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Towards Real-time Semantic RGB-D SLAM in Dynamic Environments

Tete Ji', Chen Wang?, and Lihua Xie'

Abstract— Most of the existing visual SLAM methods heavily
rely on a static world assumption and easily fail in dynamic
environments. Some recent works eliminate the influence of
dynamic objects by introducing deep learning-based semantic
information to SLAM systems. However such methods suffer
from high computational cost and cannot handle unknown
objects. In this paper, we propose a real-time semantic RGB-
D SLAM system for dynamic environments that is capable of
detecting both known and unknown moving objects. To reduce
the computational cost, we only perform semantic segmentation
on keyframes to remove known dynamic objects, and maintain
a static map for robust camera tracking. Furthermore, we pro-
pose an efficient geometry module to detect unknown moving
objects by clustering the depth image into a few regions and
identifying the dynamic regions via their reprojection errors.
The proposed method is evaluated on public datasets and real-
world conditions. To the best of our knowledge, it is one of the
first semantic RGB-D SLAM systems that run in real-time on
a low-power embedded platform and provide high localization
accuracy in dynamic environments.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a
fundamental capability for intelligent robotic applications. It
aims to simultaneously estimate the poses of the robot and
build a map of the unknown environment from the data of on-
board sensors [1], [2]. Benefiting from various low-cost and
light-weight cameras available in the market, vision-based
SLAM, or visual SLAM (vSLAM), has received increasing
attention over the past decades. A number of impressive
vSLAM systems have been proposed using different type of
cameras, such as monocular SLAM [3], [4], RGB-D SLAM
[5]1, [6], and stereo SLAM [7], [8]. Due to direct availability
of the depth map and metric scale, RGB-D camera is a
popular choice, especially for indoor scenes.

Although the existing vSLAM systems have achieved
successful performance in some situations, the majority of
these methods heavily rely on a static world assumption,
which greatly limits their deployment in real world scenarios.
Because dynamic objects such as moving people, animals
and vehicles, have negative influence on the pose estimation
and map reconstruction. Although robust estimation tech-
niques such as RANSAC can be applied to filter out some of
the outliers, the improvement is still limited since they can
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Fig. 1: An overview of dynamic objects detection by our
proposed method. In case (a), the dynamic feature points
associated with both the nearly static sitting person and the
walking person are detected by the combination of semantic
and geometry information. In case (b), the chair pulled by the
person which is an unknown object to the semantic network
is also successfully detected by our method.

only handle slightly dynamic scenes and may still fail when
the moving objects cover most of the camera view.

Due to recent advances in computer vision and deep
learning, semantic information of the environment has been
integrated into SLAM systems, such as semantic mapping
[9], [10] and object-level SLAM [11], [12]. The semantic
information is extracted by semantic segmentation which
predicts the labels and generates masks for detected objects.
By recognizing and removing potentially dynamic objects,
the performance of vSLLAM in dynamic scenes can be greatly
improved [13], [14]. However, there still exist two main
problems for such methods. One is that most powerful deep
neural networks for semantic segmentation such as Mask-
RCNN [15] are highly computationally expensive and not
applicable to real-time and small-scale robotic applications
[16]. While for light-weight networks, the segmentation
may be less precise and the tracking accuracy will also be
affected. The other one is that they can only handle known
objects which are labelled in the training set of the network,
and may still fail when facing unknown moving objects.

To identify dynamic objects with semantic cues, most
of the existing methods perform semantic segmentation on
each new frame. This leads to a significant slowdown in
camera tracking because the tracking process has to wait until
the segmentation completes. Therefore, we extract seman-
tic information only from keyframes to remove potentially



dynamic objects and maintain a map that contains only
static features for camera tracking. Since keyframe and
map update can run at low speed in a separate thread,
the overall tracking time with semantic segmentation can
be significantly reduced. Furthermore, to handle unknown
moving objects, we propose an efficient geometry module
that does not require prior information about the moving
objects. This is done by segmenting the depth image into
a few regions using K-Means algorithm and the dynamic
regions are identified according to their average reprojection
errors. Some examples are demonstrated in Fig. [I] Different
from [17] which detects dynamic objects using geometry
clustering in a dense optimization framework, we identify
dynamic regions directly from reprojection errors of sparse
features, which leads to faster processing and makes it more
robust to dynamic contents.
The main contributions of this paper include:

o A keyframe-based semantic RGB-D SLAM system that
is capable of reducing the influence of moving objects
in dynamic environments.

« An effective and efficient geometry module that deals
with unknown moving objects and combines with the
semantic SLAM framework.

« Extensive evaluations showing that our method provides
competitive accuracy compared to the state-of-the-art
dynamic SLAM methods while being able to run in
real-time on an embedded system.

II. RELATED WORK

To deal with dynamic objects in the environments, a few
vSLAM methods have been proposed in recent years. They
can be divided into two main directions, one is geometry-
based and the other is semantic or learning-based.

A. Geometry-based Dynamic SLAM

The main idea of geometry-based methods for dealing
with dynamic objects is to treat them as outliers and reject
them using robust weighting functions or motion consistency
constraints. Sun et al. [18] propose a motion removal ap-
proach that tracks and filters out motion patches in images
using particle filter. Kim et al. [19] use a nonparametric
model of the background and estimate the ego-motion only
based on the estimated background model. StaticFusion [17]
reconstructs the background by estimating a probabilistic
segmentation of the image and integrating it in a weighted
dense optimization framework. Zhang et al. [20] use dense
optical flow residuals to detect dynamic regions in the
scene and reconstruct the static background using similar
framework to StaticFusion. More recently, Dai et al. [21]
propose to use point correlations to distinguish static and
dynamic map points based the fact that relative positions
between static features are constant over time.

Geometry-based approaches do not need prior information
about moving objects and the processing speed is generally
faster. They are able to improve the performance of existing
SLAM systems to some extent, but still need further efforts.
Their accuracy is generally lower than that of semantic-based

methods. Moreover, geometry-based methods are unable to
build semantic maps of the environment which is useful for
advanced robotic applications.

B. Semantic or Learning-based Dynamic SLAM

Learning-based methods make use of deep neural net-
works to extract semantic information in the environment by
obtaining pixel-wise labels of input images and providing
masks for each detected object. The potentially dynamic
objects can then be identified from the semantic cues in a
single image without the need of multi-frame processing. To
get more consistent results, some learning-based methods
also utilize conventional geometry information to further
distinguish static and dynamic objects among the segmented
objects. For example, DS-SLAM [22] combines SegNet and
optical flow to identify moving people in the scene and
removes dynamic features by checking the moving consis-
tency. DynaSLAM [23] combines Mask-RCNN and multi-
view geometry to handle both known and unknown moving
objects. Although it achieved impressive improvement on
public datasets, its computational cost is very high and is
mainly for offline operation. In [24], a unified framework is
introduced for dynamic SLAM and semantic segmentation
which mutually improves the accuracy of each other.

Some methods continuously track the motion of the seg-
mented dynamic objects instead of simply removing them.
For example, MID-fusion [14] proposes an object-centric
approach which incorporates object models in dense tracking
formulation to track both object poses and camera motion.
Differently, [25] proposes a novel motion model to track
rigid moving objects which does not rely on their 3D
models. The motion model and semantic information are
then integrated in a factor graph optimization framework for
objects and camera tracking. These methods achieved much
improvement in dynamic environments, but all of them are
either not able to run in real-time or not able to process
unknown moving objects.

III. PROPOSED METHOD

To deal with moving objects in dynamic environments, we
make use of both semantic and geometry information from
the input RGB-D images. Specifically, we take advantage
of the learning-based methods for semantic information to
process potentially dynamic objects, and we propose an
efficient geometry module to deal with unknown moving
objects. In order to achieve real-time performance, which is
vital for robotic applications, we extract semantic cues only
from keyframes with a light-weight network. Our system is
built on ORB-SLAM?2 [26], which is a feature-based SLAM
system mainly for static environments. As our SLAM is
sparse feature based, we only need to reject feature points
associated with the moving objects. The overall framework
is shown in Fig. [2} in which the semantic and the geometry
module will be presented in the following sections.

A. Semantic Module

The semantic segmentation is to predict pixel-wise labels
and generate masks for detected objects in the input RGB
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Fig. 2: The overall framework of proposed method. The black boxes are the tracking stages modified from ORB-SLAM?2.
The green-shaded boxes are our added stages to the SLAM system, which include a semantic module and a geometry
module. The semantic module performs semantic segmentation on RGB image if it is a new keyframe, and then removes
potentially dynamic objects in the keyframe and map. The geometry module performs geometry clustering on depth images
and identifies moving objects based on the reprojection errors. After this, only static features are used for pose estimation.

images using deep learning-based methods. To account for
both accuracy and computational speed, we adopted the
light-weight semantic segmentation network SegNet [27] for
our semantic module. Using more powerful deep neural
networks like Mask-RCNN [15] can provide more precise
segmentation results, however, the computation will be more
expensive. The segmentation network is pre-trained on the
PASCAL VOC dataset [28], which contains 20 classes of
objects. Among these objects, we only deal with those that
are highly movable or potentially dynamic, such as person,
car, bicycle, etc. These objects will be removed from the
segmented images and the feature points associated with
them will not be used for camera tracking and map building.
Instead of performing semantic segmentation for each new
frame, which is standard in most existing learning-based dy-
namic SLAM methods, we do this only when a new keyframe
is created. This significantly reduces the computational cost
for the semantic module and helps us achieve real-time
tracking with semantic information. Moreover, this process
is performed in a separate thread, and hence does not have
much influence on the overall tracking time.

To retain more information for tracking, some learning-
based approaches further identify whether the segmented
movable objects are moving or not. However for consistent
long-term map building this is not necessary as these mov-
able objects are undesired even when they are temporarily
static. Hence we leave out this procedure in our semantic
module. This shows another advantage of semantic informa-
tion as it is able to recognize those undesired objects in the
scene which are temporarily static and cannot be detected by
conventional geometry-based approaches.

B. Geometry Module

Since semantic information alone can only detect a fixed
number of object classes that are labelled in the training set,
the tracking and mapping will still be affected in the presence
of unknown moving objects. Therefore, to handle unknown
moving objects, we propose to combine a geometry module
that does not require prior information about the objects.

To achieve this, we first segment each new depth image
into N clusters using K-Means algorithm, where points
close to each other in 3D space are grouped together. Each
cluster is assumed to be a surface of an object and points
within a cluster share the same motion constraint. Because
a single object could be segmented into a few clusters,
the object is not required to be rigid, while most semantic
SLAM methods have this rigidity assumption. For each
cluster ¢;, we compute an average reprojection error 7; of
all feature points u; inside the cluster against their matched
correspondences P; in 3D space, as defined in @, where m
is the number of matched features in c;, T, is the camera
pose, 7 represents the camera projection model, and p is a
penalty function.
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When the error of a cluster is relatively larger than the
others, we mark this cluster as dynamic. All feature points
in dynamic clusters will be removed and not be involved
in camera pose estimation. Comparing to identifying the
dynamic state for each single feature point, our cluster-wise
manner is more effective and efficient. Moreover, it prevents
false detection cased by the measurement noise from a single
point. It also allows us to approximate a rough shape of the
moving objects via the geometry clustering. Some results of
our method can be viewed in the third row of Fig. [3] where
dynamic clusters are highlighted in red. This module can
work independently without semantic information and hence
can detect unknown moving objects.

The geometry module can also be regarded as a backup
when semantic segmentation fails in detecting moving ob-
jects. This is because there exist situations that are challeng-
ing for semantic segmentation and may cause segmentation
errors or failures, especially for light-weight networks. Some
examples are presented in Fig. [3] It can be seen that although
both modules can successfully detect moving objects in
(a) and (b), the semantic segmentation fails in (c) to (g)
due to large rotations, motion blurs, or only part of the
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Fig. 3: Example results of dynamic objects detection. The first row shows dynamic features detected by the proposed semantic
module (points with blue rectangle) and by the geometry module (points in red). The second row is the corresponding
semantic segmentation result. The third row shows the geometry clustering results from depth images and the dynamic
clusters are highlighted in red. (a) and (b) show that both modules detected dynamic objects. (c)-(h) demonstrate that
semantic segmentation failed while geometry module succeeded. Frames are taken from the sequence fr3/walking_rpy.

objects is present in the images. These situations introduce
difficulties to semantic segmentation, while the geometry
module can work as normal. Taking (c) as an example, the
semantic segmentation network fails in recognizing a moving
person due to severe motion blur caused by the fast relative
motion of the person. While the features on this person are
successfully detected by our geometry module because the
reprojection errors of the dynamic parts are larger than the
rest static regions. Note that we only plot tracked map points
in the figure. The dynamic moving objects detected by the
geometry module sometimes are not complete because there
exist few matched map points in some regions of the objects.
This is also a limitation of geometry methods which are
difficult to detect a full boundary of moving objects.

An interesting thing we found during experiment is that
some semi-dynamic objects could also be identified. An ex-
ample is shown in Fig. 3] (h), where the left chair is identified
to be dynamic. The reason is that the chair is currently static
but its position was changed when revisiting it. This could
be helpful for long-term consistent map building.

C. Keyframe and Local Map Update

Most of the existing learning-based dynamic SLAM meth-
ods perform semantic segmentation for all new frames,
which can only run at very low speed or offline mode.
Different from that, we extract semantic information only
from keyframes. Since a new frame is tracked with keyframes
and local map, we only need to ensure that the segmented
keyframes and the local map contain only static parts of the
scene. The keyframe selection strategy is inherited from the
original ORB-SLAM?2 system and details will be omitted
here. When a new keyframe is selected during tracking,
we perform semantic segmentation in a separate thread
and remove dynamic feature points. The local map is also
updated by removing the corresponding dynamic map points.
In this way, we maintain a keyframe database and a map that
contain only static features and map points.

D. Tracking

We perform a two-stage tracking for each new frame in-
spired by ORB-SLAM?2. We first perform an initial tracking
with a recent keyframe that has the largest overlap with the
current frame to obtain an initial pose estimation. Since the
keyframes have been refined with potentially dynamic ob-
jects removed, this initial estimation would be more reliable.
The initial pose estimate is then used in the geometry module
for dynamic objects detection. After removing dynamic
points in the current frame by the geometry module, a more
accurate pose estimation using local bundle adjustment is
obtained by tracking with all the local map points observed
in the current frame. As potentially dynamic map points are
also removed in the local map by the semantic module, the
influence of dynamic objects is further reduced and hence
the pose estimation is more robust and accurate.

IV. EXPERIMENTS AND RESULTS

a) Overview: The proposed method is tested on the
TUM RGB-D dataset [29] which is widely used for the
evaluation of RGB-D SLAM. Since our system is built on
ORB-SLAM2, we use it as a baseline to demonstrate our
improvement. We first evaluate the effect of different mod-
ules introduced in this paper. We then compare our results
with the state-of-the-art dynamic SLAM methods including
both geometry-based and learning-based approaches. The
runtime analysis is also presented to show the efficiency of
our method. Furthermore, we demonstrate the performance
of our method with a live camera in real scenarios.

b) Implementation: For semantic segmentation, we use
SegNet [27] with its default settings as described in Section
[M}A. For geometry module, we set the number of clusters
N = 24 at an image resolution of 640 x 480. Since false
negatives (dynamic clusters marked as static) are unfavor-
able compared to false positives (static clusters marked
as dynamic), we choose a relatively lower threshold for
determining dynamic clusters, which depends on the average



TABLE I: Evaluation of ATE on the TUM dataset using the
proposed method with different configurations [m]

Sequence ORB-SLAM?2 Geometry  Semantic ~ Combined
module module system
fr3/s xyz 0.0094 0.0100 0.0116 0.0117
fr3/s_half 0.0242 0.0187 0.0174 0.0172
fr3/w_static 0.1908 0.0111 0.0177 0.0111
fr3/w_rpy 0.8467 0.2143 0.0373 0.0371
fr3/w_xyz 0.4662 0.0290 0.0217 0.0194
fr3/w_half 0.4430 0.0362 0.0295 0.0290

reprojection error of matched features. All experiments are
conducted on NVidia Jetson AGX Xavier with 8-core ARM
v8.2 64-bit CPU, 512-core Volta GPU and 16G RAM, which
is a low-power and small-size embedded platform designed
for intelligent robotic applications. Our algorithm is tested on
Ubuntu 18.04 with the Robot Operating System (ROS). To
the best of our knowledge, our method is the first semantic
RGB-D SLAM system for dynamic environments that is able
to run in real-time on such an embedded platform.

c¢) TUM Dataset: The TUM RGB-D dataset contains
39 sequences captured in indoor environments with an RGB-
D camera, and along with ground truth trajectories obtained
from a high-accuracy motion capture system. To demonstrate
the performance in dynamic environments, we selected a
few sequences containing dynamic objects for evaluation.
The fr3/sitting (fr3/s for short) sequences are slightly dy-
namic, where two persons sit at a desk with slight body
motions. The fr3/walking (fr3/w for short) sequences are
highly dynamic, where two persons walk around a desk. The
walking sequences are most challenging since the dynamic
objects occupy a large portion of the camera view. There are
four types of camera motions as indicated in the sequence
names, remaining almost static (static), moving along three
directions (xyz), rotating along principal axes (rpy), and
moving along a half sphere with 1-m diameter (half).

d) Evaluation Metrics: The error metrics for evaluation
are the commonly-used Root-Mean-Square-Error (RMSE) of
the Absolute Trajectory Error (ATE) in m, and RMSE of the
Relative Pose Error (RPE) which comprises the translational
drift in m/s and rotational drift in °/s. The ATE measures the
the global consistency of the trajectory and the RPE measures
the odometry drift per second.

A. The Effect of Different Modules

We first evaluate the accuracy of our system with different
configurations including the geometry module, the semantic
module, and their combined framework. The comparison
of RMSE of the ATE against the baseline ORB-SLAM?2
is shown in Table [l For slightly dynamic sequences, our
proposed method provides similar results to ORB-SLAM2
since ORB-SLAM?2 can handle these situations successfully
by the RANSAC algorithm, and hence the improvement
margin is limited. While for highly dynamic sequences, both
of our semantic and geometry module achieve significant
improvement in accuracy, and the proposed combined system
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Fig. 4: Comparison of trajectories estimated by ORB-
SLAM2 and the proposed method against ground truth.

achieves the best results. In fact, ORB-SLAM?2 failed in
tracking most of the time because of the dynamic objects.
Therefore by removing the dynamic parts, we can obtain
much more accurate camera pose estimations. This can also
be seen in the trajectory estimation shown in Fig. [

B. Comparison with State-of-the-arts

We compare our results with state-of-the-art geometry-
based dynamic SLAM methods, MR-DVO [18], SPW [30],
StaticFusion [17], DSLAM [21], and learning-based meth-
ods, MID-Fusion [14], EM-Fusion [31], DS-SLAM [22], and
DynaSLAM [23]. The comparisons of the ATE and RPE are
summarized in Table [[I| and Table [III] respectively. It can
be seen that our method provides competitive results in all
the dynamic sequences and outperforms all other dynamic
SLAM methods except for DynaSLAM, which combines
multi-view geometry in a semantic framework. However,
it should be noted that DynaSLAM offers offline static
map creation and is not able to run in real-time due to its
time-consuming Mask-RCNN network and region growing
algorithm. On the contrary, our method achieves real-time
operation while providing very close results compared to it.

C. Runtime Analysis

To evaluate the efficiency of our proposed method, we
measured the average computation time of each module and
compared with the state-of-the-art learning-based methods
DS-SLAM [22] and DynaSLAM [23], together with the
baseline ORB-SLAM?2. DS-SLAM and DynaSLAM are also
built on ORB-SLAM?2. The computation time is obtained
using the sequence fr3/walking xyz on the same embedded
platform. The results are listed in Table[IV] It can be seen that
our method is the only semantic RGB-D SLAM method that
achieves real—timeﬂ on an embedded platform for dynamic

IReal-time in this paper means that a robot is able to process images as
fast as a human brain, i.e., 100 ms per frame [32].



TABLE II: Comparison of RMSE of the Absolute Trajectory Error (ATE). The best results are highlighted in bold and the
second-best are underlined. We use the results published in their original papers when applicable. [m]

Sequence Geometry-based methods Learning-based methods Ours
q MR-DVO SPW StaticFusion ~DSLAM | MID-Fusion EM-Fusion DS-SLAM  DynaSLAM
fr3/sitting xyz 0.0482 0.0397 0.040 0.0091 0.062 0.037 - 0.015 0.0117
fr3/sitting half 0.0470 0.0432 0.040 0.0235 0.031 0.032 - 0.017 0.0172
fr3/walking_static 0.0656 0.0261 0.014 0.0108 0.023 0.014 0.0081 0.006 0.0111
fr3/walking_rpy 0.1333 0.1791 - 0.1608 - - 0.4442 0.035 0.0371
fr3/walking_xyz 0.0932 0.0601 0.127 0.0874 0.068 0.066 0.0247 0.015 0.0194
fr3/walking_half 0.1252 0.0489 0.391 0.0354 0.038 0.051 0.0303 0.025 0.0290

TABLE III: Comparison of RMSE of the Relative Pose Error (RPE) in translational drift and rotational drift. * indicates
learning-based methods. Only a few learning-based methods reported RPE in their original papers.

Sequence Translational RPE (m/s) Rotational RPE (°/s)

q SPW StaticFusion DSLAM  DS-SLAM* \ Ours SPW StaticFusion DSLAM  DS-SLAM* \ Ours
fr3/sitting_xyz 0.0219 0.028 0.0134 - 0.0166 | 0.8466 0.92 0.5792 - 0.5968
fr3/sitting _half 0.0389 0.030 0.0354 - 0.0259 | 1.8836 2.11 0.8699 - 0.7891
fr3/walking_static | 0.0327 0.013 0.0141 0.0102 0.0117 | 0.8085 0.38 2.7413 0.2690 0.2872
fr3/walking_rpy 0.2252 - 0.2299 0.1503 0.0471 | 5.6902 - 4.6327 3.0042 1.0587
fr3/walking_xyz 0.0651 0.121 0.1266 0.0333 0.0234 | 1.6442 2.66 2.7413 0.8266 0.6368
fr3/walking_half 0.0527 0.207 0.0517 0.0297 0.0423 | 2.4048 5.04 0.9854 0.8142 0.9650

TABLE IV: Comparison of Computation Time [ms]

Methods Semantic part Geometry part Tracking
ORB-SLAM2 - - 71.84
DS-SLAM 75.64 47.38 148.53

DynaSLAM 884.24 589.72 1144.93
Ours 72.36 30.14 75.82

environments. DS-SLAM uses the same network as ours and
only deals with moving people, but it is still less efficient
because it performs semantic segmentation for all frames.
DynaSLAM has much higher processing time because its
geometry part suffers from time-consuming region growing
algorithm and sometimes it takes up to a few seconds to
process if there are many dynamic points.

D. Robustness Test in Real Environment

We further tested our proposed method with a live RGB-D
camera from Intel RealSense to evaluate its robustness in real
dynamic environments. In our experiments, a person holding
a book is sitting and walking in front of the camera and
the camera is holding nearly static. Several screenshots of
dynamic points detection results during the real-time test are
shown in Fig. 5] where the second and third row are segmen-
tation results from the semantic module and our proposed
geometry module, respectively. Note that the book is not a
labelled object in the network model and hence it cannot be
recognized, or sometimes falsely recognized by the semantic
module as shown in the second row. As a compensation
process, the geometry module is able to correctly extract
the book as a moving object in the test as shown in the third
row. This demonstrates that both the semantic module and
geometry module are necessary for robust semantic RGB-
D SLAM system in dynamic environments. The average
trajectory estimation error by our method is about 0.012m,

Fig. 5: Experiments with a live RGB-D camera in real
dynamic scenarios. The dynamic features associated with
both the known object (person) and unknown moving object
(book) are successfully detected using our method.

while the error by ORB-SLAM?2 is about 0.147m due to
large fluctuations caused by the moving objects. This further
demonstrates the effectiveness of our proposed method in the
presence of both known and unknown moving objects.

V. CONCLUSION

In this paper, we proposed a real-time semantic RGB-D
SLAM framework for dynamic environments which is capa-
ble of processing both known and unknown moving objects.
A keyframe-based semantic module is proposed in order to
reduce the computational cost, and an effective geometry
module using geometry clustering is introduced to deal with
unknown moving objects. Extensive evaluations demonstrate
that our system provides state-of-the-art localization accuracy
while still being able to run in real-time on an embedded
platform. In the future, we plan to build a long-term semantic
map of the environment that contains only static parts, which
is useful for high level robotic tasks.
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