm from its
nominal value when the robot carries 20 kg payloads by arms.
In order to generate practically stable locomotion under this
circumstance, it is necessary to estimate the real CoM states
and update the motion planner online, see, e.g., [13]–[15].
When applying the locomotion generation scheme proposed
in our previous works [11], [12], the robot is unaware of
the effect caused by the payloads, and thus the walking
stability could be compromised in payload-transportation
tasks. To address payload-transportation tasks, [16] proposes
to identify the inertial parameters of the trunk when a change
of payloads is detected. Nevertheless, one restriction of this
approach is that the identification can only be made when the
robot is static. Orsolino et al. [17] propose a concept named
Feasible Region, which represents a set of CoM positions that
respect static equilibrium, friction constraints, and actuation
feasibility. However, the combination of this approach with
dynamic stability criteria such as ZMP constraints is not
presented. The walking stability can only be implicitly
ensured by taking slow motions. Therefore, we are motivated
to develop a legged locomotion generation scheme, which
can react and adapt to unknown payloads that may vary
during the walk.

The main contribution of this work is therefore the



development and validation of an effective planning and
control framework that generates adaptive legged locomotion
to unknown and online-varying payloads for quadruped
robots. It mainly consists of a Cartesian motion planner,
a hierarchical whole-body controller and a CoM state esti-
mator, which will be introduced later. Through comparative
experimental studies in different scenarios, we demonstrate
that it enables the robot to carry total of 20 kg online-varying
payloads by the arms during walking.

The rest of this paper is organized as follows. An
overview of the proposed scheme is given in Section II. In
Section III, the CoM motion planner is derived, followed by
the implementation of the CoM estimator and the whole-
body controller. Simulations and experiments are presented
in Section IV, where we compare and analyze the results
of different locomotion generation strategies. Section V
concludes the paper and presents possible future directions.

II. OVERVIEW

An overview diagram of the proposed scheme is displayed
in Fig. 2.

Based on pre-defined gait patterns and user inputs, the
CoM reference motions, including the position, velocity and
acceleration trajectories, are generated by the MPC motion
planner, where a vertex-based ZMP constraint is imposed
to ensure quasi-static walking stability. To avoid pushing
the legs to kinematic limits, a trade-off term is added to
the cost function to balance the pursuit of large stability
margins and evenly stretched legs. Trajectories of swing
feet are formulated as fifth order polynomial functions,
connecting the initial position, the top position indicated by
pre-defined ground clearance, and the nominal touchdown
position calculated by the reference velocity of the CoM.
We adopt a fixed gait schedule that is commonly used to
generate crawl locomotion in the trials: left-front leg (LF)→
right-hind leg (RH) → right-front leg (RF) → left-hind leg
(LH). Each stride is composed of a swing phase where one of
the legs lifts and reaches out, and a contact phase where all
the legs are in contact, with their periods denoted as ts and
tc, respectively. Given the Cartesian reference motions, the
whole-body controller solves a hierarchical QP optimization
to compute the joint reference motions, which trades off
among multiple objectives and complies with mechanical
constraints of the actuators.

The disturbance of the unknown external payloads is
evaluated by how far the real CoM deviates from the
nominal values. A Kalman filter is thus implemented to
estimate the CoM states and the deviations based on
the inertial measurement unit (IMU) measurements and
estimated center-of-pressure (CoP) positions. The CoM
motion planner is then updated by the estimations at
each replanning instant to generate reactive behaviors that
compensate for the disturbance of the payloads.
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Fig. 2. An overview diagram of the proposed locomotion generation
scheme. Blocks with green shades run at 10 Hz; blocks with yellow shades
run at 100 Hz; and the block with blue shade runs at 200 Hz.

III. MOTION PLANNING, ESTIMATION AND CONTROL

A. CoM Motion Planner

The CoM trajectories are optimized in an MPC fashion
where the robot is modeled as a LIPM. Let c = [cx, cy]
and z = [zx, zy] denote the xy coordinates of the CoM and
the ZMP in the world coordinate frame, respectively. The
feasible motions of the CoM are connected to the ZMP by

c̈ = ω2(c− z) (1)

where ω =
√
g/h and g is the gravitational acceleration

constant, being 9.81 m/s2, and h is the height of the CoM
from the ground. A ZMP constriant is then imposed to
guarantee quasi-static gaits

z ∈ ConvHull {pi} , i ∈ S (2)

where pi = [pxi , p
y
i ] is the xy coordinates of the ith foot,

and S is the set of indices of stance legs at that moment.
Hence, ConvHull {pi} represents the convex hull formed by
the current footholds, i.e., the support polygon.

Following the same way as in [9], we discretize the
continuous dynamics Eq. (1) by a constant time interval T ,
build up a discretized linear MPC with a predicting horizon
of N steps, and transcribe it into a classical QP formulation

min
u

N∑
k=1

α

2
‖...ck‖2 +

β

2
‖zk − zref

k ‖2 (3)

where the decision variable u = [
...
c1, . . . ,

...
cN ] is a collection

of all the N CoM jerks, and zref
k denotes the desired position

of the ZMP at time instant k.
The gain α in (3) plays the role to smoothen the optimized

CoM motions. In this work, we choose the reference of the
ZMP, i.e. zref

k , to be the center of the support polygon at each
time instant k. The β-related term attempts to minimize the
deviation of the ZMP to its reference and thus contributes to
maximizing the stability margins during walking. However,
as what will be demonstrated in Section IV, merely pursuing
large stability margins will push the robot to kinematic limits
and thus hinder the locomotion. To alleviate this issue, we
propose to add a third term to the original optimization (3)
that seeks to modulate the legs equally, yielding

min
u

N∑
k=1

α

2
‖...ck‖2 +

β

2
‖zk − zref

k ‖2 +
γ

2
‖cp,k − cref

p,k‖2 (4)



where cp,k =
[
cxp,k, c

y
p,k

]
represents the xy coordinates of

the geometric center of the pelvis. cref
p,k is selected to be

the geometric center of the convex hull formed by all feet
at instant k regardless of their contact states. Therefore,
the γ-related term aims to keep the pelvis close to the SP
center where the legs are stretched equally. By tuning the
gains β and γ in the optimization (4), we trade off larger
stability margins against more evenly stretched legs. The
vector from ck to cp,k, denoted as d, can be obtained from
the kinematics model and is assumed to be constant within
each optimization horizon. A quadratic optimization is then
established by substituting cp,k = ck + d into (4).

With regard to the stability condition (2), we propose to
adopt a vertex-based ZMP constraint, similar to [8], [18].
The constraint is fulfilled if and only if the ZMP is equal to
a convex combination of all the supporting footholds, that is

4∑
i=1

ciwipi − z = 0

4∑
i=1

ciwi − 1 = 0, 0 < wmin ≤ wi ≤ wmax < 1

(5)

where ci indicates whether the ith foot is in contact with the
ground (ci = 1) or not (ci = 0). The variable wi represents
the weighted factors, which should be positive and add up to
be 1 with i being the index of all stance legs. The stability
margin can be adjusted intuitively by tuning wmin and wmax,
i.e. the lower and upper bounds. The decision variable u
is thus extended by including the 4N weighting factors,
yielding

u = [
...
c1, . . . ,

...
cN , w1,1, . . . , wN,4] (6)

B. CoM Estimator

It is a common situation in load-transportation tasks that
the information of the loads such as the mass and loading
positions is unknown beforehand. We therefore propose to
treat the payloads as a part of the modeling errors and
evaluate their approximated effect on walking stability by
looking on the resulting CoM shift. That is, the potential
impact of the unknown payloads is measured by the deviation
of the real CoM from its nominal position that is calculated
from the robot model and its body configuration. Since, in
general, the payloads will not keep changing after being
mounted, it is fair to assume the CoM deviation to be a
slowly varying variable whose first-order derivative w.r.t.
time is close to zero. Therefore, the CoM deviation can be
modeled by augmenting an offset term ce in the LIPM (1),
which becomes

c̈ = ω2(c+ ce − z) (7)

We implement a discrete Kalman filter as done in [13],
[15] to estimate the propagation of the CoM states and the
deviation online

x̂k+1 = Ax̂k +Buc,k

ŷk = Cx̂k +Duc,k

(8)

TABLE I
ELEMENTS OF THE NOISE COVARIANCES IN THE KALMAN FILTER

σ1,σ2 σ3,σ4 σ5,σ6

Q 1× 10−8 1× 10−4 1× 10−8

R 1× 10−6 1× 10−2 -

where x̂ =
[
ĉ, ˙̂c, ĉe

]
represents the state of the CoM

estimator, ŷ =
[
ĉ, ¨̂c
]

represents the observation and uc =

[uxc , u
y
c ] represents the xy coordinates of the CoP. The

process matrices and observation matrices are given as
follows

A =

(1 + 1
2ω

2T 2
s )I2 TsI2

1
2ω

2T 2
s I2

ω2TsI2 I2 ω2TsI2
0 0 ω2TsI2


B =

− 1
2ω

2T 2
s I2

−ω2TsI2
0

 C =

[
I2 0 0
ω2I2 0 ω2I2

]
D =

[
0

−ω2I2

]
where I2 is a 2×2 identity matrix, and Ts is the time interval
of discretization that depends on the execution rate of the
estimator. Let Q ∈ R6×6 and R ∈ R4×4 denote the process
and measurement noise covariances in the Kalman filter,
respectively. Q and R are both set to be diagonal matrices
and their elements are chosen as shown in Table I, where σi
represents the ith element on the diagonal.

Since there are no force/torque sensors installed at the end
of each leg of CENTAURO, contact forces are estimated
from joint torque measurements and the robot’s dynamics
under slow-motion assumptions, through

fi = (JT
c,i)

+(h− STτ ), i = 1, . . . , 4 (9)

where Jc,i ∈ R3×(n+6) represents the Jacobian of the
i-th foot (n is the number of actuated joints which is
42 for our robot); (·)+ is the pseudo-inverse operation;
S = [0n×6 In×n] is the selection matrix that picks
up the actuated degrees of freedom; τ is the vector of
measured torques in joint space; and h = h(q, q̇) expresses
the nonlinear dynamics caused by centripetal, Coriolis and
gravity forces. The position of CoP, uc, is then calculated
by summing up the positions of stance feet weighted by
corresponding contact forces.

With regard to the observations, the position of CoM
is calculated from measured joint positions and forward
kinematics, and, with the assumption that the CoM and
the IMU both lie on the trunk, the CoM acceleration can
be obtained approximately from the IMU measurements. It
also explains why we set a lower belief to the observed
IMU accelerations in the Kalman filter, which corresponds
to larger measurement noise covariances (i.e., σr,3 and σr,4
listed in Table I).

The CoM estimator implemented above has been validated
in simulations where the ground truth values can be easily
obtained. The simulation setup and task descriptions are
identical to the test-2 in Section IV, which will be explained
later. The upper figure in Fig. 3 illustrates the real trajectory
of the CoM obtained from the simulator and the estimated



Fig. 3. Validation of the CoM estimator in simulations. Top: Real
trajectories and estimated trajectories of the CoM in simulations with Q
and R listed in Table-I. Bottom: Estimation errors of the CoM offset under
different parameters. The blue line corresponds to the case in the upper
figure while the red and yellow lines are for the other two sets of parameters.

trajectory by summing up ĉ and ĉe from the estimator. The
distance between the ground truth CoM and the estimated
one, which is the estimation error of the CoM offset, is
also shown in the bottom figure of Fig. 3 (the blue line).
The errors are often less than 3 cm and peaked at 5 cm
only in some instants. To further compare the estimator’s
performances with different covariance matrices Q and
R, we do simulations with the original parameters shown
in Table-I (denoted as param-1) and another two sets of
parameters:

• param-2: σq,5 = σq,6 = 1 × 10−6, others unchanged
from param-1;

• param-3: σr,3 = σr,4 = 1 × 10−4, others unchanged
from param-1.

The estimated CoM offset is allowed larger variance
(possibly better time responses and smaller delays) under
param-2 while the observed joint acceleration is given more
trust under param-3. It is evident in Fig. 3 that the new sets of
parameters both lead to rapidly varying estimations (and no
smaller errors in average), which could undermine the robot’s
stability when used in compensation, and thus we will adopt
the original Q and R in the following experiments.

C. Hierarchical Whole-Body Controller

The generation of legged locomotion is a complex task
with multiple objectives, such as tracking the reference,
regulating the body and distributing the motions while
considering various constraints. Because of the flexibility to
express multiple objectives in a hierarchical structure with
different priorities, numerical optimizations have recently
been adopted to tackle the computation of inverse kinematics
(IK) and inverse dynamics (ID) [19], [20]. Similarly, we
formulate the control of our robot as a hierarchical QP
optimization inside OpenSoT [21] 1, a light-weight and real-
time safe whole-body control framework. To be specific, the

1For more about the interfaces, syntax and demonstrations of the whole-
body controller OpenSoT, readers are also recommended to visit the website
of XBotControl: https://github.com/ADVRHumanoids/XBotControl.

TABLE II
TASKS AND CONSTRAINTS IN THE WHOLE-BODY CONTROLLER

Task/Constraint Priority Weight

CoM trajectory tracking first 1.0
pelvis orientation regulation first 0.1
leg trajectory tracking second 1.0
arm trajectory tracking second 1.0
upper body regulation second 0.1
joint position limit constraint -
joint velocity limit constraint -

whole-body controller with two task hierarchies and equality
and inequality constraints are established in the form

argmin
q̇i

‖Jiq̇i − ẋi‖2 + λ‖q̇i‖2 i = 1, 2

s.t. Aeq,iq̇i = beq,i

ci ≤ Cin,iq̇i ≤ ci

J1q̇2 = J1q̇
∗
1

(10)

where ẋi is the task velocity at the ith hierarchy (suppose
task x1 has priority over x2) and Ji is the corresponding task
Jacobian. q̇1 is the joint velocity at the primary hierarchy and
q̇∗
1 is its optimal solution, whereas q̇2 is the resultant joint

velocity by considering the two hierarchies together. The first
two constraints in the optimization above are the user-defined
equality and inequality constraints, respectively, and the third
constraint represents the requirement of hierarchical division.

Differently from our previous work [12] where all the tasks
are organized inside the same hierarchy, in this work we
propose to divide the tasks into two hierarchies and attach the
top priority to tracking the optimized CoM trajectories. All
the tasks and constraints used in our whole-body controller
are listed in Table II, together with their corresponding
priorities and weighting factors.

IV. VALIDATION

To validate the proposed reactive locomotion scheme,
several trials are conducted to demonstrate that our
robot CENTAURO manages to accomplish demanding
payload-transportation tasks in different scenarios. The
communication between user programs and the hardware
is established by XBotCore, a real-time (RT) safe robot
control framework developed in our lab, which also provides
interfaces to non-RT (NRT) processes [22]. All the blocks
shown in Fig. 2 are implemented in C++ as NRT ROS
nodes and run at the indicated rates on the robot’s embedded
computer with an Intel i7-6700@3400 Hz processor. Unless
otherwise stated, we use the parameters listed in Table III in
the following tests.

Three trials of payload-transportation tasks are introduced
in this section:

• Test-1: Flat terrain locomotion with payloads;
• Test-2: Flat terrain locomotion with varying payload

configurations;
• Test-3: Walking up a step with payloads.



TABLE III
PARAMETERS USED FOR SIMULATIONS AND EXPERIMENTS

Parameter Value Parameter Value

T 0.1 s wmin 0.10
N 20 wmax 0.80
α 1 × 10−6 ts 1.0 s
β 1.0 tc 0.5 s
γ 1.0

Fig. 4. Snapshots of test-1 where the loaded weights are marked by
rectangles with solid red lines. Left: The robot walks with 20 kg payload in
the reactive mode. Middle: The robot walks with the payload in the nominal
mode. Right: The robot does not carry any payload as a comparison.

In all these tests, the robot carries a total payload of 20 kg
distributed equally on the two arms (10 kg on each arm)
as marked by the red rectangles in Fig. 4. The 20 kg
payload approaches the maximum capacity of the robot’s
arms, as reported in [2]. Consequently, the CoM of the
robot is shifted by a maximum of about 10 cm from its
nominal value, depending on the arms configuration. It is
worth noting that the robot is unaware of how much and
where the payloads are (although they are fixed at the end
of the arms for convenience) and whether they are varying
during locomotion. To highlight the improvements, the robot
is controlled in each test first by using the proposed reactive
scheme (called reactive mode below) and then by using
only nominal CoM information (called nominal mode) as
a comparison. Readers are recommended to refer to the
attached video for more details of these trials.

A. Test-1: Flat terrain locomotion with payloads

Test-1 is the simplest case among all the trials, where the
robot walks on flat ground with payloads. We conduct a third
test without any payloads to highlight how much the robot
is affected by the 20 kg weights, as shown in Fig. 4. By
examining the solid and dashed blue lines in Fig. 5, it is
clear that the CoM is shifted by about 10 cm along the
x-axis but doesn’t change much along the y-axis because
the payloads are roughly symmetric about the sagittal plane.
Fig. 6 displays the estimated contact forces in the reactive-
mode experiment. The weight of the whole robot is measured
by summing up the z components of the contact forces, as
shown in Fig. 7. It reveals that the payloads are indeed about
20 kg by comparing the blue and yellow lines.

We evaluate the walking stability in terms of frequencies
and magnitudes of violating the ZMP stability constraints,
as displayed in Fig. 8. The reactive mode shows fewer
violations as well as a smaller mean (and a much smaller
maximum value) when breaking the constraints. Although

Fig. 5. The estimated CoM offset in test-1. The CoM has been shifted by
about 10 cm due to the payloads.

Fig. 6. The estimated contact forces in an interval of 15 s during the
reactive locomotion in test-1.

Fig. 7. The sum of the contact forces along z-axis in an interval of 15 s
in test-1.

Fig. 8. A straightforward illustration of walking stability in test-1. Left: The
proportion of the sampled data where the ZMP constraint is not satisfied.
Right: The shortest distance between the ZMP and the corresponding SP
for the unstable sample instants.

the motions produced by the MPC planner should always
be stable theoretically, tracking of the desired motions
is actually not perfect majorly because of the intrinsic
compliance of the series elastic actuators (SEAs). In addition,
the walking stability can be explained by the attached video,
where the robot is shown to lose its balance and bump into
the ground heavily during the nominal-mode locomotion.
The corresponding contact forces, presented by the red line in
Fig. 7, also demonstrate larger peak values due to the heavy
collisions. To prevent damaging the robot due to high impacts
we terminated the experiment of nominal-mode locomotion
only after about 15 s. In order not to damage to the hardware,
we conduct only the reactive-mode tests on the robot whereas
the following nominal-mode tests are in simulations.



Fig. 9. In test-2, the arm configurations are changed online to produce
varying impacts from the payloads.

Fig. 10. Estimations of the CoM offset in test-2. The CoM is affected
differently under distinct payload configurations.

Fig. 11. An illustration of walking stability in test-2.

B. Test-2: Flat terrain locomotion with varying payload
configurations

In test-2, the payloads are varying on the fly by modulating
the postures of the arms (without informing the locomotion
controller), and the robot is expected to adapt its movements
accordingly. The robot starts from the initial pose (denoted as
pose-1) and sequentially change to three other poses (denoted
as pose-2, pose-3 and pose-4, respectively) during walking,
as displayed in Fig 9.

Fig. 10 displays the estimated CoM offset, which reveals
that the CoM is affected differently under distinct payload
configurations. The experimental results demonstrate that the
robot manages to adapt to different payload configurations
seamlessly in the reactive mode. However, the nominal mode
produces stable locomotion only when the payloads are close
enough to the trunk, i.e., at pose-2. We further evaluate
the walking stability by calculating how much the ZMP
constraint is violated, as illustrated in Fig. 11.

C. Test-3: Walking up a step with payloads

In test-3, the robot is controlled to walk up a step of
15 cm with the payload. The robot manages to walk up
the step in the reactive mode, whereas it always fails in the
nominal mode as shown in the video. Therefore, we only
demonstrate the walking stability of the reactive locomotion
in Fig. 12. This trial, consequently, better validates the
traversing capacity of CENTAURO and the proposed reactive
locomotion generation scheme.

Fig. 12. An illustration of walking stability in test-3 where the outliers are
marked by red crosses.

Fig. 13. The robot fails in walking when γ is set to be 0.

D. Test-4: Evaluation of the γ-related term

We have introduced a γ-related term in the optimiza-
tion (4) to trade off large stability margins and equally
stretched legs. To demonstrate the necessity of having this
trade-off term for the reactive locomotion, another test is
carried out in simulations with the parameter γ set to be
0, which means that the motion planner will only focus on
maximizing the stability margins. As displayed in Fig. 13,
the pelvis moves far too back to compensate for payloads
while pushing the front legs close to the kinematic limits. The
controller fails to generate stable motions after only several
seconds and then the robot loses its balance.

V. CONCLUSION

In this work, we proposed a novel planning and control
framework that implements adaptive legged locomotion
under unknown and online-varying heavy payloads carried
by the quadruped robot CENTAURO.

The main components of the proposed framework are
i) an MPC-based motion planner, ii) a QP-based whole-
body controller and iii) a CoM estimator that evaluates
the influence of the payloads on the robot. A cost term
that balances the pursuit of maximizing stability margins
and evenly stretching the legs is also introduced, enabling
the generation of feasible motions during the reactive-
mode locomotion. Experiments and simulations have been
conducted to validate that, by using the proposed reactive
walking strategy, the robot is able to accomplish demanding
load-transportation tasks with significantly heavy and online-
varying payloads in different scenarios with improved
walking stability.

One of the possible future directions is to explore
impedance control and further improve the interaction
behaviors through variable stiffness control of the joints.
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