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Introspective Visuomotor Control: Exploiting Uncertainty in Deep

Visuomotor Control for Failure Recovery

Chia-Man Hung1,2, Li Sun1, Yizhe Wu1, Ioannis Havoutis2, Ingmar Posner1

Abstract— End-to-end visuomotor control is emerging as a
compelling solution for robot manipulation tasks. However,
imitation learning-based visuomotor control approaches tend to
suffer from a common limitation, lacking the ability to recover
from an out-of-distribution state caused by compounding er-
rors. In this paper, instead of using tactile feedback or explicitly
detecting the failure through vision, we investigate using the
uncertainty of a policy neural network. We propose a novel
uncertainty-based approach to detect and recover from failure
cases. Our hypothesis is that policy uncertainties can implicitly
indicate the potential failures in the visuomotor control task and
that robot states with minimum uncertainty are more likely to
lead to task success. To recover from high uncertainty cases, the
robot monitors its uncertainty along a trajectory and explores
possible actions in the state-action space to bring itself to a
more certain state. Our experiments verify this hypothesis and
show a significant improvement on task success rate: 12% in
pushing, 15% in pick-and-reach and 22% in pick-and-place.

I. INTRODUCTION

Deep visuomotor control (VMC) is an emerging research

area for closed-loop robot manipulation, with applications

in dexterous manipulation, such as manufacturing and pack-

ing. Compared to conventional vision-based manipulation

approaches, deep VMC aims to learn an end-to-end policy

to bridge the gap between robot perception and control, as

an alternative to explicitly modelling the object position/pose

and planning the trajectories in Cartesian space.

The existing works on deep VMC mainly focus on domain

randomisation [1], to transfer visuomotor skills from simu-

lation to the real world [2], [3]; or one-shot learning [4], [5],

to generalise visuomotor skills to novel tasks when large-

scale demonstration is not available. In these works, imitation

learning is used to train a policy network to predict motor

commands or end-effector actions from raw image obser-

vations. Consequently, continuous motor commands can be

generated, closing the loop of perception and manipulation.

However, with imitation learning, the robot may fall into an

unknown state-space to which the policy does not generalise,

where it is likely to fail. Early diagnosis of failure cases is

thus important for policy generalisation but an open question

in deep VMC research.

Instead of using vision or tactile feedback to detect failure

cases [6], [7], we extend the widely-used deterministic

policy network to an introspective Bayesian network. The

uncertainty obtained by this Bayesian network is then used

to detect the failure status. More importantly, as a supplement

to the existing deep VMC methods, we propose a recovery
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Fig. 1. An overview of the proposed VMC approach with failure case
recovery. In this example, the task is to push the red cube onto the target.

mechanism to rescue the manipulator when a potential failure

is detected, where a predictive model can learn the intuitive

uncertainty to indicate the status of manipulation without the

need of simulating the manipulation using a physics engine.

In summary, our contributions are three-fold: First, we

extend VMC to a probabilistic model which is able to esti-

mate its epistemic uncertainty. Second, we propose a simple

model to predict the VMC policy uncertainty conditioned

on the action without simulating it. Finally, leveraging the

estimated policy uncertainty, we propose a strategy to detect

and recover from failures, thereby improving the success rate

of a robot manipulation task.

II. RELATED WORK

The problem we are considering is based on learning

robot control from visual feedback and monitoring policy

uncertainty to optimise overall task success rate. Our solution

builds upon visuomotor control, uncertainty estimation and

failure case recovery.

Visuomotor Control. To plan robot motion from visual

feedback, an established line of research is to use visual

model-predictive control. The idea is to learn a forward

model of the world, which forecasts the outcome of an action.

In the case of robot control, a popular approach is to learn the

state-action transition models in a latent feature embedding

space, which are further used for motion planning [8], [9],

[10]. Likewise, visual foresight [11] leverages a deep video

prediction model to plan the end-effector motion by sampling

actions leading to a state which approximates the goal image.

However, visual model-predictive control relies on learning

a good forward model, and sampling suitable actions is

not only computationally expensive but also requires finding

a good action distribution. End-to-end methods solve the

issues mentioned above by directly predicting the next action.

Guided policy search [12] was one of the first to employ



an end-to-end trained neural network to learn visuomotor

skills, yet their approach requires months of training and

multiple robots. Well-known imitation learning approaches

such as GAIL [13] and SQIL [14] could also serve as

backbones upon which we build our probabilistic approach.

However, we chose end-to-end visuomotor control [1] as our

backbone network architecture, for its simplicity and ability

to achieve a zero-shot sim-to-real adaption through domain

randomisation.

Uncertainty Estimation. Approaches that can capture

predictive uncertainties such as Bayesian Neural Net-

works [15] and Gaussian Processes [16] usually lack scal-

ability to big data due to the computational cost of in-

ferring the exact posterior distribution. Deep neural net-

works with dropout [17] address this problem by leveraging

variational inference [18] and imposing a Bernoulli distri-

bution over the network parameters. The dropout training

can be cast as approximate Bayesian inference over the

network’s weights [19]. Gal et al. [20] show that for the

deep convolutional networks with dropout applied to the

convolutional kernels, the uncertainty can also be computed

by performing Monte Carlo sampling at the test phase.

Rather than doing a grid search over the dropout rate which is

computationally expensive, concrete dropout [21] relaxes the

discrete Bernoulli distribution to the concrete distribution and

thus allows the dropout rate to be trained jointly with other

model parameters using the reparameterisation trick [22].

Failure Case Recovery. Most of the existing research

utilise the fast inference of deep models to achieve closed-

loop control [23], [24], [25]. However, failure case detection

and recovery in continuous operation has not been considered

in other works. Moreover, predicted actions are usually

modelled as deterministic [26], [27], while the uncertainty

of the policy networks has not been thoroughly investigated.

Another line of research considering failure recovery is inter-

active imitation learning, which assumes access to an oracle

policy. Similar to our work, HG-DAgger [28] estimates the

epistemic uncertainty in an imitation learning setting, but by

formulating their policy as an ensemble of neural networks,

and they use the uncertainty to determine at which degree

a human should intervene. In this paper, our intuition is to

detect the failure cases by monitoring the uncertainty of the

policy neural network and rescue the robot when it is likely

to fail by exploring into the robot state-action space under

high confidence (i.e. low uncertainties).

III. MODELLING UNCERTAINTY IN DEEP

VISUOMOTOR CONTROL

To detect the potential failure cases in manipulation, we

build a probabilistic policy network for VMC. Uncertainty

is viewed as an indicator of the likelihood of task failure.

End-to-End Visuomotor Control. For clarity, we first

briefly review the end-to-end visuomotor control model [1].

At timestep t, it takes K consecutive frames of raw RGB

images (It−K+1, ..., It) as input to a deep convolutional neural

network and outputs the embedding (et−K+1, ...,et). To incor-

porate the configuration space information, the embedding
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Fig. 2. Network architecture of Introspective Visuomotor Control model.
Blue: the backbone Bayesian Visuomotor Control model. The current
observation It is passed through a CNN ψOBS. This spatial feature map
is concatenated to the tiled proprioceptive feature xt . The concatenated
state representation st is fed into an LSTM. The LSTM embedding et is
passed through a number of concrete dropout layers and fully connected
layers interleavingly, whose output is then decoded into action commands
û∆EE and ûGRP as well as auxiliary position predictions q̂EE and q̂OBJ .
During test time, the mean action ât is executed as the next action. The
uncertainty estimate of the next timestep is used to supervise the prediction
of the uncertainty foresight model. Orange: uncertainty foresight model. The
LSTM embedding et is concatenated with the action commands û∆EE and
ûGRP. It is passed through an MLP with 2 fully connected layers to predict
the uncertainty associated with the next embedding et+1.

is first concatenated with the corresponding robot joint

angles (xt−K+1, ...,xt) and then fed into a recurrent network

followed by a fully connected layer. The buffered history

information of length K is leveraged to capture the higher-

order states, e.g. the velocity and acceleration. In an object

manipulation task using a robot gripper, the model predicts

the next joint velocity command ûJ and the next discrete

gripper action ûGRP (open, close or no-op) as well as the

object position q̂OBJ and gripper position q̂EE as auxiliary

targets with the following loss objective:

Ltotal =MSE(ûJ ,uJ)+CCE(ûGRP,uGRP)

+MSE(q̂OBJ ,qOBJ)+MSE(q̂EE ,qEE),
(1)

where MSE and CCE stand for Mean-Squared Error

and Categorical Cross-Entropy respectively. The losses are

equally weighted and the model is trained end-to-end with

stochastic gradient descent.

In this work, we use delta end-effector position command

û∆EE rather than joint velocity command ûJ as a model

output. We have found this to be more stable and less prone

to the accumulated error over a long time horizon. We feed

a buffer of K = 4 input frames at every timestep, and as we

rollout the model, we keep the LSTM memory updated along

the whole trajectory, as opposed to just K buffered frames.

Uncertainty Estimation. In the Bayesian setting, the ex-

act posterior distribution of the network weights is intractable

in general, due to the marginal likelihood. In the variational

inference case, we consider an approximating variational

distribution, which is easy to evaluate. To approximate the

posterior distribution, we minimise the Kullback-Leibler

divergence between the variational distribution and the pos-

terior distribution. Gal et al. [19] propose using dropout as a

simple stochastic regularisation technique to approximate the

variational distribution. Training a deep visuomotor control

policy with dropout not only reduces overfitting, but also



enforces the weights to be learned as a distribution and thus

can be exploited to model the epistemic uncertainty.

In practice, we train a Bayesian dropout visuomotor

control policy and evaluate the posterior action command

distribution by integrating Monte Carlo samples. At test time,

we rollout the policy by performing stochastic forward passes

at each timestep. Figure 2 depicts the network architecture

of our model. To learn the dropout rate adaptively, we add

concrete dropout layers. Concrete dropout [21] uses a con-

tinuous relaxation of dropout’s discrete masks and enables us

to train the dropout rate as part of the optimisation objective,

for the benefit of providing a well-calibrated uncertainty

estimate. We also experiment with the number of dropout

layers. We choose one and two layers since we do not want

to add unnecessary trainable parameters and increase the

computation cost. The number of fully connected layers is

adjusted according to that of dropout layers.

At timestep t, we draw action samples At = {â1
t , â

2
t , ...},

where âi
t = [ûi

∆EE,t , û
i
GRP,t ]

T is a model output, and use their

mean ât = mean(At) as the action command to execute in

the next iteration. For an uncertainty estimate, following

probabilistic PoseNet [29], we have experimented with the

trace of covariance matrix of the samples and the maximum

of the variance along each axis. Similarly, we have found the

trace to be a representative scalar measure of uncertainty.

Simply computing the trace from a batch of sampled action

commands does not capture the uncertainty accurately in

cases where the predicted values vary significantly in norm in

an episode. For instance, when the end-effector approaches

an object to interact with, it needs to slow down. At such

a timestep, since the predicted end-effector commands are

small, the trace of the covariance matrix is also small. To

calibrate the uncertainty measure, we transform every pre-

dicted delta end-effector position command û∆EE into norm

and unit vector, weight them with λ and 1−λ respectively,

and concatenate them as a 4-dimensional vector X̂, before

computing the trace:

û∆EE = [ûx, ûy, ûz]
T 7→ X̂ =

[λ ‖û∆EE‖,(1−λ ) ûx

‖û∆EE‖
,(1−λ )

ûy

‖û∆EE‖
,(1−λ ) ûz

‖û∆EE‖
]T .

(2)

Here λ is treated as a hyper-parameter. The superscripts i

denoting sample id and the subscripts t denoting timestep

are omitted for readability.

To determine how many Monte Carlo samples are required

to achieve convergence, we compare the predicted action

commands with the ground truth in validation episodes. We

compute the median error in each episode and average over

validation episodes. Monte Carlo sampling converges after

around 50 samples and no more improvement is observed

with more samples. We thus define:

uncertaintyt = Tr
(

cov
(

[X̂1
t , X̂

2
t , ..., X̂

50
t ]T

)

)

, (3)

where X̂i
t ∈ R

4×1 is a sampled prediction transformed into

weighted norm and unit vector in Eq. 2.

IV. RECOVERY FROM FAILURES

Our Bayesian visuomotor control model provides us with

an uncertainty estimate of the current state at each timestep.

In this section, we describe how we make use of it to recover

from failures.

Knowing When to Recover. Continuously executing an

uncertain trajectory is likely to lead to failure; diagnosis in an

early stage and recovery can bring execution back on track.

The question is, at which point shall we switch to a recovery

mode to optimise overall success? Having a Bayesian VMC

model trained, we deploy it on validation episodes to pick

an optimal threshold of uncertainty for recovery. Section V

details how to pick this threshold. During test time, as we

rollout the model, when the uncertainty estimate is over the

threshold, we switch to a recovery mode.

Following Minimum Uncertainty. Once the robot is

switched to a recovery mode, our intuition is to explore

in the state-action space and modify the robot configuration

to an area trained with sufficient training examples. Hence,

we propose moving along the trajectory with minimisation

of uncertainty. However, the uncertainty estimate from the

Bayesian VMC model in Figure 2 is associated with the

current state. The Bayesian VMC model cannot provide

the uncertainty of future frames without physically trying

it. To address this issue, drawing inspiration from Embed

to Control [8] which extracts a latent dynamics model for

control from raw images, we came up with the idea of

learning a transition model mapping from the current latent

feature embedding et given by our Bayesian VMC model to

future et+1 conditioned on an action at . Then the predicted

feature embedding et+1 could be fed as input to the first

dropout layer through the last fully connected layer to sample

actions and estimate the uncertainty. However, this approach

of predicting next embedding et+1 conditioned on action

at would require further Monte Carlo sampling to estimate

the uncertainty, making it computationally costly during test

time.

Instead of predicting in the latent space, inspired by

Visual Foresight [11], we predict the uncertainty of the

next embedding et+1 after executing at directly. This can

be achieved by Knowledge Distillation [30]. Specifically, we

use the model uncertainty of time t+1 as the learning target

to train the uncertainty foresight model. We refer the reader

to Figure 2.

During test time, when the minimum uncertainty recovery

mode is activated, we first backtrack the position of the

end-effector to a point of minimum uncertainty within 20

steps. This is implemented by storing action, LSTM memory,

uncertainty estimate and timestep in a FIFO queue of a

maximum size of 20. Although the original state cannot

always be recovered exactly in the case when the object

is moved or when considering sensing and motor noise

on a real system, backtracking guides the robot back into

the vicinity of states where previous policy execution was

confident. Then, at each timestep, we sample actions from

the Bayesian VMC model and choose the action leading to



Algorithm 1 Failure recovery for Bayesian VMC (test time)

Require: f : trained Bayesian VMC model, g: trained

Bayesian VMC model and uncertainty foresight mod-

ule, outputting the action with the minimum epistemic

uncertainty among samples from f , Trecovery: minimum

recovery interval, S: number of samples used to compute

uncertainty, C: recovery threshold.

1: # Rollout a trained model.

2: while true do

3: Sample S actions from f and compute their mean and

uncertainty estimate.

4: Update the sum of a sliding window of uncertainties.

5: # Check if failure recovery is needed.

6: if time since last recovery attempt > Trecovery and

uncertainty sum >C then

7: # Uncertainty is high: start recovery.

8: Double Trecovery.

9: Update last recovery attempt timestep.

10: Backtrack to a position with min uncertainty within

the last few steps; restore memory.

11: Rollout g for a number of steps.

12: else

13: # Uncertainty is low: perform a normal action.

14: Execute the mean action command of Monte Carlo

sampling from f .

15: end if

16: if maximum episode steps reached or task success

then

17: break

18: end if

19: end while

20:

21: return binary task success

the next state with minimum uncertainty according to our

uncertainty foresight model. Algorithm 1 explains how this

works within the Bayesian VMC prediction loop. With the

same minimum recovery interval, we have observed that it is

common to get stuck in a recovery loop, where after recovery

the robot becomes too uncertain at the same place and goes

into recovery mode again. Inspired by the binary exponential

backoff algorithm – an algorithm used to space out repeated

retransmissions of the same block of data to avoid network

congestion – we double the minimum recovery interval every

time that the recovery mode is activated. This simple intuitive

trick solves the problem mentioned above well empirically.

V. EXPERIMENTS

Our experiments are designed to answer the following

questions: (1) Is uncertainty computed from stochastic sam-

pling from our Bayesian VMC models a good indication

of how well the model performs in an episode? (2) How

well can our model recover from failures? (3) How well

does our proposed minimum uncertainty recovery strategy

perform compared to other recovery modes?

Experimental Setup and Data Collection. We follow

Gorth et al. [31] and use the MuJoCo physics engine [32]

along with an adapted Gym environment [33] provided

by [4] featuring the Fetch Mobile Manipulator [34] with a

7-DoF arm and a 2-finger gripper. Three tasks (Figure 3)

are designed as they are fundamental in manipulation and

commonly used as building blocks for more complex tasks.

In the pushing and pick-and-place tasks, the cube and the

target are randomly spawned in a 6x8 grid, as opposed to

only 16 initial cube positions and 2 initial target positions in

the VMC [1] pick-and-place task. In the pick-and-reach task,

the stick and the target are spawned in 2 non-overlapping 6x8

grids. Similarly, we generate expert trajectories by placing

pre-defined waypoints and solving the inverse kinematics.

For each task, 4,000 expert demonstrations in simulation are

collected, each lasting 4 seconds long. These are recorded

as a list of observation-action tuples at 25 Hz, resulting in

an episode length of H = 100. For the uncertainty foresight

model, we collect 2,000 trajectories from deploying a trained

Bayesian VMC. At every timestep, we execute an action

sampled from the Bayesian VMC. We record the current

embedding, the action executed and the uncertainty of the

next state after the action is executed, as described in

Section III. An episode terminates after the task is completed

or after the maximum episode limit of 200 is reached.

Fig. 3. Top: Example of a pushing expert demonstration. The robot first
pushes the red cube forward to align it with the blue target, and then moves
to the side to push it sideways onto the target. Middle: Example of pick-
and-place expert demonstration. The robot first moves toward the red cube
to pick it up, and then moves to the blue target to drop the cube. Bottom:
Example of a pick-and-reach expert demonstration. The robot first moves
towards the red stick to pick it up at one end, and then reaches the blue
target with the other end.

Picking Uncertainty Threshold. Uncertainty estimates

can sometimes be noisy, so we smooth them out using

a sliding window, given the assumption that uncertainties

contiguously change throughout the course of a trajectory.

We have found a sliding window of 20 frames best avoids

noisy peaks. It is worth mentioning that the simulator runs

at 25 Hz and 20 frames correspond to only 0.8 seconds. For

each evaluation episode, we record a binary label (i.e. task

fail/success) and the maximum sum of a sliding window of

uncertainties along the episode. In the following, we denote



the maximum sum of a sliding window of uncertainties

as u or maximum uncertainty. We sort the episodes by

their maximum uncertainty in increasing order. Under the

assumption that the probability of success after recovery is

the overall average task success rate which is already known,

we pick a threshold to maximise the overall task success rate

after recovery, which is equivalent to maximising the increase

of successes. We find the sorted episode index as follows.

i∗ = argmax
i

( |{x | u(x)> ui}| · r

−|{x | u(x)> ui, result(x) = success)}|),
(4)

where x is an episode, u(x) is the maximum uncertainty of

episode x, ui is the maximum uncertainty of episode indexed

i, and r is the overall average success rate.

During test time, as we rollout the model, when the sum

of a sliding window of 20 previous uncertainties is greater

than the threshold of maximum uncertainty ui∗ , we switch

to the recovery mode.

Baselines for Visuomotor Control Recovery. Our aim

is to show our proposed failure recovery mode outperforms

other failure recovery modes, as well the backbone VMC [1].

Thus, we do not directly compare it against other visuomotor

control approaches. We compare our failure recovery mode

MIN UNC in Section IV against two baselines: RAND and

INIT. The recoveries all happen when the uncertainty is high

while deploying a Bayesian VMC (line 7 of Algorithm 1).

We use a maximum of 25 recovery steps in all cases. (1)

RAND: The end-effector randomly moves 25 steps and we

keep the gripper open amount as it is (no-op). Then, we

reset the LSTM memory. (2) INIT: We open the gripper,

sample a point in a sphere above the table and move the

end-effector to that point. Then, we reset the LSTM memory.

This recovery mode is designed to reset to a random initial

position. All the recovery modes attempt to move the robot

from an uncertain state to a different one, with the hope of

it being able to interpolate from the training dataset starting

from a new state.

VI. RESULTS

Task Success vs Uncertainty Estimate. Is uncertainty

estimate a good indication of how well the model performs

in an episode? To address this first guiding question in

Section V, we analyse how the task success rate varies

with respect to the uncertainty estimate from our Bayesian

VMC models. We evaluate on 800 test scene setups and

regroup them by maximum uncertainty into 10 bins. Figure 4

shows the task success rate versus maximum uncertainty

in each bin. We observe that task success rate is inversely

correlated with maximum uncertainty, which corroborates

our hypothesis of high uncertainty being more likely to lead

to failure.

Manipulation with Failure Recovery Results. Regarding

the last two guiding questions in Section V, we evaluate the

performance of the controllers on 100 held-out test scene

setups for all three tasks. We report all model performances

in Table I.
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Fig. 4. Evaluation of task success rate vs maximum uncertainty of different
models evaluated over 800 test episodes. Left: one dropout layer. Right: two
dropout layers. Top: pushing. Bottom: pick-and-place. These plots are drawn
by sorting episodes by their maximum uncertainty and regrouping them
into 10 bins. Subsequently, the average task success rate and the average
maximum uncertainty are computed for each bin.

In the first row, we compare against VMC, the orig-

inal deterministic VMC model [1], but with one or two

fully connected layers after the LSTM. Next, BVMC, the

Bayesian VMC model executing the mean of the sampled

predictions at each timestep, but not using the uncertainty

estimate information for recovery. Although this does not

perform any recovery, the network architecture is slightly

different than VMC due to the added concrete dropout

layer(s). BVMC + RAND and BVMC + INIT are the baseline

recovery modes (Section V). Last, we present BVMC +

MIN UNC, our proposed recovery mode following minimum

uncertainty (Section IV).

In the pushing task, although the reaching performance of

BVMC drops compared to VMC, the pushing performance

is slightly better. In general, adding stochasticity and weight

regularisation prevents overfitting, but it does not always

boost performance. BVMC + RAND and BVMC + INIT

outperform BVMC by approximately 5% in both cases

of one and two fully connected layers. The performance

increase is moderate because a large proportion of bins

of episodes in the mid maximum uncertain range has a

task success rate close to the average overall task success

rate (Figure 4) and the threshold of maximum uncertainty

picked is relatively high, thus not allowing many episodes to

switch to a recovery mode. In general, the models with two

fully connected layers have higher performance than their

counterparts with one fully connected layer. This can be

understood as having more trainable parameters helps learn a

better function approximation. Our proposed BVMC + MIN

UNC surpasses other two baseline recovery modes, indicating

that following actions with minimum uncertainty contributes

further to the task success.

In pick-and-place and pick-and-reach, all VMC and

Bayesian VMC models exhibit near perfect reaching per-

formance. Also, surprisingly, all models do better than their

counterparts in the pushing task. At first glance, both tasks



MODEL #FC=1
PUSHING PICK-AND-PLACE PICK-AND-REACH

REACH PUSH REACH PICK PLACE REACH PICK TASK

[%] [%] [%] [%] [%] [%] [%] [%]
VMC [1] 97.00 ± 1.62 49.00 ± 4.74 99.00 ± 0.94 77.00 ± 3.99 52.00 ± 4.74 99.00 ± 0.94 77.00 ± 3.99 69.00 ± 4.39
BVMC 91.00 ± 2.71 50.00 ± 4.75 99.00 ± 0.94 84.00 ± 3.48 60.00 ± 4.65 99.00 ± 0.94 88.00 ± 3.08 78.00 ± 3.93
+ RAND 93.00 ± 2.42 56.00 ± 4.71 99.00 ± 0.94 85.00 ± 3.39 68.00 ± 4.43 99.00 ± 0.94 89.00 ± 2.97 81.00 ± 3.72
+ INIT 93.00 ± 2.42 55.00 ± 4.72 99.00 ± 0.94 88.00 ± 3.08 67.00 ± 4.46 99.00 ± 0.94 93.00 ± 2.42 79.00 ± 3.86
+ MIN UNC 94.00 ± 2.25 58.00 ± 4.68 99.00 ± 0.94 90.00 ± 2.85 70.00 ± 4.35 99.00 ± 0.94 93.00 ± 2.42 82.00 ± 3.64

MODEL #FC=2
PUSHING PICK-AND-PLACE PICK-AND-REACH

REACH PUSH REACH PICK PLACE REACH PICK TASK

[%] [%] [%] [%] [%] [%] [%] [%]
VMC [1] 96.00 ± 1.86 50.00 ± 4.75 97.00 ± 1.62 79.00 ± 3.86 60.00 ± 4.65 99.00 ± 0.94 79.00 ± 3.86 70.00 ± 3.64
BVMC 88.00 ± 3.08 53.00 ± 4.74 100.00 ± 0.00 87.00 ± 3.19 69.00 ± 4.39 99.00 ± 0.94 89.00 ± 2.97 79.00 ± 3.86
+ RAND 88.00 ± 3.08 60.00 ± 4.65 100.00 ± 0.00 91.00 ± 2.71 74.00 ± 4.16 99.00 ± 0.94 91.00 ± 2.71 82.00 ± 3.64
+ INIT 93.00 ± 2.42 58.00 ± 4.68 100.00 ± 0.00 89.00 ± 2.97 76.00 ± 4.05 99.00 ± 0.94 93.00 ± 2.42 83.00 ± 3.56
+ MIN UNC 91.00 ± 2.71 62.00 ± 4.61 100.00 ± 0.00 89.00 ± 2.97 82.00 ± 3.64 99.00 ± 0.94 94.00 ± 2.25 85.00 ± 3.39

TABLE I

COMPARISON OF MODEL PERFORMANCES WITH AND WITHOUT FAILURE RECOVERY IN THE PUSHING, PICK-AND-PLACE AND PICK-AND-REACH

TASKS. TOP: ONE FULLY CONNECTED LAYER. BOTTOM: TWO FULLY CONNECTED LAYERS. BEST TASK PERFORMANCES ARE BOLD-FACED.

seem to be more difficult than pushing. In fact, the design of

our pushing task requires a two-stage rectangular push. We

observe most failure cases in pushing happen when the end-

effector does not push at the centre of the cube, so that the

cube is pushed to an orientation never seen in the training

dataset. This rarely happens in the pick-and-place and pick-

and-reach tasks. Similarly, BVMC + RAND and BVMC +

INIT show a performance increase compared to BVMC +

NO. Last but not least, BVMC + MIN UNC almost surpasses

all other models in reaching, picking and placing/task, with

a task success rate increase of 22% compared to VMC for

pick-and-place and 15% for pick-and-reach.

Qualitatively, we observe interesting behaviours from our

uncertainty estimates and recovery modes. In all three tasks,

when a Bayesian VMC controller approaches the cube with

a deviation to the side, we often see the controller fall

into the recovery mode, while a VMC controller with the

same scene setup continues the task and eventually get stuck

in a position without further movements. Occasionally, in

the pick-and-place and pick-and-reach tasks when the end-

effector moves up without grasping the cube successfully,

the Bayesian VMC controller monitors high uncertainty and

starts recovery.

Fig. 5. Recovery comparison. The top row depicts operation without
recovery, while the bottom row shows the results with recovery based on
the minimum uncertainty. The robot fails to accomplish the pushing task
without the recovery. The images are cropped to emphasise the difference.

System Efficiency. Recovery from uncertain states im-

proves task performance. However, drawing stochastic sam-

ples also comes at an additional time cost. By design of our

network architecture, only the last dropout layers and fully

connected layers need to be sampled, since the first 8 layers

of convolutional neural network and LSTM are deterministic.

For reference, on an NVIDIA GeForce GTX 1080, averaging

50 Monte Carlo samples and computing the uncertainty take

around 0.1 seconds, while the original VMC takes around

0.03 seconds per timestep. If treating the inference as a mini-

batch of operations, this extra computation can be further

reduced [35].

VII. CONCLUSIONS

This paper investigates the usage of policy uncertainty

for failure case detection and recovery. In our method, a

Bayesian neural network with concrete dropout is employed

to obtain the model epistemic uncertainty by Monte Carlo

sampling. We further make use of a deterministic model

and knowledge distillation to learn the policy uncertainty

of a future state conditioned on an end-effector action.

Consequently, we are able to predict the uncertainty of a

future timestep without physically simulating the actions.

The experimental results verified our hypothesis – the un-

certainties of the VMC policy network can be used to

provide intuitive feedback to assess the failure/success in

manipulation tasks, and, reverting and driving the robot to a

configuration with minimum policy uncertainty can recover

the robot from potential failure cases.
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