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Abstract—1t is a long-standing challenge to enable an in-
telligent agent to learn in one environment and generalize to
an unseen environment without further data collection and
finetuning. In this paper, we consider a zero shot generalization
problem setup that complies with biological intelligent agents’
learning and generalization processes. The agent is first pre-
sented with previous experiences in the training environment,
along with task description in the form of trajectory-level sparse
rewards. Later when it is placed in the new testing environment,
it is asked to perform the task without any interaction with the
testing environment. We find this setting natural for biological
creatures and at the same time, challenging for previous
methods. Behavior cloning, state-of-art RL along with other
zero-shot learning methods perform poorly on this benchmark.
Given a set of experiences in the training environment, our
method learns a neural function that decomposes the sparse
reward into particular regions in a contingency-aware ob-
servation as a per step reward. Based on such decomposed
rewards, we further learn a dynamics model and use Model
Predictive Control (MPC) to obtain a policy. Since the rewards
are decomposed to finer-granularity observations, they are
naturally generalizable to new environments that are composed
of similar basic elements. We demonstrate our method on a wide
range of environments, including a classic video game — Super
Mario Bros, as well as a robotic continuous control task. Please
refer to the project page for more visualized resultsﬂ

I. INTRODUCTION

While deep Reinforcement Learning (RL) methods have
shown impressive performance on video games [1] and
robotics tasks [2], [3], they solve each problem tabula rasa.
Hence, it will be hard for them to generalize to new tasks
without re-training even due to small changes. However,
humans can quickly adapt their skills to a new task that re-
quires similar priors e.g. physics, semantics and affordances
to past experience. The priors can be learned from a spectrum
of examples ranging from perfect demonstrative ones that
accomplish certain tasks to aimless exploration.

A parameterized intelligent agent “Mario” who learns to
reach the destination in the upper level in Figure [I| would fail
to do the same in the lower new level because of the change
of configurations and background, e.g. different placement
of blocks, new monsters. When an inexperienced human
player is controlling the Mario to move it to the right in
the upper level, it might take many trials for him/her to
realize the falling to a pit and approaching the “koopa”(turtle)
from the left are harmful while standing on the top of
the “koopa”(turtle) is not. However, once learned, one can
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Fig. 1: Illustrative figure: An agent is learning priors from explo-
ration data from World 1 Stage 1 in Nintendo Super Mario Bros
game. In this paper, the agent focuses on learning two types of
priors: learning an action-state preference score for contingency-
aware observation and a dynamics model. The action-state scores
on the middle left learns that approaching the “Koopa” from the left
is undesirable while from the top is desirable. On the middle right,
a dynamics model can be learned to predict a future state based
on the current state and action. The agent can apply the priors to
a new task World 2 Stage 1 to achieve reasonable policy with zero
shot.

infer similar mechanisms in the lower level in Figure [I]
without additional trials because human have a variety of
priors including the concept of object, similarity, semantics,
affordance, etc [4], [5]. In this paper, we teach machine
agents to realize and utilize useful priors from exploration
data in the form of decomposed rewards to generalize to new
tasks without fine-tuning.

To achieve such zero-shot generalizable policy, a learning
agent should have the ability to understand finer-granularity
of the observation space e.g. to understand the value of a
“koopa” in various configuration and background. However,
these quintessentially human abilities are particularly hard
for learning agents because of the lack of temporally and spa-
tially fine-grained supervision signal and contemporary deep
learning architectures are not designed for compositional
properties of scenes. Many recent works rely heavily on the
generalization ability of neural networks learning algorithms
without capturing the compositional nature of scenes.

In this work, we propose a method, which leverages
imperfect exploration data that only have terminal sparse
rewards to learn decomposed rewards on specific regions of



an observation and further enable zero-shot generalization
with a model predictive control (MPC) method. Specifically,
given a batch of trajectories with terminal sparse rewards, we
use a neural network to assign a reward for the contingency-
aware observation o, at timestep ¢ so that the aggregation
of the reward from each contingency-aware observation o;
can be an equivalence of the original sparse reward. We
adopt the contingency-aware observations [6] that enables
an agent to be aware of its own location. Further, we divide
the contingency-aware observation into K sub-regions to
obtain more compositional information. To further enable
actionable agents to utilize the decomposed score, a neural
dynamics model can be learned using self-supervision. We
show that how an agent can take advantage of the decom-
posed rewards and the learned dynamics model with planning
algorithms [7]. Our method is called SAP where “S” refers
to scoring networked used to decompose rewards,“A” refers
to the aggregation of per step rewards for fitting the terminal
rewards, and “P” refers to the planning part.

The proposed scoring function, beyond being a reward
function for planning, can also be treated as an indicator
of the existence of objects that affect the evaluation of a
trajectory. We empirically evaluate the decomposed rewards
for objects extracted in the context of human priors and hence
find the potential of using our method as an unsupervised
method for object discovery.

In this paper, we have two major contributions. First, we
demonstrate the importance of decomposing sparse rewards
into temporally and spatially smaller observation for obtain-
ing zero-shot generalizable policy. Second, we develop a
novel instance that uses our learning-based decomposition
function and neural dynamics model that have strong perfor-
mance on various challenging tasks.

II. RELATED WORK

Zero-Shot Generalization and Priors To generalize in a
new environment in a zero-shot manner, the agent needs to
learn priors from its previous experiences, including priors
on physics, semantics and affordances. Recently, researchers
have shown the importance of priors in playing video
games [5]. More works have also been done to utilize
visual priors in many other domains such as robotics for
generalization, etc. [8], [9], [10], [11], [12]. [13], [14],
[15] explicitly extended RL to handle object level learning.
While our method does not explicitly model objects, we
have shown that meaningful scores are learned for objects
enabling SAP to generalize to new tasks in zero-shot manner.
Recent works [16], [17] try to learn compositional skills for
zero-shot transfer, which is complementary to the proposed
method.

Inverse Reinforcement Learning. The seminal work [18]
proposed inverse reinforcement learning (IRL). IRL aims to
learn a reward function from a set of expert demonstrations.
IRL and SAP fundamentally study different problem —
IRL learns a reward function from expert demonstrations,
while our method learns from exploratory data that is not
necessarily related to any tasks. There are some works

dealing with violation of the assumptions of IRL, such as
inaccurate perception of the state [19], [20], [21], [22], or
incomplete dynamics model [23], [19], [24], [25], [26]; how-
ever, IRL does not study the case when the dynamics model
is purely learned and the demonstrations are suboptimal.
Recent work [27] proposed to leverage failed demonstrations
with model-free IRL to perform grasping tasks; though
sharing some intuition, our work is different because of the
model-based nature.

RL with Sparse Reward When only sparse rewards are
provided, an RL agent suffers a harder exploration problem.
Previous work [28] studied the problem of reward shaping,
i.e. how to change the form of the reward without affecting
the optimal policy. The scoring-aggregating part can be
thought as a novel form of learning-based reward shaping.
A corpus of literature [29], [30], [31] try to learn the reward
shaping automatically. However, the methods do not apply to
the high-dimensional input such as image. One recent work
RUDDER [32] utilizes an LSTM to decompose rewards into
per-step rewards. This method can be thought of an scoring
function of the full state in our framework.

There are more categories of methods to deal with this
problem: (1) Unsupervised exploration strategies, such as
curiosity-driven exploration [33], [34], or count-based explo-
ration [35], [36] (2) In goal-conditioned tasks one can use
Hindsight Experience Replay [37] to learn from experiences
with different goals. (3) defining auxiliary tasks to learn a
meaningful intermediate representations [38]. In contrast to
previous methods, we effectively convert the single terminal
reward to a set of rich intermediate representations, on top of
which we can apply planning algorithms. Although model-
based RL has been extensively studied, none of the previous
work has explored the use of reward decomposition for zero-
shot transfer.

III. PROBLEM STATEMENT AND METHOD
A. Problem Formulation

To be able to generalize better in an unseen environment,
an intelligent agent should understand the consequence of
its behavior both spatially and temporally. In the RL ter-
minology, we propose to learn rewards that correspond to
observations spatially and temporally from its past experi-
ences. To facilitate such goals, we formulate the problem as
follows.

Two environments &1, are sampled from the same task
distribution. £ and & share the same physics and goals but
different configurations. e.g. different placement of objects,
different terrains.

The agent is first presented with a bank of exploratory

trajectories {7;},4 = 1,2---N collected in training en-
vironment & = (S, A,p). Each 7; is a trajectory and
7 = {(st,ar)},t = 1,2-.-K;. These trajectories are

random explorations in the environment. Note that the agent
only learns from the bank of trajectories without further
environment interactions, which mimics human utilizing only
prior experiences to perform a new task. We provide a scalar



terminal evaluation r(7) of the entire trajectory when a task
T is specified.

At test time, we evaluate task 7 using zero extra interac-
tion in the new environment, & = (S’, A, p’). We assume
identical action space. There is no reward provided at test
time. In this paper, we focus on locomotion tasks with object
interactions, such as Super Mario running with other objects
in presence, or a Reacher robot acting with obstacles around.

B. Spatial Temporal Reward Decomposition

In this section, we introduce the method to decompose
the terminal sparse reward into specific time step and spatial
location. First, we introduce the temporal decomposition and
then discuss the spatial decomposition.

Temporal Reward Decomposition The temporal reward
decomposition can be described as So(W(s;),a;). Here 6
denotes parameters in a neural network, W is a function
that extracts contingency-aware observations from states.
Here, contingency-aware means a subset of spatial global
observation around the agent, such as pixels surrounding
a game character or voxels around end-effector of a ma-
nipulator. We note that the neural network’s parameters are
shared for every contingency-aware observation. Intuitively,
this function measures how well an action a; performs on this
particular state, and we refer to Sy as the scoring function.

To train this network, we aggregate the decomposed re-
wards Sg(W(s;),a;) for each step into a single aggregated
reward J, by an aggregating function G:

Jo(7) = Gspaner (9o (W (st), ar))

The aggregated reward J are then fitted to the sparse terminal
reward. In practice, G is chosen based on the form of the
sparse terminal reward, e.g. a max or a sum function. In
the learning process, the Sy function is learned by back-
propagating errors between the terminal sparse reward and
the predicted J through the aggregation function. In this
paper, we use {5 loss that is:

min £ (Jo(r) — r(r))?

Spatial Reward Decomposition An environment usually
contains multiple objects. Those objects might re-appear
at various spatial locations over time. To further assist
the learned knowledge to be transferrable to the new en-
vironment, we take advantage of the compositionality of
the environment by also decomposing the reward function
spatially. More specifically, we divide the contingency-aware
observation into smaller sub-regions. For example, in a
Cartesian coordinate system, we can divide each coordinate
independently and uniformly. With the sub-regions, we re-
parametrize the scoring function as ), . So(Wi(s:), ay),
where [ is the index of the sub-regions and we retarget Sy
for the sub-region instead of the whole contingency-aware
observation. The intuition is that the smaller sub-regions
contains objects or other unit elements that are also building
blocks of unseen environments. Such sub-regions become
crucial later to generalize to the new environment.

C. Policy Stage

To solve the novel task with zero interaction, we propose
to use planning algorithms to find optimal actions based on
the learned scoring function and a learned dynamics model.
As shown in the part (c) of Figure 2} we learn a forward
dynamics model M, based on the exploratory data with
a supervised loss function. Specifically, we train a neural
network that takes in the action a, state s; and output 8§11,
which is an estimate of s;;;. We use an /5 loss as the
objective:

1
min §(M¢(st, ar) — S41)°

With the learned dynamics model and the scoring function,
we solve an optimization problem using the Model Predictive
Control (MPC) algorithm to find the best trajectory for a
task 7 in environment £;. The objective of the optimization
problem is to minimize —Jy(7’). Here we randomly sample
multiple action sequences up to length H, unroll the states
based on the current state and the learned dynamics model
while computing the cost with the scoring function. We select
the action sequence with the minimal cost, and execute the
first action in the selected sequence in the environment.

D. Discussion on zero-shot generalization

Although neural networks have some generalization ca-
pabilities, it is still easy to overfit to the training domain.
Previous works [39] notice that neural network “memorizes”
the optimal action throughout the training process. One can
not expect an agent that only remembers optimal actions
to generalize well when placed in a new environment. Our
method does not suffer from the memorization issue as much
as the neural network policy because it can come up with
novel solutions, that are not necessarily close to the training
examples, since our method learns generalizable model and
scores that makes planning possible. The generalization
power comes mainly from the smaller building blocks shared
across environments as well as the universal dynamics model.
This avoids the SAP method to replay the action of the
nearest neighbour state in the training data.

Section Figure compares our method and
a neural network RL policy. It shows that in the training
environment, RL policy is only slightly worse than our
method, however, the RL policy performs much worse than
ours in the zero shot generalization case.

IV. EXPERIMENT

In this section, we study how well the proposed method
performs compare to baselines, and the roles of the proposed
temporal and spatial reward decompositions. We conduct
experiments on two domains: a famous video game “Super
Mario Bros” [40] and a robotics blocked reacher task [41].

A. Experiment on Super Mario Bros

To evaluate our proposed algorithm in a challenging en-
vironment, we run our method and baseline methods in the
Super Mario Bros environment. This environment features
high-dimensional visual observations, which is challenging
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Fig. 2: An overview of the SAP method. (a) For each time step, a scoring network scores contigent sub-regions conditioned
on action. (b) we aggregate the prediction over all time steps to fit terminal reward (c)&(d) describe the dynamics learning

and planning in mpc in the policy stage.

since we have a large hypothesis space. The original game
has 240 x 256 image input and discrete action space with 5
choices. We wrap the environment following [1]. Finally, we
obtain a 84 x 84 size 4-frame gray-scale stacked observation.
The goal for an agent is to survive and go toward the right
as far as possible. We don’t have access to the dense reward
for each step but the environment returns how far the agent
moves towards target at the end of a trajectory as the delayed
terminal sparse reward.

1) Baselines: We compare our method with various types
of baselines, including state-of-art zero-shot RL algorithms,
generic policy learning algorithms as well as oracles with
much more environment interactions. More details can be
found in the appendix.

Exploration Data Exploration Data is the data from
which we learn the scores, dynamics model and imitate. The
data is collected from noisy sub-optimal version of policy
trained using [33]. The average reward on this dataset is a
baseline for all other methods.

Behavioral Cloning [42], [43] Behavioral
Cloning (BC) learns a mapping from a state to an action
on the exploration data using supervised learning. We use
cross-entropy loss for predicting the actions.

Model Based with Human Prior Model Based
with Human Priors method (MBHP) incorporates model
predictive control with predefined human priors, which is
+1 score if the agent tries to move or jump toward the right
and O otherwise.

DARLA [15] DARLA relies on learning a latent state
representation that can be transferred from the training envi-

ronments to the testing environment. It achieves this goal by
obtaining a disentangled representation of the environment’s
generative factors before learning to act. We use the latent
representation as the observations for a behavioral cloning
agent.

RUDDER [32] RUDDER proposes to use LSTM to
decompose the delayed sparse reward to dense rewards. It
first trains a function f(7y.7) predict the terminal reward of a
trajectory 71.7. It then use f(71.;)— f(71..—1) as dense reward
at step t to train RL policies. We change policy training to
MPC so this reward can be used in zero-shot setting.

Behavior Clone with Privilege Data Instead
of using exploratory trajectories from the environment, we
collect a set of near optimal trajectories in the training
environment and train a behavior clone agent from it. Note
that this is not a fair comparison with other methods, since
this method uses better performing training data.

RL curiosity We use a PPO [44] agent that is trained
with curiosity driven reward [45] and the final sparse reward
in the training environment. This also violates the setting we
have as it interacts with the environment. We conduct this
experiment to test the generalization ability of an RL agent.

2) Analysis: Fig. [3|[a and Fig. B|[b] show how the above
methods performs in the Super Mario Bros. The Explore
baseline shows the average training trajectory performance.
We found that RUDDER fails to match the demonstration per-
formance. This can attributed to the LSTM in RUDDER not
having sufficient supervision signals from the long horizon
(2k steps) delayed rewards in the Mario environment. DARLA
slightly outperforms the demonstration data in training. Its
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TABLE I: Ablation of the temporal and spatial reward
decomposition.

WI1S1(train) W2S1(test)
SAP 1359.3 790.1
SAP w/o spatial 1258.0 737.0
SAP w/o spatial temporal 1041.3 587.9

performance is limited by the unsupervised visual disentan-
gled learning step, which is a hard problem in the complex
image domain. Behavior Cloning is slightly better than
the exploration data, but much worse than our method. MBHP
is a model-based approach where human defines the per step
reward function. However, it is prohibitive to obtain detailed
manual rewards every step. In this task, it is inferior to
SAP’s learned priors. We further compare to two methods
that unfairly utilize additional privileged information. The
Privileged BC method trains on near optimal data, and
performs quite well during training; however, it performs
much worse during the zero shot testing. The similar trend
happens with RL Curiosity, which has the privileged
access to online interactions in the training environment.

To conclude, we found generic model free algorithms,
including both RL (RL Curiosity), and behavior cloning
(Privilege BC) perform well on training data but suffer
from severe generalization issue. The zero-shot algorithms
(DARLA), BC from exploratory data (BC) and moded-based
method (MBHP) suffer less from degraded generalization, but
they all under-perform our proposed algorithm.

3) Ablative Studies: In order to have a more fine-grained
understanding of the effect of our newly proposed tempo-
ral and spatial reward decomposition, we further conduct
ablation studies on those two components. We run two
other versions of our algorithm, removing the spatial re-
ward decomposition and the temporal reward decomposition
one at a time. More specifically, the SAP w/o spatial
method does not divide the observation into sub-regions,
but simply use a convolution network to approximate the

scoring function. SAP w/o spatial temporal further
removes the temporal reward learning part, and replace the
scoring function with a human-designed prior. Le. it is the
same as the MBHP baseline. Please see appendix for more
details.

Table [I| shows the result. We found that both the temporal
and the spatial reward learning component contributes to
the final superior performance. Without temporal reward
decomposition, the agent either have to deal with sparse
reward or use a manually specified rewards which might
be tedious or impossible to collect. Without the spatial
decomposition, the agent might not find correctly which
specific region or object is important to the task and hence
fail to generalize.

4) Visualization of learned scores: In this section, we
qualitatively study the induced action by greedily maxi-
mizing one-step score. l.e. for any location on the image,
we assumes the Super Mario agent were on that location
and find the action a that maximize the learned scoring
function Sp(W (s),a). We visualize the computed actions
on World 5 Stage 1 (Fig. B][c) which is visually different
from previous tasks. More visualization can be found in El
In this testing case, we see that the actions are reasonable,
such as avoiding obstacles and monsters by jumping over
them, even in the face of previously unseen configurations
and different backgrounds. However, the “Piranha Plants” are
not recognized because all the prior scores are learned from
WI1S1 where it never appears. More visualization of action
maps are available in our videos. Those qualitative studies
further demonstrate that the SAP method can assign mean-
ingful scores for different objects in an unsupervised manner.
It also produces good actions even in a new environment.

B. SAP on the 3-D robotics task

In this section, we further study the SAP method to
understand its property with a higher dimensional obser-
vation space. We conduct experiments in a 3-D robotics

Zhttps://sites.google.com/view/sapnew/home



environment, BlockedReacher-v0. In this environment, a
robot hand is initialized at the left side of a table and tries
to reach the right. Between the robot hand and the goal,
there are a few blocks standing as obstacles. The task is
moving the robot hand to reach a point on y = 1.0 as fast
as possible. To test the generalization capability, we create
four different configurations of the obstacles, as shown in
Figure [ Figure ] A is the environment where we collect
exploration data from and Figure @] B, C, D are the testing
environments. Note that the exploration data has varying
quality, where many of the trajectories are blocked by the
obstacles. We introduce more details about this experiment.

1) Environment.: In the Blocked Reach environment, we
use a 7-DoF robotics arm to reach a specific point. For
more details, we refer the readers to [46]. We discretize
the robot world into a 200 x 200 x 200 voxel cube. For
the action space, we discretize the actions into two choices
for each dimension which are moving 0.5 or -0.5. Hence,
in total there are 8 actions. We design four configurations
for evaluating different methods as shown in Figure ] For
each configurations, there are three objects are placed in the
middle as obstacles.

2) Applying SAP on the 3D robotic task: We apply the
SAP framework as follows. The original observation is a
25-dimensional continuous state and the action space is a
3-dimensional continuous control. They are discretized into
voxels and 8 discrete actions as described in Appendix [C.1}
The scoring function is a fully-connected neural network
that takes in a flattened voxel sub-region. We also train a
3D convolutional neural net as the dynamics model. The
dynamics model takes in the contingency-aware observation
as well as an action, and outputs the next robot hand location.
With the learned scores and the dynamics model, we plan
using the MPC method with a horizon of 8 steps.

3) Architectures for score function and dynamics model.:
For the score function, we train a 1 hidden layer fully-
connected neural networks with 128 units. We use ReLu
functions as activation except for the last layer. Note that
the input 5 by 5 by 5 voxels are flattened before put into the
scoring neural network.

For the dynamics model, we train a 3-D convolution
neural network that takes in the contingency-aware obser-
vation (voxels), action and last three position changes. The
voxels contingent to end effector are encoded using three 3d
convolution with kernel size 3 and stride 2. Channels of these
3d conv layers are 16, 32, 64, respectively. A 64-unit FC
layer is connected to the flattened features after convolution.
The action is encoded with one-hot vector connected to a
64-unit FC layer. The last three J positions are also encoded
with a 64-unit FC layer. The three encoded features are
concatenated and go through a 128-unit hidden FC layer and
output predicted change in position. All intermediate layers
use ReLu as activation.

4) Results: We evaluate similar baselines as in the pre-
vious section that is detailed in [[V-A.1] In Table [, we
compare our method with the MBHP and RUDDER on the
3D robot reaching task. We found that our method needs

TABLE II: Evaluation of SAP, MBHP and Rudder on the 3D
Reacher environment. Numbers are the avg. steps to reach the
goal. The lower the better. Numbers in the brackets are the
95% confidence interval. “L” denotes the learned dynamics,
and “P” denotes the perfect dynamics.

Config A Config B Config C Config D
SAP(L) 97.53[2.5] 86.53[1.9] 113.3[3.0] 109.2[3.0]
MBHP(L) 124.2[4.5] 102.0[3.0] 160.7[7.9] 155.4[7.2]
Rudder(L) 1852[198] 1901[132] 1933[148] 2000[0.0]
SAP(P) 97.60[2.6] 85.38[1.8] 112.2[3.1] 114.1[3.2]
MBHP(P) 125.3[4.3] 102.4[3.0] 153.4[5.3] 144.9[4.8]
Rudder(P) 213.6[4.2] 194.2[7.0] 208.2[5.6] 201.5[6.3]

|
)

V

: I L
Fig. 4: Four variants of the 3D robot reacher environments.
See Section [[V-B| for details.

significantly fewer steps than the two baselines, in both
training environment and testing ones. We find that SAP
significantly moves faster to the right because it learns a
negative score for crashing into the obstacles. However, the
MBHP method, which has +1 positive for each 1 meter
moved to the right, would be stuck by the obstacles for a
longer duration. When training with RUDDER, the arm also
frequently waste time by getting stuck at obstacle. We found
that our SAP model is relatively insensitive to the errors in
the learned dynamics, such that the performance using the
learned dynamics is close to that of perfect dynamics. These
experiments show that our method can be applied to robotics
environment that can be hard for some algorithms due to the
3-D nature.

V. CONCLUSION

In this paper, we introduced a new method called SAP
that aims to generalize in the new environment without any
further interactions by learning the temporally and spatially
decomposed rewards. We empirically demonstrate that the
newly proposed algorithm outperform previous zero-shot RL
method by a large margin, on two challenging environments,
i.e. the Super Mario Bros and the 3D Robot Reach. The
proposed algorithm along with a wide range of baselines
provide a comprehensive understanding of the important
aspect zero-shot RL problems.
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APPENDIX
A. Hidden Reward Gridworld

1) Environment.: In the gridworld environment, each en-
try correspond to a feature vector with noise based on the
type of object in it. Each feature is a length 16 vector whose
entries are uniformly sampled from [0, 1]. Upon each feature,
we add a small random noise from a normal distribution
with ¢ = 0,0 = 0.05. The outer-most entries correspond
to padding objects whose rewards are 0. The action space
includes move toward four directions up, down, left, right.
If an agent attempts to take an action which leads to outside
of our grid, it will be ignored be the environment.

2) Architectures for score function and dynamics model.:
We train a two layer fully connected neural networks with
32 and 16 hidden units respectively and a ReLU activation
function to approximate the score for each grid.

In this environment, we do not have a learned dynamics
model.

Hyperparameters. During training, we use an adam op-
timizer with learning rate le-3, 51 = 0.9, B2 = 0.999.
The learning rate is reduced to le-4 after 30000 iterations.
The batchsize is 128. We use horizon = 4 as our planning
horizon.

B. Super Mario Bros

1) Environment.: We wrap the original Super Mario en-
vironments with additional wrappers. We wrap the action
space into 5 discrete joypad actions, none, walk right, jump
right, run right and hyper jump right. We follow [45] to add
a sticky action wrapper that repeats the last action with a
probability of 20%. Besides this, we follow add the standard
wrapper as in past work [1].

2) Applying SAP on Super Mario Bros: We apply our
SAP framework as follows. We first divide the egocentric
region around the agent into eight 12 by 12 pixel sub-regions
based on relative position as illustrated in Figure. [3] in the
Appendix. Each sub-region is scored by a CNN, which has
a final FC layer to output a score matrix. The matrix has
the shape dim(action) by dim(relative position), which are 5
and 8 respectively. Then an action selector and a sub-region
selector jointly select row corresponding to the agent’s action
and the column corresponding to the relative position. The
sum of all the sub-region scores forms the egocentric region
score. Then we minimize the /5 loss between the aggregated
egocentric region scores along the trajectory and the terminal
reward. In addition, we add an regularization term to the
loss to achieve better stability for long horizon. We take
the /1 norm of score matrices across trajectory to add to
loss term. This encourages the scoring function to center
predicted loss terms around O and enforce numerical sparsity.
A dynamics model is also learned by training another CNN.
The dynamics model takes in a 30 by 30 size crop around the
agent, the agent’s location as well a one-hot action vector.
Instead of outputting a full generated image, we only predict
the future location of the agent recursively. We avoid video
predictive models because it suffers the blurry effect when

Fig. 5: A visualization of the sub-regions in the Super Mario
Bros game. In this game, there are in total 8 sub-regions.

predicting long term future [47], [48]. We plan with the
learned scores and dynamics model with a standard MPC
algorithm with random actions that looks ahead 10 steps.

3) Architectures for score function and dynamics model.:
For the score function, we train a CNN taking each 12px by
12px sub-region as input with 2 conv layers and 1 hidden
fully connected layers. For each conv layer, we use a filter
of size 3 by 3 with stride 2 with number of output channels
equals to 8 and 16 respectively. “Same padding” is used for
each conv layer. The fully connected layers have 128 units.
Relu functions are applied as activation except the last layer.

For the dynamics model, we train a neural network with
the following inputs: a. 30 by 30 egocentric observation
around mario. b. current action along with 3 recent actions
encoded in one-hot tensor. ¢. 3 most recent position shifts.
d. one-hot encoding of the current planning step. Input a is
encoded with 4 sequential conv layers with kernel size 3
and stride 2. Output channels are 8, 16, 32, 64 respectively.
A global max pooling follows the conv layers. Input b, c,
d are each encoded with a 64 node fc layer. The encoded
results are then concatenated and go through a 128 units
hidden fc layer. This layer connects to two output heads, one
predicting shift in location and one predicting “done” with
sigmoid activation. Relu function is applied as activation for
all intermediate layers.

4) Hyperparameters.: During training, we use an adam
optimizer with learning rate 3e-4, 81 = 0.9, fo = 0.999.
The batchsize is 256 for score function training and 64 for
dynamics model. We use horizon = 10 as our planning
horizon. We use a discount factor v = 0.95 and 128
environments in our MPC. We use 1le-4 for the regularization
term for matrices entries.

5) More on training: In the scoring function training,
each data point is a tuple of a down sampled trajectory and
a calculated score. We down sample the trajectory in the
exploration data by taking data from every two steps. Half
the the trajectories ends with a “done”’(death) event and half



are not. For those ends with “done”, the score is the distance
mario traveled by mario at the end. For the other trajectories,
the score is the distance mario traveled by the end plus a
mean future score. The mean future score of a trajectory is
defined to be the average extra distance traveled by longer
(in terms of distance) trajectories than our trajectory. We note
that all the information are contained in the exploration data.

6) More Details on Baselines: Exploration Data Explo-
ration Data is the data from which we learn the scores,
dynamics model and imitate. The data is collected from a
suboptimal policy described in Appendix [B.6] The average
reward on this dataset is a baseline for all other methods.
This is omitted in new tasks because we only know the
performance in the environment where the data is collected.
We train a policy with only curiosity as rewards [33].
However, we early stopped the training after 5e7 steps which
is far from the convergence at 1e9 steps. We further added an
e-greedy noise when sampling demonstrations with € = 0.4
for 20000 episodes and € = 0.2 for 10000 episodes.

Behavioral Cloning [42], [43] Behavioral Cloning (BC)
learns a mapping from a state to an action on the exploration
data using supervised learning. We use cross-entropy loss for
predicting the actions.

Model Based with Human Prior Model Based with Hu-
man Priors method (MBHP) incorporates model predictive
control with predefined human priors, which is +1 score if the
agent tries to move or jump toward the right and 0 otherwise.
MBHP replaces the scoring-aggregation step of our method
by a manually defined prior. We note that it might be hard
to design human priors in other tasks. As super mario is a
deterministic environment, we noticed pure behavior cloning
trivially get stuck at a tube at the very beginning of level 1-1
and die at an early stage of 2-1. Thus we select action using
sampling from output logits instead of taking argmax.

DARLA [15] DARLA relies on learning a latent state
representation that can be transferred from the training envi-
ronments to the testing environment. It achieves this goal by
obtaining a disentangled representation of the environment’s
generative factors before learning to act. We use the latent
representation as the observations for a behavioral cloning
agent. We re-implemented and fine-tuned a disentangled
representation of observation space as described in [15] for
mario environment. We used 128 latent dimensions in both
DAE and beta-VAE with 5 = 0.1. The VAE is trained with
batch size 64, learning rate le-4. The DAE is trained with
batch size 64 and learning rate le-3. We tune until the test
visualization on training environment is good. We then train
a behavior cloning on the learned disentangled representation
to benchmark on both training and testing environment.

RUDDER [32] RUDDER proposes to use LSTM to
decompose the delayed sparse reward to dense rewards. It
first trains a function f(71.7) predict the terminal reward of a
trajectory 7y.7. It then use f(71.;)— f(71..—1) as dense reward
at step t to train RL policies. We change policy training to
MPC so this reward can be used in zero-shot setting. We re-
implemented [32] on both mario and robot enviroment and
fine-tuned it respectively. We down-sample mario trajectory

TABLE III: Ablation Study for number of planning steps in
MPC based methods.The averaged return is reported.

World 1 Stage 1

plan 8  plan 10  plan 12
SAP 13415 13593 1333.5
MBHP 1193.8 10413 1112.1

World 2 Stage 1(new task)

plan 8 plan 10  plan 12
SAP 7242 790.1 682.6
MBHP 5464  587.9 463.8

Fig. 6: More visualizations on the greedy action map on
W1S1, W2S1(new task) and W5SI1(new task). Note the
actions can be different from the policy from MPC.

by a factor of 2 to feed into a special LSTM in RUDDER’s
source code. For mario environment, the feature vector for
each time step is derived from a convolution network with
channels 1, 3, 8, 16, 32; kernal sizes 3, 3, 3, 3 respectively,
followed by a fc layer with 64 output features. The 64 is then
feed into each LSTM step. For robot reaching environment,
we directly use a fc layer to down sample observation feature
from 3250 to 64 and feed into LSTM. Both models are
trained with batch size 256 under learning rate 2e-4, with
weight decay of Se-3.

Behavior Clone with Privilege Data Instead of using
exploratory trajectories from the environment, we collect a
set of near optimal trajectories in the training environment
and train a behavior clone agent from it. Note that this is
not a fair comparison with other methods, since this method
uses better performing training data.

RL curiosity We use a PPO [44] agent that is trained
with curiosity driven reward [45] and the final sparse reward
in the training environment. We limit the training steps to
10M. This is also violating the setting we have as it interacts
with the environment. We conduct this experiment to test the
generalization ability of a RL agent.

7) Additional Ablations: Ablation of Planning Steps
In this section, we conduct additional ablative experiments
to evaluate the effect of the planning horizon in a MPC
method. In Table. [lTl] we see that our method fluctuates a
little with different planning steps in a relatively small range
and outperforms baselines constantly. In the main paper,
we choose horizon = 10. We find that when plan steps
are larger such as 12, the performance does not improve
monotonically. This might be due to the difficult to predict
long range future with a learned dynamics model.

8) Additional visualization: In this section, we present
additional visualization for qualitative study. In Figure. [6] we



see that on a few randomly sampled frames, even the greedy
action can be meaningful for most of the cases. We see the
agent intend to jump over obstacles and avoid dangerous
monsters.

In Figure. [/} we show the scores of a given state-action
pair and find that the scores fulfill the human prior. For
example, in Figure. we synthetically put the mario agent
in 8 relative positions to “koopa” conditioned on the action
“move right”. The score is significantly lower when the
agent’s position is to the left of “koopa” compared to other
position. In Figure. [7p} it is the same setup as in Figure. [7]
but conditioned on the action “jump”. We find that across
Figure. [Jp] and Figure. [7p] the left position score of Figure. [7p]
is smaller than that of Figure. [Jp] which is consistent with
human priors. In Figure. [J] and Figure. [] we substitute
the object from “koopa” to the ground. We find that on both
Figure. [7| and Figure. [/ the score are similar for the top
position which means there is not much difference between
different actions.

T

(b) jump (d) jump

(a) move right (c) move right

Fig. 7: Visualization of the learned score on pre-extracted
objects. The grayscale area is the visualized score and the
pink area is a separator. Best viewed in color. In (a), we
synthetically put the mario agent in 8§ relative positions to
“koopa” conditioned on the action “move right”. The score
is significantly lower when the agent’s position is to the left
of “koopa” compared to other position. In (b), it is the same
setup as in (a) but conditioned on the action “jump”. We
find that across (a) and (b) the left position score of (b)
is smaller than that of (a) which is consistent with human
priors. In (c) and (d), we substitute the object from “koopa”
to the ground. We find that on both (c) and (d) the score are
similar for the top position which means there is not much
difference between different actions. Note this figure is only
for visualizations and we even put the agent in positions that
cannot be achieved in the actual game.

9) Additional Results with Ground Truth Dynamics Model
and No Done Signal:

C. Robotics Blocked Reach

1) Environment.: In the Blocked Reach environment, a
7-DoF robotics arm is manipulated for a specific task. For
more details, we refer the readers to [46]. We discretize
the robot world into a 200 x 200 x 200 voxel cube. For
the action space, we discretize the actions into two choices
for each dimension which are moving 0.5 or -0.5. Hence,
in total there are 8 actions. We design four configurations
for evaluating different methods as shown in Figure @] For
each configurations, there are three objects are placed in
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Fig. 8: Training Performance with perfect dynamics and no
done signal.

the middle as obstacles. The height of the objects in each
configuration are (0.05, 0.1, 0.08), (0.1, 0.05, 0.08), (0.12,
1.12, 0.12), (0.07, 0.11, 0.12).

2) Applying SAP on the 3D robotic task: We apply the
SAP framework as follows. The original observation is a
25-dimensional continuous state and the action space is a
3-dimensional continuous control. They are discretized into
voxels and 8 discrete actions as described in Appendix [C.1}
In this environment, the egocentric region is set to a 15 X
15 x 15 cube of voxels around robot hand end effector. We
divide this cube into 27 5 x 5 x 5 sub-regions. The scoring
function is a fully-connected neural network that takes in a
flattened voxel sub-region and outputs the score matrix with
a shape of 26 x 8. The scores for each step are aggregated
by a sum operator along the trajectory. We also train a
3D convolutional neural net as the dynamics model. The
dynamics model takes in a 15 x 15 x 15 egocentric region as
well as an action, and outputs the next robot hand location.
With the learned scores and the dynamics model, we plan
using the MPC method with a horizon of 8 steps.

3) Architectures for score function and dynamics model.:
For the score function, we train a 1 hidden layer fully-
connected neural networks with 128 units. We use Relu
functions as activation except for the last layer. Note that
the input 5 by 5 by 5 voxels are flattened before put into the
scoring neural network.

For the dynamics model, we train a 3-D convolution neural
network that takes in a egocentric region (voxels), action and
last three position changes. The 15 by 15 by 15 egocentric
voxels are encoded using three 3d convolution with kernel
size 3 and stride 2. Channels of these 3d conv layers are
16, 32, 64, respectively. A 64-unit FC layer is connected to
the flattened features after convolution. The action is encoded
with one-hot vector connected to a 64-unit FC layer. The last
three § positions are also encoded with a 64-unit FC layer.
The three encoded features are concatenated and go through
a 128-unit hidden FC layer and output predicted change in
position. All intermediate layers use relu as activation.

4) Hyperparameters.: During training, we use an adam
optimizer with learning rate 3e-4, 51 = 0.9, 82 = 0.999.
The batchsize is 128 for score function training and 64 for



dynamics model. We use horizon = 8 as our planning
horizon. We use 2e-5 as the weight for matrices entry
regularization.

5) Baselines: Our model based human prior baseline in
the blocked robot environment is a 8-step MPC where score
for each step is the y component of the action vector at that
step.

We omit the Behavioral cloning baselines, which imitates
exploration data, as a consequence of two previous results.
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