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Diffuser: Multi-View 2D-to-3D Label Diffusion

for Semantic Scene Segmentation

Ruben Mascaro, Lucas Teixeira and Margarita Chli

Vision For Robotics Lab, ETH Zurich, Switzerland

Abstract— Semantic 3D scene understanding is a fundamen-
tal problem in computer vision and robotics. Despite recent
advances in deep learning, its application to multi-domain
3D semantic segmentation typically suffers from the lack of
extensive enough annotated 3D datasets. On the contrary, 2D
neural networks benefit from existing large amounts of training
data and can be applied to a wider variety of environments,
sometimes even without need for retraining. In this paper,
we present ‘Diffuser’, a novel and efficient multi-view fusion
framework that leverages 2D semantic segmentation of multiple
image views of a scene to produce a consistent and refined
3D segmentation. We formulate the 3D segmentation task as
a transductive label diffusion problem on a graph, where
multi-view and 3D geometric properties are used to propagate
semantic labels from the 2D image space to the 3D map.
Experiments conducted on indoor and outdoor challenging
datasets demonstrate the versatility of our approach, as well
as its effectiveness for both global 3D scene labeling and
single RGB-D frame segmentation. Furthermore, we show a
significant increase in 3D segmentation accuracy compared to
probabilistic fusion methods employed in several state-of-the-
art multi-view approaches, with little computational overhead.

I. INTRODUCTION

Image-based semantic segmentation has long been studied

in computer vision, and its extension to scene segmentation

in 3D has become particularly relevant in robotics. By

augmenting 3D scene maps with semantic information, this

task can support a wide variety of applications requiring

somewhat high-level reasoning, such as obstacle avoidance

and mission planning for autonomous robotic navigation or

physical interaction of a robot with its workspace.

Current state-of-the-art methods in 3D semantic segmen-

tation mostly rely on end-to-end trainable neural networks

that use 3D convolution operators for extracting features

directly from 3D data [3], [4], [5]. These networks achieve

unprecedented performance in scenes containing elements

with distinct shapes, such as human-made objects, but their

generalisation to a wide variety of environments becomes

hindered by the lack of sufficiently large, labeled 3D datasets,

which are usually hard to produce.

As an alternative, when images from calibrated cameras

are available, per-pixel semantic labels can be extracted in

the image space from multiple viewpoints and aggregated

on visible 3D surfaces by exploiting the camera projection

principles. Methods based on this multi-view fusion approach
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Fig. 1: Taking as input a 3D point cloud and a set of localized
images processed by a 2D semantic segmentation network, ‘Dif-
fuser’ uses an efficient graphical model that leverages geometry to
propagate class labels from the 2D image space to the 3D map. The
bottom image shows qualitative 3D segmentation results obtained
in one sequence of the Aerial Depth Dataset [1]. A subset of the
input images segmented by the MSeg [2] framework and the input
3D point cloud are shown in the top and middle rows, respectively.
The pink and green arrows represent the proposed graphical model
to transfer semantic labels from 2D pixels to 3D points.

[6], [7], [8] benefit from image processing networks that can

be trained on readily available, massive datasets, facilitating

their adaptation to new environments and making them

more suitable for robotic applications. However, label fusion

schemes typically suffer from difficulties caused by occlusion

and imprecise 2D segmentation boundaries, resulting in a

downgraded 3D segmentation quality.

In this paper, we address these issues by proposing a

novel and efficient method for fusing multi-view 2D semantic

predictions into a consistent and refined segmentation in 3D.

We formulate the 3D segmentation task as a transductive

label diffusion problem on a graph, where geometric context

is leveraged to propagate class labels from 2D pixels to 3D

points. Our method can be used locally, e.g. for single RGB-

D frame segmentation, and for global 3D scene labeling.

Furthermore, it can be integrated with any 2D semantic

segmentation framework, it does not require 3D training data

and it generalizes well to different types of environments.



II. RELATED WORK

Deep Learning in 3D. The success of deep neural net-

works in solving several scene understanding tasks on images

has inspired their application in the context of 3D semantic

segmentation. In recent years, various network architectures

have been proposed in order to extract semantic features

directly from 3D point clouds [9], [10], [11], [12], [13],

[14], [15]. Current state-of-the-art methods process input data

with sparse convolutions [3], [4], [5], which utilize memory

more efficiently than approaches based on dense voxel grids.

However, these methods are still limited in spatial resolution

and can be trained with supervision only on 3D datasets,

which are generally too small and more difficult to produce

in comparison to 2D image datasets. Moreover, due to the

morphological gap and variation in point density between 3D

representations of different scenarios, these algorithms may

generalize poorly to unseen environments.

Multi-view Approaches. Instead of directly processing

3D data, other approaches have focused on running semantic

segmentation on images captured from known poses and

making use of multi-view geometric relationships to project

the predicted semantic labels onto the 3D space. Early works

on online semantic mapping typically aggregated pixel-

wise semantic features onto 3D reconstructed surfaces via

Bayesian fusion [6], [16] or weighted averaging [17], and

used computationally expensive Conditional Random Field

(CRF) models to regularise the resulting 3D segmentation.

More recently, offline end-to-end solutions that extract fea-

tures from 2D images and convolve them further in 3D

have been proposed [18], [19]. Although these learning-based

methods generally achieve better results, they require labeled

3D data for training, which is a limiting factor in certain

types of environments. To overcome problems originating

from using RGB or RGB-D images, such as limited field of

view and misalignment with reconstructed surface geometry,

or in cases where aligned images are not available, other

recent approaches have explored using synthetic images of

real 3D data in multi-view labeling pipelines [20], [21], [22],

[23]. These methods are able to sample good viewpoints, use

artificial camera parameters and render multiple channels,

generally improving segmentation in 2D, but still use simple

probabilistic fusion methods that do not leverage geometric

context to deal with inconsistent label predictions.

In contrast to these approaches, here we formulate an

efficient label propagation scheme that simultaneously han-

dles multi-view label prediction inconsistencies and exploits

the geometry of the scene to better refine segmentation

boundaries in 3D. Our approach does not require 3D training

data, it is not restricted to any particular type of scene and

could be used with any of the aforementioned frameworks

to improve the multi-view fusion step.

Graphical Models for 2D-3D Fusion. Graph-based meth-

ods are well established in machine learning and have

successfully been applied to point-cloud segmentation from

aligned images in the past. For example, Koppula et al. [24]

created nodes in a graph from segments of a complete 3D

map and used hand-crafted geometric and visual features as

edge potentials to infer the final semantic labeling. Wang

et al. [25] proposed a semantic segmentation approach for

image-aligned 3D point clouds that retrieves referenced

labeled images of similar appearances and uses a graphical

structure to propagate their labels to the 3D points. More

recently, dense CRF models formed by unary and pairwise

terms [6], sometimes enhanced with higher-order potentials

[7], [8], have been applied as a post-processing step to ad-

dress noise in online semantic scene segmentation pipelines.

Our approach is mostly inspired by [26], which intro-

duces a graph-based label propagation method for instance

segmentation of 3D LiDAR scans given a set of detection

masks predicted with a 2D convolutional neural network on

aligned RGB images. In this work, however, we propose

an extended graphical model that is able to seamlessly fuse

pixel-wise semantic labels predicted from multiple views and

better exploits the observed surface geometry to regularise

the resulting 3D segmentation.

III. METHOD

In this section, we introduce our 2D-to-3D label diffusion

algorithm for semantic segmentation of 3D point clouds

using multiple views. Approaching the task from a semi-

supervised labeling perspective, we formulate a novel graph

structure that leverages the output of a 2D semantic segmen-

tation framework and uses geometric context to propagate

class labels through the point cloud, resulting in a consistent

and refined 3D semantic map.

A. Problem Statement and Notation

Our approach to semantic 3D segmentation through label

diffusion from multiple views takes as input a 3D point cloud

and a set of Nf localized images. We assume that the set of

input images, I = {Ik}
Nf

k=1
, has already been processed by a

2D semantic segmentation framework which, for each pixel

coordinate p
Ik

j ∈ N
2, j ∈ {1, . . . , NIk

p }, predicts a class

label yIk

j ∈ {1, . . . , C}. The number of pixels in each image,

NIk
p , as well as the number of classes that the network is able

to predict, C, are arbitrary. Let the point cloud be denoted

as X = {xi ∈ R
3}Nx

i=1
, with Nx being the number of 3D

points. The goal of the algorithm is to assign each 3D point

xi a class label yi.

B. Graphical Model

Similarly to [26], our graphical model for 2D-to-3D label

diffusion, G, is formed by nodes that represent both 2D

pixels and 3D points, although we specifically design it

to handle multiple views. Assuming that the 2D pixels

are labeled by means of any image semantic segmentation

framework, this graph is then used to propagate class labels

through the 3D points, which are all initially unlabeled. To

guide the label diffusion process, edges between 2D pixels

and 3D points as well as among 3D points are generated as

follows:



1) Pixel-to-Point Edges: To allow the flow of information

from 2D to 3D in our graph, for each frame Ik we construct

a subgraph GIk→X that can be represented as a Nx ×NIk
p

adjacency matrix of the form:

G
Ik→X
ij =

{

λ if pIk

j = πIk (xi)

0 otherwise
, (1)

where λ is a hyperparameter that controls the amount of

information being propagated from a pixel to a connected

point, and πIk (xi) denotes the projected 2D location of 3D

point xi in frame Ik, which is computed as follows:

πIk (xi) = KIk
(

RIkxi + tIk
)

. (2)

Here, KIk is the intrinsics matrix, while RIk and tIk

represent the rotation and translation in the known extrinsic

parameters corresponding to image Ik. To deal with occlu-

sion in point clouds, we assume that a mapping from pixel

coordinates to depth is available (e.g. provided by an RGB-D

sensor or a 3D reconstruction pipeline) and perform a depth

consistency check to keep only the points that are visible in

each frame.

In our implementation, we set λ = 10−4 to reduce the

influence of any pixel on the final 3D labeling. Although we

experimented with connecting each 3D point to multiple pix-

els within a neighboring region of its projected 2D location,

as in [26], we empirically found that simply considering the

projected pixel location leads to similar results while being

computationally more efficient.

2) Point-to-Point Edges: Edges among 3D points are cre-

ated by connecting each point xi to its K nearest neighbors,

KNN (xi), according to Euclidean distance. The K nearest

neighbor search is efficiently performed by using a KD-tree.

The subgraph of 3D point connections, which we denote as

GX→X , is then defined as a Nx ×Nx adjacency matrix of

the form:

GX→X
ii′ =

{

ωii′ if xi′ ∈ KNN (xi)
0 otherwise

, (3)

ωii′ = exp

(

−
‖xi − xi′‖

2

2

2σ2

d

−
‖ni − ni′‖

2

2

2σ2
s

)

. (4)

In our formulation, ni represents the normal vector at

point xi, computed based on a local 3D point neighborhood,

while σd and σs are bandwidth hyperparameters for the

Gaussian edge potential ωii′ . Specifically, we set K = 24,

σs = 0.2 and σd = 2ρ, where ρ is an estimate of the mean

point cloud density.

By connecting each point to the set of neighboring points

in space and weighting the resulting edges based both on the

distance between them and the difference between its corre-

sponding normals, the subgraph GX→X effectively encodes

the 3D geometry of the scene point cloud . Contrary to [26],

where edges between points are simply weighted based on

Euclidean distance, our formulation also takes into account

the smoothness of the underlying surface to propagate infor-

mation through the point cloud. The reasoning behind our

approach is that labels should be more easily propagated be-

tween neighboring points if the underlying surface is smooth,

i.e. if the difference between their corresponding normals is

small. This allows us to better respect 3D boundaries in the

graph, as shown in the experiments.

3) Label Diffusion Graph: The complete graph for label

diffusion, including both the pixel-to-point and the point-to-

point edges, is then defined as:

G =











GX→X GI1→X · · · G
INf

→X

0 II1 · · · 0

...
...

. . .
...

0 0 · · · I
INf











, (5)

where each IIk is an identity matrix of size NIk
p × NIk

p .

It is worth noting that, in contrast to approaches based on

fully-connected CRFs [6], [7], our method builds upon a

sparse graphical model, allowing for efficient computation

during label propagation, and unifies the label fusion and

map regularisation steps.

C. Graph-based Label Diffusion Principles

After constructing G, a probabilistic transition matrix P

can be computed by normalizing each row of the adjacency

matrix to sum up to 1:

Pmn =
Gmn

∑

n′ Gmn′

, ∀m,n ∈ {1, . . . , N} , (6)

with N = Nx +
∑

k N
Ik
p being the total number of nodes

in the label difusion graph. The element Pmn of matrix P

can be interpreted as the probability of transition from node

m to n. By indicating edges, along which information on

class labels should be propagated, this matrix P will guide

the diffusion process for 3D point labeling later on.

Assuming that a known number of classes C is predicted

by the 2D semantic segmentation framework, we additionally

define a label matrix Z ∈ R
N×C as:

Z =
[

ZX ZI1 · · · Z
INf

]T
. (7)

For each node in graph G, Z contains C entries that will

accumulate the likelihood of this node belonging to each

of the candidate classes. In our case, entries corresponding

to 3D points, ZX , are all initialized to zero, while entries

corresponding to 2D pixels, ZIk , are defined according to

the 2D segmentation masks:

Z
Ik

jc = δIk (j, c) , (8)

with δIk (j, c) being a function that returns 1 if pixel pIk

j is

in the segmentation mask of class c and 0 otherwise.

Label diffusion can then be applied by iteratively perform-

ing the following matrix multiplication:

Z ← P ·Z . (9)

According to [27], since matrix P is row-normalized and

ensures the labels of the source nodes (i.e. pixels in our case)

to remain unchanged by the propagation step, the algorithm

is guaranteed to converge.



D. Dimensionality Reduction

The formulation presented above leads to a probabilistic

transition matrix P and a label matrix Z that grow rapidly

with an increasing number of frames. However, since entries

associated with 2D pixels in matrix Z remain fixed during

label diffusion and we are solely interested in computing

ZX , i.e. the labels of the 3D points, the propagation step

can be reduced to:

ZX ← PX→XZX +ZI→X , (10)

where ZI→X is a Nx ×C constant matrix that encodes the

amount of information being pushed to each 3D point from

all corresponding 2D image pixels:

ZI→X =
∑

k

P Ik→XZIk . (11)

By solving the problem this way, we eliminate the need

for storing the full label matrix Z, therefore reducing the

memory footprint of the algorithm, and make the complexity

of the diffusion process mainly depend on the size of the

point cloud, not on the number of images used as sources to

propagate the semantic labels.

In addition, the structure of the proposed graphical model

allows building the matrix ZI→X in an incremental and

parallel fashion. For each frame, we can compute a matrix

ZIk→X by first creating the subgraph of pixel-to-point

connections and multiplying its adjacency matrix GIk→X

by the label matrix ZIk generated from the predicted 2D

segmentation masks:

ZIk→X = GIk→XZIk . (12)

Since, by definition, ZIk is a matrix, where all elements in

each row are set to zero except from one, whose value is set

to 1, it can be demonstrated that:
∑

j

G
Ik→X
ij =

∑

c

[

GIk→XZIk
]

ic
=
∑

c

Z
Ik→X
ic . (13)

Therefore, to ensure that the full probabilistic transition

matrix of the underlying graph is row-normalized, PX→X

and ZI→X in Eq. (10) can be computed as follows:

PX→X
ii′ =

GX→X
ii′

∑

i′′ G
X→X
ii′′ +

∑

c

∑

k Z
Ik→X
ic

, (14)

ZI→X
ic =

∑

k Z
Ik→X
ic

∑

i′ G
X→X
ii′ +

∑

c′

∑

k Z
Ik→X
ic′

. (15)

After the matrices PX→X and ZI→X are constructed, la-

bel diffusion is iteratively applied according to Eq. (10) until

convergence of ZX or until a maximum number of iterations

is reached. Finally, the likelihood values are converted to 3D

point labels according to:

yi = argmax
c∈{1,...,C}

ZX
ic , (16)

meaning that each point gets assigned the most likely label.

The label diffusion algorithm proposed in this paper is

outlined in Algorithm 1.

Algorithm 1 Diffuser

Require: A 3D point cloud and a set of aligned images

processed by a 2D semantic segmentation framework.

1: for each frame Ik do

2: Project 3D points and compute GIk→X (Eq. 1).

3: Define matrix ZIk from 2D segmentation (Eq. 8).

4: Compute ZIk→X = GIk→XZIk .

5: Update
∑

k Z
Ik→X .

6: end for

7: Construct the subgraph matrix GX→X (Eq. 3).

8: Define label matrix ZX and initialize all entries to zero.

9: Compute matrices PX→X and ZI→X (Eqs. 14, 15).

10: Perform label diffusion until convergence or max. num-

ber of iterations is reached (Eq. 10).

11: Determine class labels for all 3D points (Eq. 16).

IV. EXPERIMENTS

Aiming at showing that our approach generalizes well

to various types of environments, we run a series of ex-

periments on three completely different datasets for 3D

semantic segmentation containing image sequences: ScanNet

[28], a RGB-D video dataset established as one of the

standard 3D segmentation benchmarks; the 3DRMS Chal-

lenge Dataset [29], a challenging outdoor dataset, featur-

ing image sequences captured from virtual and real drives

through semantically-rich garden scenes; and the Aerial

Depth Dataset [1], a photorealistic aerial dataset that exhibits

more challenging scenarios than the established indoor and

car driving datasets. In all of them, ground truth 2D semantic

annotations and camera poses, as well as semantically anno-

tated 3D point clouds depicting the area of each sequence

are provided for evaluation.

We also experiment with different network architectures

and pre-trained models to run semantic segmentation on the

input images. For both the indoor and outdoor datasets, we

use a network based on the HRNet-W48 [30] architecture and

trained on MSeg [2], a composite, multi-domain semantic

segmentation dataset designed for training models, in order

to achieve consistently high performance across domains

and to generalize well to previously unseen datasets. In our

experiments on the ScanNet dataset, we additionally use a

variant of this model specifically trained on the ScanNet train

split. We refer to this model as ‘Oracle’, as coined in [2]. In

the outdoor experiments, besides the MSeg model, we use a

PSPNet [31] backbone trained on Cityscapes [32].

For evaluation purposes, the classes predicted by the

aforementioned models are mapped to the specific classes

considered by each of our test datasets. Semantic segmen-

tation accuracy is evaluated in terms of mean Intersection-

over-Union (mIoU) over the considered classes, which is a

common metric in semantic segmentation benchmarks [28].

A. Evaluation on the ScanNet Dataset

We use a subset of 25 scans in the validation split of

the ScanNet dataset to test our multi-view fusion method
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Fig. 2: Qualitative 3D point-cloud semantic segmentation results on the ScanNet dataset [28]. By exploiting 3D geometry to propagate
labels, our approach is able to better handle semantic prediction inconsistencies and refine segmentation boundaries with respect to the
Bayesian fusion approach used in state-of-the-art multi-view methods [21], [22]. Main differences are highlighted within red circles.

and compare it against alternative approaches for transferring

2D semantic labels to aligned 3D point-clouds. To show the

flexibility of our approach, we evaluate it for both the task

of global 3D point-cloud and single RGB-D frame semantic

segmentation.

1) Global 3D point-cloud semantic segmentation: For

each scan, we extract every 10th frame from the full RGB-

D sequence and run semantic segmentation on the corre-

sponding RGB images. We then use our multi-view fusion

approach to propagate the predicted labels from all processed

images to the vertices of the full 3D scene mesh. To increase

the efficiency of the label propagation step, the scene point

clouds are initially downsampled using a voxel grid of 2

cm. After convergence of the algorithm, each 3D point in

the original point cloud is assigned the label of the nearest

point in the downsampled point cloud.

As the focus of this work is on the multi-view fusion

algorithm, independently of the 2D semantic segmentation

strategy being used, we compare our approach against the

Bayesian fusion scheme employed by several and recent

multi-view methods [6], [8], [21], [22], [33], which consists

in directly aggregating the semantic labeling likelihoods of

all the corresponding pixels at each 3D point and picking

the label with the highest score. As visible in the results

in Table I, with both the MSeg and the Oracle models, the

proposed Diffuser algorithm significantly improves the final

3D segmentation accuracy. Qualitative results in Figure 2

show that, by exploiting the 3D geometry of the point cloud,

our approach better handles noisy semantic predictions and is

able to refine 3D segmentation boundaries, thus removing the

need for further, potentially more expensive regularisation

strategies such as CRFs.

2) Single RGB-D frame semantic segmentation: These

experiments are designed to show that our method can

also be used to improve the segmentation of single RGB-D

frames in online applications by taking into account semantic

labels predicted at neighboring views. In this case, using the

TABLE I: Global 3D point-cloud semantic segmentation results
on 25 scenes of the ScanNet [28] validation split. The accuracy
of the semantic segmentation models used in our experiments for
predicting labels in 2D is also measured, as it greatly influences the
performance of the multi-view fusion algorithms.

Model + Fusion Method 3D mIoU 2D mIoU

MSeg (HRNet-W48) – 35.3
Oracle (HRNet-W48) – 46.1

MSeg + Bayesian [21], [22] 45.8 –
MSeg + Diffuser (Ours) 53.8 –

Oracle + Bayesian [21], [22] 51.2 –
Oracle + Diffuser (Ours) 61.2 –

TABLE II: Single RGB-D frame semantic segmentation results on
25 sequences of the ScanNet [28] validation split. We compare our
multi-view approach to both single-view and multi-view alternatives
for transferring labels from 2D to 3D.

Method Num. views 2D mIoU

Oracle + Direct labeling 1 53.7
Oracle + LDLS [26] 1 56.2
Oracle + Bayesian [21], [22] 5 57.0
Oracle + Diffuser (Ours) 1 58.4
Oracle + Diffuser (Ours) 5 59.8

same subsampled sequences as in the global segmentation

experiments, we back-project each depth image in 3D and

then apply our multi-view fusion approach to label the

resulting point cloud using the 2D semantic predictions from

a subset of 5 neighboring frames. For evaluation purposes,

the final 3D labels are projected back to the original frame

and compared against the ground truth 2D labels.

We compare our multi-view fusion approach against

single-view and multi-view 2D-to-3D label transferring al-

ternatives. As shown in Table II, for the single-view case

we consider direct projection labeling, where each 3D point

is naively labeled based on the class assigned to its cor-

responding pixel, the recent LDLS [26] graph-based label
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DiffuSeR (5 views)DiffuSeR (single-view)Direct label projection

RGB LDLS (single-view)

Diffuser (5 views)

Bayesian (5 views)

Diffuser (single-view)Direct Label Projection

Fig. 3: Qualitative single-RGB-D-frame semantic segmentation
results on ScanNet [28]. Using label propagation algorithms, both
LDLS [26] and our approach are able to refine segmentation
boundaries when compared to direct projection strategies (green
circles). However, by considering surface normals, our approach
better guides the diffusion process and achieves a higher level of
detail (see the lower part of the chair within the blue circles).
In addition, by using information from neighboring views, our
approach is able to correct for potential single-frame prediction
errors, such as the left side of the desk being confused with the
bed in this case (red circles).

propagation approach and the proposed Diffuser algorithm

applied to the single RGB-D frame. For the multi-view case,

where semantic labels predicted at 5 neighboring frames are

fused, we also provide the results obtained with the Bayesian

fusion approach.

Among the single-view alternatives, we observe that our

method is able to improve segmentation accuracy when

compared to the LDLS graphical model, which does not

consider surface smoothness to propagate labels. In addition,

when using information from multiple views along with

geometric context, our framework is able to better correct

for single-frame prediction errors, showing consistent im-

provement with respect to both single-view approaches and

the multi-view Bayesian fusion strategy, which does not take

3D geometry into account (see Figure 3).

It is worth mentioning that, in our current GPU-accelerated

Python implementation, building the graph of point-to-point

edges and performing 100 label diffusion iterations on a point

cloud containing 30,000 points takes 0.3 seconds on average

on an Nvidia Quadro P2000, thus rendering our approach

suitable for online applications.

B. Evaluation on Outdoor Datasets

To evaluate the performance of our approach on other

challenging, but completely different environments, we also

run experiments on the real-world validation sequence of the

2018 3DRMS Challenge [29] as well as on one sequence

extracted from the Aerial Depth Dataset [1]. Here, given a

set of RGB images with a known camera pose, the goal is

to label the provided 3D point cloud of the scene.

Results of these experiments are summarized in Table

III and shown in Figures 4 and 1. Again, the proposed

Diffuser exhibits significant improvement with respect to

the Bayesian fusion approach by providing a more accurate

terrain vegetation

Bayesian Fusion DiffuSeR (Ours)

Ground Truth2D Semantic Segmentation2D Semantic Segmentation

Bayesian Fusion

Ground Truth

Diffuser (Ours)

Fig. 4: Qualitative segmentation results on the real-world validation
sequence of the 3DRMS Challenge dataset [29]. For evaluation pur-
poses, the classes considered by the original dataset are associated
with the MSeg universal classes [2] as follows: grass and ground are
mapped to terrain, while hedge, topiary, rose and tree are mapped
to vegetation. Main differences are highlighted within red circles.

TABLE III: Global 3D point-cloud semantic segmentation results
on challenging robotic outdoor datasets.

3DRMS [29] Aerial [1]
Model + Fusion Method 3D mIoU 3D mIoU

Cityscapes (PSPNet) + Bayesian [21], [22] – 30.1
Cityscapes (PSPNet) + Diffuser (Ours) – 34.3

MSeg (HRNet-W48) + Bayesian [21], [22] 88.4 59.6
MSeg (HRNet-W48) + Diffuser (Ours) 94.5 67.8

3D segmentation, independently of the 2D segmentation

architecture being used. It is worth noting that state-of-the-

art end-to-end frameworks for 3D segmentation might be

hard to apply in such scenarios, where the lack of enough

annotated 3D data becomes a limiting factor. By coupling

a multi-domain 2D semantic segmentation network with our

multi-view fusion scheme, we provide a flexible solution that

is able to achieve reliable performance in various types of

environments and eliminates the need for retraining.

V. CONCLUSION

In this paper, we presented Diffuser, a novel and efficient

approach to semantic 3D segmentation from multiple views.

Given a set of images processed by any 2D semantic

segmentation framework, the multi-view fusion problem is

solved via a graph-based label diffusion scheme that exploits

geometric context in order to propagate predicted class labels

from the 2D image space to the 3D scene map. The proposed

method is not restricted to any particular semantic classes or

types of environments and does not require 3D training data.

Therefore, it can benefit from multi-domain 2D segmentation

networks trained on massive datasets for wide applicability.

Evaluations on challenging benchmark datasets demon-

strate that the proposed approach is effective both locally and

globally, achieving superior accuracy compared to widely

used probabilistic fusion strategies. In addition, the incre-

mental nature of the algorithm and its computational ef-

ficiency make it especially suitable for online applications

running on computationally restricted platforms.
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