
Nth Order Analytical Time Derivatives of Inverse Dynamics in
Recursive and Closed Forms

Shivesh Kumar1 and Andreas Müller2

Abstract— Derivatives of equations of motion describing the
rigid body dynamics are becoming increasingly relevant for the
robotics community and find many applications in design and
control of robotic systems. Controlling robots, and multibody
systems comprising elastic components in particular, not only
requires smooth trajectories but also the time derivatives of
the control forces/torques, hence of the equations of motion
(EOM). This paper presents novel nth order time derivatives of
the EOM in both closed and recursive forms. While the former
provides a direct insight into the structure of these derivatives,
the latter leads to their highly efficient implementation for large
degree of freedom robotic system.

I. INTRODUCTION

Rigid body dynamics algorithms and their derivatives
find numerous applications in the design optimization and
control of modern robotic systems. The equations of motion
can be differentiated with respect to state variables, control
output (generalized forces), time and physical parameters
of the robot (see [17] for an overview). These derivatives
can be computed by several methods: 1) approximation by
finite differences, 2) automatic differentiation i.e. by applying
the chain rule formula in an automatic way knowing the
derivatives of basic functions (cos, sin or exp), 3) closed
form symbolic derivatives of the (Lagrangian) equation of
motion (EOM), and 4) recursive formulations exploiting the
O (n) algorithms to evaluate the EOM. While the first two
methods are generic and numerical in nature, the latter two
are analytical in nature and exploit the structure of the EOM.

Owing to the generality of automatic differentiation, it
has been adopted by two popular optimization based control
frameworks namely Drake [23] and Control Toolbox [24].
The authors in [25] argue that second-order or higher-order
derivatives of the equations of motion result in very large
expressions and hence find it questionable whether they
should be implemented manually. However, there have been
attempts in the literature [20], [19] to derive analytical and re-
cursive partial first order derivatives of the rigid body dynam-
ics with respect to states and generalized forces. Recently, the
authors in [19] demonstrated that it is worthy to investigate
efficient recursive formulations for the partial derivatives
and presented computational efficiency superior to that of
automatic differentiation without having to deal with costly
technological setup of code generation. These derivatives are
useful in optimal control of legged robots (e.g. differential

*Both authors have equal contribution.
1Shivesh Kumar is with Robotics Innovation Center, DFKI GmbH, 28359

Bremen, Germany shivesh.kumar@dfki.de
2Andreas Mueller is with the Institute of Robotics, Johannes Kepler

University, 4040 Linz, Austria a.mueller@jku.at

dynamic programming in Crocoddyl framework [21]) and
their computational design & optimization [18].

Time derivatives of the EOM are required for the control
of robots with compliant joints/gears. In particular, motion
planning with higher-order continuity [15] and flatness-
based control of robots equipped with series elastic actuators
(SEA), respectively variable stiffness actuators (VSA) [3],
[5], [14] necessitate the first and second time derivatives
of the equations of motion (EOM) of the robot. Therefore,
recursive O (n)-algorithms for the evaluation of the first and
second time derivatives were developed [1], [2], [6], [7], [12]
extending existing O (n)-formulations for the evaluation of
EOM. The aim of this paper is to present novel nth order
time derivatives of equations of motion in both recursive
and closed forms which can be implemented easily in any
rigid body dynamics library so that they can provide time
derivatives of motion equations until any order. Known
applications of this work include dynamically consistent
smooth motion planning with higher-order continuity [15],
control of robots with flexible joints. For the subsequent
treatment, the EOM are written in the form suitable for
solving the inverse dynamics problem

Q = M (q) q̈+C (q̇,q) q̇+Qgrav (q) (1)

where the vector of generalized coordinates q =
(q1, . . . , qn)

T comprises the n joint variables, M and C is
the generalized mass and Coriolis matrix, respectively, and
Qgrav represents generalized gravity forces. Finally, Q are
the generalized forces (drive forces/torques) required for a
prescribed motion q (t).

Throughout the paper, we will make repeated use of the
Leibniz rule for the nth order derivative of a product of two
functions. If f and g are n times differentiable functions,
then the product fg is also differentiable n times and the nth

order derivative is given by

(fg)(n) =

n∑
k=0

(
n

k

)
f (n−k)g(k) (2)

with binomial coefficient
(
n
k

)
= n!

k!(n−k)! , and f (0) ≡ f .
Here, and throughout the paper, the nth order derivative of
f is denoted with dn

dtn f = D(r)f = f (n) as appropriate.
This paper is organized as follows. Section II presents

the nth-order time derivatives of the inverse dynamics in
recursive form. Section III presents the nth-order time deriva-
tives of the EOM in closed form. Section IV presents
the application of the proposed derivatives in evaluating
third order inverse dynamics of a robot manipulator and

ar
X

iv
:2

10
3.

05
94

1v
1

 [
cs

.R
O

]
 1

0
M

ar
 2

02
1

a discussion on its computational performance. Section V
concludes the paper.

II. RECURSIVE nTH-ORDER INVERSE DYNAMICS
ALGORITHM

A. Kinematics of an open chain
A body-fixed reference frame (RFR) Fi is attached to

link i. The configuration of body i w.r.t. to a world-fixed
inertia frames (IFR) is represented by a homogenous 4 × 4
transformation matrix Ci ∈ SE (3) [9], [13], [16]. The
configuration of body j relative to body i is Ci,j := C−1

i Cj .
The configuration of body i is given recursively by the (local)
product of exponentials (POE) as Ci = Ci−1Bi exp(

iXiqi).
Therein, iXi is the joint screw coordinate vector in body-
fixed representation, and Bi is the zero reference configura-
tion of body i and i− 1. Notice that iXi is constant.

The twist of link i in body-fixed representation is expressed
by the coordinate vector [10]

Vi =

(
ωi

vi

)
(3)

where ω denotes the angular velocity of Fi relative to the
world frame F0, and v is the translational velocity of the
origin of Fi relative to F0, both resolved in Fi. Denote with
iXi the screw coordinate vector of joint i represented in
frame Fi at body i. The twist of link i, connected to its
predecessor link i− 1 by joint i, is

Vi = AdCi,i−1
Vi−1 +

iXiq̇i (4)

with Ci,j := C−1
i Cj , where AdCi,i−1

is the 6 × 6 matrix
transforming the twist represented in frame frame Fi−1 to
its representation in frame Fi, and iXiq̇i is the relative twist
of the two links due to joint i.

The recursive relation (4) can be summarized to yield the
closed form relation

Vi = q̇1Bi,1 + q̇2Bi,2 + . . .+ q̇iBi,i (5)
= Ji (q) q̇ (6)

with the geometric Jacobian of body i in body-fixed repre-
sentation [10]

Ji (q) :=
(
Bi,1(q)

∣∣∣ · · · ∣∣∣Bi,i(q)
∣∣∣0∣∣∣ · · · ∣∣∣0) (7)

where the columns Bi,j are the instantaneous joint screws
in body-fixed representation

Bi,j(q) = AdCi,jXj , j ≤ i. (8)

From its construction, follows immediately the recursive
relation

Bi,j = AdCi,i−1Bi−1,j , j < i, and Bi,i = Xi. (9)

Notice that Bi,j are usually denoted with Ji,j , but will
not be used for sake of simplicity (avoiding the superscript).
The relation

ȦdCi,i−1
Vi−1 = q̇iadVi

iXi = −q̇iadiXi
Vi (10)

yields the recursive expression for the acceleration

V̇i = AdCi,i−1
V̇i−1 + q̇iadVi

iXi +
iXiq̈i. (11)

B. Newton-Euler Equations of a Rigid Body

Denote with Θi the inertia tensor of link i w.r.t. its RFR
Fi, with mi the mass of link i, and with idic the distance
vector from the origin of Fi to the COM of link i. The inertia
matrix of body i w.r.t. Fi is then defined as

Mi =

(
Θi

id̃icmi

−id̃icmi Imi

)
. (12)

The Newton–Euler equations in body-fixed RFR Fi are

Wi = MiV̇i − adT
Vi

MiVi. (13)

Wi = (ti, fi)
T is the wrench applied to Fi (including

gravity), where ti ∈ R3 is the vector of applied torques,
and fi ∈ R3 the vector of forces applied at the origin of Fi.

C. Higher-Order Forward Kinematics

Repeated application of relation (11) yields explicit re-
cursive relations for the jerk, jounce, etc., which were used
in [12] to derive a forth-order forward kinematic and a
second-order inverse dynamics algorithm. For higher-order
derivatives this becomes rather involved, however. This can
be avoided invoking the relations for the higher-derivative re-
ported in [26], which are recursive in the order of derivative.
To this end, introduce

Bi,j(q, q̇) :=
∑

j<r≤i

Bi,r (q) q̇r. (14)

so that Vi = Bi,0(q, q̇). Therewith, the kth time derivative
of the body-fixed twist is determined as

D(k)Vi = D(k)Bi,0(q, q̇). (15)

The recursive relations (9) and (10) give rise to the recursive
expression of time derivative of the joint screws Bi,j as

Ḃi,j =
∑

j<r≤i

[Bi,j ,Bi,r] q̇r = [Bi,j ,Bi,j] = adBi,j
Bi,j .

(16)
Higher-order time derivatives of Bi,j are obtained for k > 0
from (16) as

D(k)Bi,j =

k−1∑
l=0

(
k−1
l

)
[D(l)Bi,j ,D

(k−l−1)Bi,j] (17)

=

k−1∑
l=0

(
k−1
l

)
adD(l)Bi,j

D(k−l−1)Bi,j , j ≤ i.

The derivatives of Bi,j follow with (14) simply as

D(k)Bi,j =
∑

j<r≤i

k∑
l=0

(
k
l

)
D(l)Bi,rq

(k−l+1)
r . (18)

The important point is that these relations can be easily
implemented. The explicit third- and forth-order relations re-
ported in [12] are special cases, where the recursive relations
(17) and (18) are rolled out.

D. Inverse Dynamics

The backward recursion step in the (standard) inverse
dynamics algorithm, in terms of body-fixed twists and
wrenches, [12] is

Wi = AdT
Ci+1,i

Wi+1 +MiV̇i − adT
Vi

MiVi. (19)

Higher-order derivatives of the backward recursion step (19)
follow with Leibniz’ rule (2) as

D(k)Wi =

k∑
r=0

(
k
r

)
D(r)AdT

Ci+1,i
D(k−r)Wi+1 (20)

+MiD
(k)Vi −

k∑
r=0

(
k
r

)
adT

D(r)Vi
MiD

(k−r)Vi.

The relation ȦdCi+1,i
= −q̇i+1adi+1Xi+1

AdCi+1,i
gives

rise to

D(k)AdCi+1,i
= −adi+1Xi+1

k−1∑
r=0

(
k−1
r

)
D(r)AdCi+1,i

q
(k−r)
i+1

which allows evaluating (20).

E. Higher-Order Inverse Dynamics Algorithm

kth-Order Forward Kinematics
� Input: q, q̇, q̈, . . . ,q(k)

� Preparation run (computation of basic kinematic data)
I For body i = 1:

C1 = B1 exp(
1X1q1)

B1,1 = 1X1, B1,1 = 1X1q̇i

I For i = 2, . . . , n (recursion over bodies)
Ci = Ci−1Bi exp(

iXiqi)

Ci,i−1 = C−1
i Ci−1

Bi,j = AdCi,i−1
Bi−1,j , j = 1, . . . , i

End
� For r = 0, . . . , k (recursion over order of derivative)
I For body i = 1:

D(r)V1 = 1X1q
(r+1)

D(r)B1,1 = 0, r ≥ 1

I For i = 2, . . . , n (recursion over bodies)

D(k)AdCi,i−1
= −adiXi

k−1∑
r=0

(
k−1
r

)
D(r)AdCi,i−1

q
(k−r)
i

• For j = i, i− 1. . . . , 1

D(r)Bi,j =

r−1∑
l=0

(
r−1
l

)
adD(l)Bi,j

D(r−l−1)Bi,j , r > 1

D(r)Bi,j =
∑

j≤k≤i

r∑
l=0

(
r
l

)
D(l)Bi,rq

(r−l+1)
j

D(r)Vi = D(r)Bi,1(q, q̇)

end
end

end

� Output: Ci,D
(k)Vi,D

(k)Bi,j ,D
(k)Bi,j

kth-Order Inverse Dynamics
� Input: Ci,D

(k)Vb
i

� For i = n− 1, . . . , 1

D(k)Wi =

k∑
r=0

(
k
r

)
D(r)AdT

Ci+1,i
D(k−r)Wi+1

+Mb
iD

(k)Vi

−
k∑

r=0

(
k
r

)
adT

D(r)Vi
MiD

(k−r)Vi

D(k)Qi =
iX

T

i D
(k)Wi

end
� Output: D(k)Q

III. nTH-ORDER TIME DERIVATIVES OF EQUATIONS OF
MOTION

A. EOM in Closed Form

The individual twists of all bodies are summarized in the
vector V ∈ R6n, which is referred to as the system twist in
body-fixed representation. It is determined as

V = Jq̇ (21)

with the system Jacobian J (q). The latter admits the factor-
ization

J = AX (22)

in terms of the block-triangular and block-diagonal matrices

A (q) =

I 0 0 0

AdC2,1 I 0 · · · 0
AdC3,1 AdC3,2 I 0

...
...

.
AdCn,1

AdCn,2
· · · AdCn,n−1

I

(23)

X =

1X1 0 0 0
0 2X2 0 · · · 0
0 0 3X3 0
...

...
.

0 0 · · · 0 nXn

where iXi is the screw coordinate vector associated to joint
i represented in the body-frame of body i. The vectors
iXi are constant due to the body-fixed representation. The
matrix AdCi,j

transforms screw coordinates represented in
the reference frame at body j to those represented in the
frame on body i [9], [13], [16]. A central relation for deriving
the EOM in closed form is the following expression for
the time derivative of the matrix A and thus of the system
Jacobian [10]

J̇ (q, q̇) = −A (q) a (q̇) J (q) (24)

where

a (q̇) = diag (q̇1ad1X1
, . . . , q̇nadnXn

). (25)

This gives rise to the closed form expressions for the system
acceleration

V̇ = Jq̈− AaJq̇ = Jq̈− AaV. (26)

For calculating the derivatives, the time derivative of matrix
A will be needed. It can be shown that the derivative of A
is [10]

Ȧ (q, q̇) = A (q) a− A (q) a (q̇)A (q) . (27)

Clearly, the derivative (24) of the system Jacobian is recov-
ered as J̇ = ȦX noting that aX ≡ 0.

The generalized mass and Coriolis matrix in the EOM (1)
of a simple kinematic chain mounted at the ground are found
via Jourdain’s principle of virtual power as (or likewise as
the Lagrange equations) [10]

M (q) = JTMJ, C (q, q̇) = JTCJ (28)

where

M := diag (M1, . . . ,Mn) (29)
C(q, q̇,V (q̇)) := −MAa− bTM. (30)

Therein, Mi is the (constant) 6× 6 inertia matrix of body i
expressed in the body-frame, and

b (V) := diag (adV1
, . . . ,adVn

). (31)

A closed form of the EOM is obtained after replacing
the system twist by (21). Alternatively, first the kinematic
relation (21) and then the coefficient matrices in (30) are
evaluated for a given state q, q̇. The generalized gravity
forces are given as

Qgrav (q) = JTMUV̇0 (32)

with

V̇0 =

(
0
0g

)
,U (q) = A

I
0
...
0

 =

Ad−1

C1

Ad−1
C2

...
Ad−1

Cn

 . (33)

Here, 0g is the vector of gravitational acceleration expressed
in the inertial frame, which is transformed to the individual
bodies by U.

B. Higher-Order Time Derivatives of the EOM

In this section, the expressions for nth order time deriva-
tives of the EOM in closed form are derived. Applying
Leibniz’s rule (2) on the EOM (1), one gets

Q(n) =

n∑
k=0

(
n

k

)
M(n−k)q̈(k) + (34)

n∑
k=0

(
n

k

)
C(n−k)q̇(k) +Q(n)

grav

which in an expanded form can also be written as

Q(n) −Q(n)
grav = Mq̈(n) + (nM(1) +C)q̈(n−1) + . . .

+

[(
n

k

)
M(n−k) +

(
n

k + 1

)
C(n−k−1)

]
q̈(k)

+

[(
n

k − 1

)
M(n−k+1) +

(
n

k

)
C(n−k)

]
q̇(k)

+ . . .+ (M(n) + nC(n−1))q̈+C(n)q̇.

One can arrive at first order and second order time derivative
of EOM by substituting n = 1 and n = 2 in (34) respectively

Q̇ = M
...
q + (Ṁ+C)q̈+ Ċq̇+ Q̇grav (35)

Q̈ = M¨̈q+ (2Ṁ+C)
...
q + (M̈+ 2Ċ)q̈+ C̈q̇+ Q̈grav (36)

The matrix coefficient Pk of kth derivative of q in the nth

order time derivative of the EOM expressed as

Q(n) −Q(n)
grav = Mq(n+2) + . . .+Pkq

(k) + (37)

. . .+C(n)q(1)

is given by

Pk =

(
n

k − 2

)
M(n−k+2) +

(
n

k − 1

)
C(n−k+1) (38)

for all 2 ≤ k ≤ n + 1, n ≥ 1. For example, the matrix
coefficient of q(3) in 2nd order time derivatives of the EOM
can be computed by substituting k = 3, n = 2 in (38) as
(2Ṁ+C) which can be verified from (36). In the following,
higher order derivatives of various kinematic and dynamic
quantities are presented which are needed in evaluating
higher order derivatives of the generalized forces in (37).

1) Higher Order Kinematics: For all n ≥ 1, the nth order
time derivative of the matrix A can be expressed as

A(n) =

n−1∑
k=0

(
n− 1

k

)
A(n−1−k)a(k) − (39)

n−1∑
k=0

(
n− 1

k

)
A(n−1−k)

k∑
j=0

(
k

j

)
a(k−j)A(j).

which requires the higher order derivatives of the matrix a.
The nth order time derivative of the matrix a is given by

a(n)
(
q(n)

)
= diag (q

(n)
1 ad1X1

, . . . , q(n)n adnXn
). (40)

By performing a book keeping of all the previous derivatives
of A and a, nth derivative of the matrix A can be easily
computed.

Using the (39) and (22), nth time derivative of the system
level Jacobian matrix can be computed as

J(n) = A(n)X. (41)

Similarly, nth time derivative of the system velocities can be
obtained via

V(n) =

n∑
k=0

(
n

k

)
J(n−k)q̇(k). (42)

2) Higher Order Mass-Inertia matrix: The nth time
derivative of the mass-inertia matrix M is given by

M(n) =

n∑
k=0

(
n

k

)
J(n−k)TMJ(k) (43)

which could be readily computed using higher order deriva-
tives of the system level Jacobian (41).

3) Higher Order Coriolis-Centrifugal Matrix: The nth

time derivative of the Coriolis-Centrifugal matrix C is given
by:

C(n) =

n∑
k=0

(
n

k

)
J(n−k)T

k∑
j=0

(
k

j

)
C(k−j)J(j) (44)

which necessities the higher order derivatives of C. The
expression of nth time derivative of system level Coriolis-
Centrifugal matrix is given by

C(n) = −M
n∑

k=0

(
n

k

)
A(n−k)a(k) − b(n)TM (45)

which requires the nth order derivative of the matrix b
computed as

b(n)
(
V(n)

)
:= diag

(
ad

V
(n)
1

, . . . ,ad
V

(n)
n

)
(46)

and higher order derivatives of A and a available in (39) and
(40) respectively.

4) Higher Order Gravity Force Vector: The nth order time
derivative of the vector of gravity forces Qgrav is given by

Q(n)
grav =

n∑
k=0

(
n

k

)
J(n−k)TMA(k)

I
0
...
0

 V̇0. (47)

IV. RESULTS AND DISCUSSION

The nth order recursive inverse dynamics algorithm pre-
sented in Section II and higher order closed form equations
of motion presented in Section III were implemented in
MATLAB1. This section presents their application to the
computation of higher order inverse dynamics of a robot
manipulator and presents a discussion on their computational
efficiency.

A. Example: Third Order Inverse Dynamics

Both algorithms are applied to compute the third order
inverse dynamics of a six degrees of freedom (DOF) Franka
Emika Panda robot as shown in Figure 1 (left). Using the
geometric information provided in Figure 1, it is straight-
forward to deduce the joint screw coordinate vectors iXi and
the relative reference configuration of all the links Bi thanks
to the simplicity of this modeling approach as compared to
the DH parameters (for details see [11]). The mass–inertia
data w.r.t. the RFRs was determined as reported in [28]
providing the body-fixed link mass matrices (12). Due to

1The source code as well as robot data will be made publicly available
after the acceptance of the paper.

space the limitation, details are omitted here. The joint
trajectory, taking from [28], as shown in Figure 1 (right)
is used as the input motion trajectory for the system and
the inverse dynamics of the manipulator arm is computed
up to 3rd order. Figure 2, 3, 4 and 5 show the higher order
inverse dynamics results (i.e. Q(t), Q̇(t), Q̈(t),

...
Q(t)). The

results were verified with numerical differentiation of the
generalized forces. Both recursive and closed form algo-
rithms indeed yield the same solution of the higher-order
forward kinematics and inverse dynamics problem (within
the numerical accuracy).

0 1 2 3 4 5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 1. Franka Emika Panda robot with geometric parameters in the zero
configuration (i.e. q = 0) (left) and input joint motion trajectory (right)

0 1 2 3 4 5

-40

-30

-20

-10

0

10

20

30

Fig. 2. Inverse Dynamics

B. Discussion on Computational Performance

The computational performance of the recursive and
closed form algorithms was evaluated by measuring the total
CPU time spent in 10000 evaluations of 2nd order inverse
dynamics on a standard laptop with Intel Core i7-6600U CPU
clocked at 2.6 GHz and 16 GB RAM. It was found that nth

order recursive algorithm takes 117 seconds and the nth order
closed form algorithm takes a total of 124 seconds for 10000
calls. Hence, it can be noticed that the recursive version of
the algorithm slightly outperforms the closed form version
of the algorithm as expected. It is to be noted that the closed
form expressions were implemented using usual matrices in
MATLAB and computational performance can be improved
by exploiting the sparse matrix algebra. In both cases, the

0 1 2 3 4 5

-150

-100

-50

0

50

100

150

Fig. 3. 1st Order Inverse Dynamics

0 1 2 3 4 5

-800

-600

-400

-200

0

200

400

600

800

Fig. 4. 2nd Order Inverse Dynamics

0 1 2 3 4 5

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Fig. 5. 3rd Order Inverse Dynamics

equations were implemented without any optimization, e.g.
avoiding multiplication with zeros etc. These computation
times are only preliminary indicators and will reduce in an
optimized C++ implementation.

Additionally, we investigated how the computational ef-
ficiency of these general purpose algorithms for nth order
derivatives compares to the hand–crafted recursive [12] and
closed form algorithms [29] for 2nd order inverse dynam-
ics based on our previous work. It was found that these
hand–crafted algorithms for 2nd inverse dynamics are faster
than nth order algorithms with n = 2. For example, the
recursive 2nd order inverse dynamics algorithm requires
only 24 seconds and the corresponding closed form version
requires 69 seconds for 10000 evaluations. Apparently, the
generality of these algorithms comes at some computational
expense which we believe is justified for the benefit that they
admit evaluating derivative of any order without the need
to derive them by hand or with automatic differentiation
tools. This seems even justified for specific applications,
where one would use a hand–crafted algorithm, given the
low runtime and the potential for performance improvement
when efficiently implemented. The presented algorithms can
also complement and improve the functionality of rigid body
dynamics libraries.

V. CONCLUSION

This paper presents novel recursive and closed form ex-
pressions for the nth order time derivative of the EOM of
a kinematic chain. Building upon the Lie formulation of
the EOM the formulations are advantageous as they are
expressed in terms of joint screw coordinates, and thus facil-
itate parameterization in terms of vector quantities that can
be easily obtained. With these relations, general geometric
formulations for the nth order time derivatives as needed
for motion planning and control are now available. Future
research will also address the nth order time derivatives of
general mechanisms with kinematic loops and an efficient
C++ based implementation in Hybrid Robot Dynamics (Hy-
RoDyn) software framework [27].

ACKNOWLEDGMENT

This work has been performed in the VeryHuman project
funded by the German Aerospace Center (DLR) with federal
funds (Grant Number: FKZ 01IW20004) from the Federal
Ministry of Education and Research (BMBF). The second
author acknowledges the support of the LCM K2 Center
for Symbiotic Mechatronics within the framework of the
Austrian COMET-K2 program.

REFERENCES

[1] G. Buondonno, A. De Luca: A recursive Newton-Euler algorithm for
robots with elastic joints and its application to control, 2015 IEEE/RSJ
IROS, 5526-5532

[2] G. Buondonno, A. De Luca: Efficient Computation of Inverse Dynam-
ics and Feedback Linearization for VSA-Based Robots, IEEE Rob.
Aut. Letters, 1(2), 2016, 908-915

[3] A. De Luca: Decoupling and feedback linearization of robots with
mixed rigid/elastic joints, Int. J. Rob. Nonlin. Cont., 8, 1998, 965-977

[4] R. Featherstone: Rigid Body Dynamics Algorithms, Springer, 2008
[5] H. Gattringer, et al.: Recursive methods in control of flexible joint

manipulators, Multibody Syst Dyn. 32, 2014, 117-131
[6] C. Guarino Lo Bianco, E. Fantini: A recursive Newton-Euler approach

for the evaluation of generalized forces derivatives, 12th IEEE Int.
Conf. Methods Models Autom. Robot., 2006, 739-744

[7] C. Guarino Lo Bianco: Evaluation of Generalized Force Derivatives
by Means of a Recursive Newton–Euler Approach, IEEE Trans. Rob.,
25(4), 954-959

[8] A. Jain: Robot and Multibody Dynamics, Springer Science+Business
Media, 2011

[9] K.M. Lynch, F.C. Park: Modern Robotics, Cambridge, 2017
[10] A. Müller: Screw and Lie group theory in multibody dynamics

– Recursive algorithms and equations of motion of tree-topology
systems, Multibody System Dynamics, 42(2), 2018 219-248

[11] Müller, A. Screw and Lie group theory in multibody kinematics.
Multibody Syst Dyn 43, 37-70 (2018). https://doi.org/10.1007/s11044-
017-9582-7

[12] A. Müller: Recursive Second-Order Inverse Dynamics for Serial
Manipulators, IEEE Int. Conf. Robotics Automations (ICRA), May
29-June 3, 2017, Singapore

[13] R.M. Murray, Z. Li, and S.S. Sastry, A Mathematical Introduction to
Robotic Manipulation, CRC Press BocaRaton, 1994

[14] G. Palli, C. Melchiorri, A. De Luca: On the Feedback Linearization
of Robots with Variable Joint Stiffness, IEEE Int. Conf. Rob. Aut.
(IROS), Pasadena, CA, USA, May 19-23, 2008

[15] A. Reiter, A. Müller, H. Gattringer: On Higher-Order Inverse Kinemat-
ics Methods in Time-Optimal Trajectory Planning for Kinematically
Redundant Manipulators, IEEE Trans. Industrial Informatics, Vol. 14,
No. 4, 2018, pp. 1681 - 1690

[16] J. Selig: Geometric Fundamentals of Robotics (Monographs in Com-
puter Science Series), Springer-Verlag New York, 2005

[17] G. Garofalo, C. Ott, A. Albu-Schäffer: On the closed form computation
of the dynamic matrices and their differentiations, 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo,
2013, pp. 2364-2359.

[18] Ha, Sehoon, Stelian Coros, Alexander Alspach, Joohyung Kim, and
Katsu Yamane. ”Joint Optimization of Robot Design and Motion
Parameters using the Implicit Function Theorem.” In Robotics: Science
and Systems. 2017.

[19] Carpentier, Justin, and Nicolas Mansard. ”Analytical derivatives of
rigid body dynamics algorithms.” In Robotics: Science and Systems.
2018.

[20] Sung-Hee Lee, Junggon Kim, F. C. Park, Munsang Kim and J. E. Bo-
brow, ”Newton-type algorithms for dynamics-based robot movement
optimization,” In IEEE Transactions on Robotics, vol. 21, no. 4, pp.
657-667, Aug. 2005.

[21] Mastalli, Carlos, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel,
Bilal Hammoud, Maximilien Naveau, Justin Carpentier, Sethu Vi-
jayakumar, and Nicolas Mansard. ”Crocoddyl: An Efficient and Ver-
satile Framework for Multi-Contact Optimal Control.” arXiv preprint
arXiv:1909.04947 (2019).

[22] Kumar, Shivesh. ”Modular and Analytical Methods for Solving Kine-
matics and Dynamics of Series-Parallel Hybrid Robots.” PhD diss.,
Universität Bremen, 2019

[23] Russ Tedrake and the Drake Development Team. ”Drake: Model-based
design and verification for robotics.” url = ”https://drake.mit.edu”,
2019

[24] Markus Giftthaler, Michael Neunert, Markus Stäuble, Jonas Buchli.
”The control toolbox An open-source C++ library for robotics, optimal
and model predictive control.” 2018 IEEE International Conference
on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), pp. 123-129, 2018.

[25] Markus Giftthaler, Michael Neunert, Markus Stäuble, Marco Frigerio,
Claudio Semini, Jonas Buchli. ”Automatic Differentiation of Rigid
Body Dynamics for Optimal Control and Estimation.” Advanced
Robotics, 31:22, 1225-1237, DOI: 10.1080/01691864.2017.1395361

[26] A. Müller: An overview of formulae for the higher-order kinematics of
lower-pair chains with applications in robotics and mechanism theory,
Mech. Mach. Theory, Vol. 142, 2019

[27] Kumar, S., Szadkowski, K. A. V., Mueller, A., and Kirchner,
F. . ”An Analytical and Modular Software Workbench for Solv-
ing Kinematics and Dynamics of Series-Parallel Hybrid Robots.”
ASME. J. Mechanisms Robotics. April 2020; 12(2): 021114.
https://doi.org/10.1115/1.4045941

[28] C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano and A. De
Luca, ”Dynamic Identification of the Franka Emika Panda Robot With
Retrieval of Feasible Parameters Using Penalty-Based Optimization,”
in IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4147-
4154, Oct. 2019, doi: 10.1109/LRA.2019.2931248.

[29] Andreas Mueller, Shivesh Kumar, ”Closed Form Time Derivatives of
the Equations of Motions of Rigid Body Systems”. in Multibody Syst
Dyn, Springer (under review).

