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Abstract— Recent developments in agriculture have high-
lighted the potential of as well as the need for the use of robotics.
Various processes in this field can benefit from the proper use
of state of the art technology [1], in terms of efficiency as well
as quality. One of these areas is the harvesting of ripe fruit.

In order to be able to automate this process, a robotic
harvester needs to be aware of the full poses of the crop/fruit
to be collected in order to perform proper path- and collision-
planning. The current state of the art mainly considers prob-
lems of detection and segmentation of fruit with localisation
limited to the 3D position only. The reliable and real-time
estimation of the respective orientations remains a mostly
unaddressed problem.

In this paper, we present a compact and efficient network
architecture for estimating the orientation of soft fruit such as
strawberries from colour and, optionally, depth images. The
proposed system can be automatically trained in a realistic
simulation environment. We evaluate the system’s performance
on simulated datasets and validate its operation on publicly
available images of strawberries to demonstrate its practical
use. Depending on the amount of training data used, coverage
of state space, as well as the availability of RGB-D or RGB
data only, mean errors of as low as 11◦ could be achieved.

I. INTRODUCTION

In recent years, global developments have highlighted the
benefits brought to modern agriculture by state-of-the-art
(SOTA) technology. Rising cost and decreasing availability
of human workers, most recently emphasised by the shortage
of seasonal workers caused by the COVID-19 pandemic,
introduce the need for a higher degree of automation in
industrial agriculture [2]. Due to that, the appeal of increased
use of robotics for agriculture becomes apparent [3].

One possible application for automation is the harvesting
of ripe fruit. This task implicitly poses several technical
challenges, ranging from the detection of the fruit to be
harvested over the path planning for the gripper up to the
actual step of harvesting and storing. In this paper, we focus
our attention on the first part, the recognition and detection
of the ready to harvest fruit, specifically of ripe strawberries.

Strawberries, like many other varieties of fruit but unlike
most man-made objects, have several characteristics which
can pose a difficulty during harvesting. Primarily, they are
relatively soft and bruise easily, which makes grasping them
a challenge. But also the perception aspect poses difficulties.
While the 2D-detection in RGB images is relatively well-
addressed in prior work [4][5], estimation of the 6D-pose still
remains a problem. Having access to the full pose, however,
is essential for an ideal execution of the harvesting process.
More specifically, optimal path planning not only requires
full 3D-positions, which can for example be obtained by pro-
jecting 2D-detections into 3D-space utilising an additional

depth sensor [6], but also the rotational information needs
to be considered to avoid damaging the produce. Therefore
it becomes imperative to accurately estimate the orientation
of strawberries for the application of automated harvesting.
The challenges introduced by this task and possible solutions
will be discussed in more detail in the following sections.

In order to overcome the aforementioned difficulties, we
propose a set of novel contributions including:

• a compact and efficient network architecture capable
of estimating the rotational configuration of rotationally
symmetric objects, in our case individual strawberries,
from colour and additional depth image cues;

• a system capable of auto-generating RGB & depth
(RGB-D) data with corresponding segmentation maps
in simulation, which we use for the training process,
covering large variations in lighting, appearance and
variety of fruit;

• validation of the proposed framework on publicly avail-
able datasets of real strawberries.

II. RELATED WORK

The idea of estimating the rotation of an object is of
course not new; several conventional methods, using local
or global descriptors, have been tried and tested in the
past [7][8]. More recently, learning-based approaches have
been evaluated as well. Park et al. [9] propose a learning
based combination of local and global descriptors, capable of
estimating the full 6D poses of objects from cluttered images,
using 2.5D image data and CAD models of the objects of
interest. Xiang et al. [10] propose PoseCNN, which estimates
the full 6D pose of objects as well, using RGB images with
the addition of depth maps for the purpose of registration,
using ICP, after the initial regression step. RotationNet by
Kanezaki et al. [11] takes a different approach, using only
RGB images taken from multiple viewpoints of models
which the network then learns to estimate the poses of.

Pose estimation applications for agriculture have been
researched thoroughly as well; Guo et al. [12] present a
point cloud-based algorithm using 3D-reconstruction and an
ICP approach for estimating poses of fruit which works
well, but is computationally expensive and comparatively
slow. Lin et al. [13] detect and estimate the poses of guavas
using a low-cost RGB-D sensor with reasonable accuracy,
but their approach is relatively slow as well; this is due
to the plant-specific characteristics requiring the authors
to also reconstruct branches in order to avoid collision.
Strawberry foliage on the other hand can be pushed aside by
a gripper and therefore we do not face this issue. Eizentals



& Oka [14] investigate pose estimation of bell peppers,
but their algorithms are based on LIDAR-data, which limits
their applicability because the necessary, typically expensive,
sensors have to be available.

In our approach, we choose a novel configuration of low-
cost input data, rotation annotation style and an estimation
tool more compact and specialised than existing solutions,
hence more portable and faster. We address the issue of
rotational symmetry and circumvent it by using a custom
annotation style for the rotational configuration. Furthermore,
we implement a way to generate arbitrary amounts of RGB-
D training data with segmentation maps from simulation and
also investigate the possible performance on real data.

III. METHODS

This section describes the individual components of our
system including the types of sensors providing the input
data, orientation representation, the proposed orientation
estimation network architecture and a simulation tool for
automated training and data annotation.

A. Sensors & Data Formats

Most object detection frameworks use RGB or RGB-D
cameras as an input [15][16]. So, in order to minimise
the need for further hardware, an orientation estimation
tool should ideally also utilise these sensors. Furthermore,
many industrial camera systems already provide off-the-shelf
(OTS)-solutions for RGB-D sensors [17][18][19], which
increases their attractiveness for the application in question.
Therefore, we also choose an RGB-D camera as the input
for our orientation estimator. This also affords the option to
run it on RGB data alone, albeit with decreased accuracy.

B. Rotation Parameters

For the format of the orientation output once again
application-specific constraints have to be taken into con-
sideration, the most important one being that the objects of
interest, i. e. strawberries, are roughly rotationally symmetric
around a defined main axis. Thus, an estimation of popular
orientation representations like roll, pitch and yaw (RPY)-
angles [20] would fail, since vastly different combinations
of angles can lead to very similar views.

This would confuse an estimation tool, therefore we resort
to estimating the parameters of a unit vector pointing from
the stem to the tip, i. e. along the main rotational axis, of the
strawberry. By doing so, we avoid the aforementioned prob-
lems and obtain unique representations for every possible
view. This concept is illustrated in Fig. 1.

C. Orientation Estimator

After defining the input and output data formats, we
finally focus on the actual tool estimating rotation parameters
from RGB-D images. Since we consider object detection
and image segmentation a solved problem, as mentioned in
Section I, we decide to only feed images of individual berries
into our estimation tool in order to reduce the complexity of
the required architecture. We therefore only need a relatively

(a) Rendering obtained from
the rotational configurations:
RPY: 300◦ / 10◦ / 30◦

equivalent to
XYZ: 0.35 / 0.82 / 0.49

(b) Rendering obtained from
the rotational configurations:
RPY: 50◦ / 40◦ / 170◦

equivalent to
XYZ: 0.27 / 0.79 / 0.49

Fig. 1: Renderings of two different rotational configurations
from the same viewpoint of the same object.

simple image feature extractor with a three-dimensional
regression output so we can estimate an orientation for
each individual berry. Many solutions exist for the image
feature extraction task, each with individual benefits and
peculiarities [21]. We choose a VGG16-style network [22],
as it is a well-established feature extractor with all the
capabilities needed for our application. We add a three-
dimensional linear regression output instead of the typical
one-hot-encoded classification output of standard VGG16-
networks [22], thus adding the capability of estimating the
three parameters of a unit vector as discussed in Section
III-B. A schematic of the resulting rotation estimator is
illustrated in Fig. 2.

D. Loss Function

To train the network, we additionally require a loss func-
tion to evaluate errors made by the network when predicting
an orientation. Xiang et al. introduce ShapeMatch-Loss [10],
which focuses on matching the 3D shape of an object. This
is a good approach for man-made objects which are always
of the same shape, very much unlike plants. Also, comparing
3D shapes is typically computationally expensive, making it
a poor choice for our use case.

Park et al. [9] represent the poses of objects of interest
as quaternions and calculate the loss as a simple Euclidean
distance of two quaternions. This is a lightweight approach
capable of dealing with natural, non-man-made objects, but
based on quaternions, unlike our rotation representation.

We therefore create our own custom loss function which
combines robustness with computational efficiency. For two
vectors, one being the ground truth and one being the
estimation of the rotational configuration for a single object,
a straightforward choice for a loss function would be the
angle between them. However, we also want to be able to
use the loss value for training. For this, values between 0
and 1 are preferable over raw angles, so training algorithms
can be kept agnostic of the type of problem. Due to other
problems which have to be considered when designing a
loss function [23], we resort to using a modified version
of the cosine similarity for quantifying the quality of the
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Fig. 2: The modified VGG16 network used for rotation estimation.

estimations. Cosine similarity itself is defined as the cosine
of the angle between two vectors:

cos. similarity = cos(φ) =
u · v
|u| · |v|

where u and v are the two vectors in question and φ is the
angle between them. With slight modifications, this function
instead gives us a loss value between 0 and 1 for each set
of directional vectors, with 1 being two vectors pointing in
completely opposite directions and 0 being two vectors with
identical directions. The loss function for this becomes:

I =
1− cos(φ)

2

with φ as above and I being the loss value. A graphic
representation of this loss function is illustrated in Fig. 3.

Fig. 3: The custom loss function based on the cosine simi-
larity.

Theoretically, we could also use simple linear scaling to
obtain error values between 0 and 1. However, our loss
function creates a nonlinear relationship between the angular
error and the error value used for training, which is preferable
since our loss function does not ”punish” smaller errors as
strictly, leading to easier convergence and less overfitting.

E. Realistic Simulation Environment

Nowadays, a large number of datasets is publicly available
for many applications, but most of them are only annotated
in terms of location, segmentation and type of objects of

interest. For our application, however, further annotation is
required. In order to train our network to estimate the rotation
parameters discussed in Section III-B, we need an annotated
strawberry-dataset with rotational parameters.

Annotating datasets manually is a tedious task, especially
concerning rotation parameters. While the manual annotation
of, for example, segmentation masks can be done sufficiently
well manually, annotating rotational information is another
matter. The time needed for the same number of images
is vastly higher and the quality of annotations significantly
lower, since without a proper perspective view a lot of
guessing is required for an untrained person.

Due to all of these reasons, we resort to creating new, ar-
tificial datasets, obtained from simulation-based renderings,
which contain all the annotations we need for training and
testing our rotation estimation tool. Since we are running a
robotic simulation, most of our previous work is based on the
well-established Gazebo-simulator [24]. In order to minimise
additional overhead, we also choose this simulator as a basis
for the creation of our artificial training datasets.

Naturally, we need to provide simulation models of the
objects we want to generate datasets of. After obtaining point
clouds of strawberries with the help of a multi-view stereo
imaging system as in [25] and refining them using Blender
software [26], we end up with models usable in common
simulation environments, including Gazebo. The renderings
in Fig. 1, for example, were obtained using the strawberry
models thus generated. We are, however, not limited to
individual berries; to create more diverse datasets, we can
also include cluttered scenes, foliage and the like in the
simulation environment so that this may also be represented
in the dataset. Possible examples are shown in Fig. 4.

To evaluate the performance of the model on real data,
we manually annotated some strawberry images in terms of
orientation as well. For this, we made use of an existing
database featuring high-resolution images of strawberries
[27] and added the necessary annotations manually. This
dataset contains 1611 different berries of 15 varieties in
total. However, it does have the downside of not providing
depth information, which means that we can only evaluate



(a) A cluttered scene. (b) A scene with foliage.

Fig. 4: Examples of non-individual berries which can be sim-
ulated and automatically annotated by the proposed system.

the network configuration trained on RGB data alone.
The mentioned database also has the additional downside

that all images are taken from 22 discrete viewpoints, iden-
tical for all berries. This means that, while large, the dataset
is not very diverse in terms of rotational configurations.
Furthermore, all images in this dataset have been taken in
controlled conditions, i. e. with identical backgrounds and
very similar lighting conditions. This again highlights the
benefits of the automated annotations tools, as pointed out
previously. Due to the sparsity of suitable real datasets, we
still choose this dataset as an evaluation basis, as it offers a
good middle ground and can be annotated in terms of rotation
from the prior knowledge of the viewpoint from which each
image was taken, as mentioned above.

IV. EVALUATION

This section describes the evaluation methodology used
to assess the performance of our system including data
collection, evaluation metrics and experimental results.

A. Data Collection

Using Gazebo, it is possible to simulate colour- and depth-
cameras with little effort; ready to use models, featuring both
sensor types, already exist. The Intel RealSense cameras [18],
for example, provide Gazebo plugins for easy simulation
of this system. We choose to use these cameras with their
simulation plugins, since they are robust, well-established
and a popular choice in robotics. Gazebo is also capable
of simulating sensor noise, but for the sake of simplicity we
have chosen not to add any to this proof-of-concept example.

We are now still missing one crucial feature for creating
artificial datasets: using Gazebo, it is not directly possible to
create segmentation maps for rendered images created from
the simulated cameras. This causes problems because it does
not allow us to fit the bounding boxes for the annotations
correctly to the objects of interest. In order to overcome this
issue we have created a Gazebo-plugin [28], which, in simple
terms, performs a form of raytracing for each pixel in the
image in order to create a full segmentation map with unique
IDs for each object of interest. We thus can obtain RGB-D
images with corresponding segmentation maps as well as
the state information (containing position and orientation)
for each object of interest, as they are being published by
Gazebo. We use this information to automatically annotate

the image stream from the simulated cameras with the
information obtained by the segmentation plugin and the
Gazebo state publisher. We then export the resulting data
as a ready-to-use dataset in a COCO-like format [29]. This
allows us to create and annotate as much data as necessary
or desired with all the features we require. Some examples
of annotated berries in such a dataset are shown in Fig. 5.

Fig. 5: Example images of training data generated by the
automated annotation tool. The orientation annotation is
depicted as an arrow projected onto the 2D colour images.

The tool, however, is obviously not limited to such images
as shown here, since it can automatically annotate anything
that can be simulated in Gazebo. This means that lighting
conditions and other environmental factors can be varied
arbitrarily for the purpose of data augmentation.

B. Evaluation Metrics
We train and test the proposed rotation estimation net-

work on a set of simulated data generated using the tools
and methods introduced in Sections III-E and IV-A. While
the renderings for the evaluation are being obtained from
the same simulation environment with the same strawberry
models being used, all other conditions are being chosen to
be as different as possible from the training data: different
lighting conditions and different backgrounds were used to
create the images, and most importantly, some rotational
configurations, which had not been present in the training set,
are being chosen. These conditions are selected in order to
verify as well as possible that the network does not overfit on
the simulated images due to their low variance in comparison
to real data. For this example, no further image augmentation
was used in order to analyse the performance achievable from
the unaltered, simulation-generated datasets alone.

The quality of an estimation made by the network is
evaluated in terms of the angle between ground truth and the



network’s estimate of the orientation of a berry. Furthermore,
we manually annotate a real dataset, i. e. a number of images
of real strawberries, in terms of rotation, to test the network’s
domain transfer capabilities and performance on real data.
Finally, we measure the inference time of individual samples
for all data. The given performance is measured when run
on an NVIDIA GeForce GTX 1660 Ti [30].

C. Performance on Simulated Data

The distribution of angular errors resulting from the test
sets is illustrated in Fig. 6. For these results, the network was
trained on 3050 samples using a 9:1 validation split. The test
dataset consisted of 97 different samples. The training and
test processes were conducted on the RGB-D data as well as
the RGB data only. The results of both variants are shown.

Fig. 6: Absolute performance of the rotation estimator on
the simulated data in terms of the angular errors made when
making a prediction. Performances of estimators trained only
on RGB data vs. those trained on RGB-D data are shown.

The error distribution, with a mean error of roughly 22.1◦

and a median error of around 18.8◦ when trained on RGB-D
data, illustrates the feasibility of the implemented approach.
If trained only on RGB images without the additional depth
component, the results become comparatively worse with
a mean error of 29.7◦ and a median error of 24.6◦. We
therefore can conclude that using RGB-D data does indeed
provide a benefit over using RGB data only. The inference
time for individual samples was measured to be around 12ms.

Furthermore, we also observe that the network consistently
performs slightly worse on some samples than on others
(note the presence of the second peak around 40◦ errors in
Fig. 6 for both evaluated estimators), which calls for further
investigation. We therefore resort to analysing the training
data used and relating it to the performance of the estimator
on the test data by creating a 2D-state-space of azimuth and
elevation of the directional vector estimated by the network.
This allows us to observe the coverage of the state space by
the training data used and to relate the performance of the
network to the coverage. This is illustrated in Fig. 7.

In this graph, coverage of the state space achieved by
the training data provided is illustrated by a coloured back-
ground; in areas where training data did not cover the state
space sufficiently, the background is left white. Smaller dots
illustrate test samples in the state space. The performance
of the network for each individual sample is illustrated by
lightness of the dots; darker dots correspond to better, lighter

Fig. 7: Performance on test data in relation to available
training data. Areas with available training data are coloured
blue; for some parts of the state space no training data was
provided intentionally in order to evaluate the influence.
Performance is encoded in the smaller dots, with lighter
colours corresponding to a higher degree of error.

dots to poorer performance. Another conclusion can thus
be drawn from this illustration: areas with a state space
more densely populated by training data also yield a better
performance on the test data, which matches the expected
behaviour. Therefore, we conclude that the network did
indeed learn to deduct the rotational configuration from an
individual rendering successfully.

Fig. 8 shows examples of good and bad estimates, allowing
for another conclusion: the network appears to perform better
on side views of fruit than on angled, bottom or top views.
We can thus assume a better visibility of the berry tip
orientation correlates with easier deduction by shape alone.
Improved usage of available depth data, e.g. by usage of an
alternative feature extractor for depth maps, could enhance
performance on other views. Especially viewpoints with the
berry tip pointing towards the camera may benefit from this,
however further research is needed to confirm.

Fig. 8: Orientation vectors estimated by the network from
simulated data, projected onto RGB images. Four good (top)
and bad (bottom) estimations each are given.

In order to achieve better performance for other view-
points, further effort needs to be put into providing more or
better training data. For a more consistent performance, the
aim should also be to cover all of the state space illustrated
in Fig. 7 with sufficiently diverse training data, so that the
network may learn to handle every possible viewpoint.



D. Performance on Real Data

To evaluate performance on the real dataset described in
Section III-E, we train the network on 5000 real samples
using a 9:1 validation split and test it on 200 different, real
samples. The results for this are given in Fig. 9 in the same
way as previously in Fig. 6.

Fig. 9: Absolute performance of the rotation estimator on
real data in terms of the angular errors made when making
a prediction. Only RGB data has been used.

We observe significantly better performance on this dataset
than on the simulated one, with a mean error of 11.3◦ and
a median error of 9◦. To discover the reason for this, we
relate the test samples to the training samples like in Fig. 7.
An illustration for the real data, in line with the illustrations
given for simulated data, is provided in Fig. 10.

Fig. 10: Performance on test data in relation to available
training data. Areas with available training data are coloured
blue. Performance is encoded in the smaller dots, with lighter
colours corresponding to a higher degree of error.

In these training data, the state space is very sparsely
populated due to reasons mentioned above. This means
that the network learns to estimate poses present therein
very well, but would likely fail on rotational configurations
absent therefrom. Furthermore, there are no cluttered scenes
or foliage either. We can circumvent these problems by
producing arbitrarily large, diverse datasets in simulation. To
illustrate the real dataset and the network’s performance on
it, some good and bad estimates are shown in Fig. 11, in line
with the simulated examples in Fig. 8.

This figure also highlights that a dataset is only as good
as the annotations provided. In this case, bounding boxes are
chosen very narrowly which leads to rather aggressive crop-
ping of the images, possibly not giving enough context for
the network. This is another issue which can be circumvented

Fig. 11: Orientation vectors estimated by the network from
real data, projected onto RGB images. Four good (top) and
bad (bottom) estimations each are given.

by generating artificial datasets; The size of the bounding
boxes can be defined to include as much context as desired.

However, due to the very specific lighting conditions and
varieties of berries present in the real data, which differ
largely from the models currently available to us, training
the network on simulated and performing estimates on real
data leads to poor results. To achieve proper domain transfer,
more models are needed.

Finally, inference time was measured again for real sam-
ples and was found to be around 7ms. The lower inference
time for this dataset is likely due to more samples being eval-
uated and common overhead being more evenly distributed.

V. CONCLUSIONS

In this paper, we have presented a compact and portable
feature extraction network trainable with the help of a custom
loss function in order to be able to estimate the orientation
of individual objects, specifically strawberries. We have also
presented a novel approach to generating diverse training
data from robotic simulation environments. Plugins for the
Gazebo simulation tool have been introduced which allow the
automated generation of COCO-style-datasets with colour
and depth information, segmentation maps as well as bound-
ing box information. The auto-generated training data has
been used to train and evaluate the proposed network.

It has been shown that the estimation tool introduced was
capable of deducing rotational configurations of simulated
berries after being trained on a different set of simulated data.
The estimator was then tested on some manually annotated,
real data and the capabilities of learning to estimate the poses
of real data have been shown.

The proposed network is a compact and efficient tool
suitable for real-time applications due to its low inference
time of around 10-15ms per object.

Future work could include the investigation of possible
benefits of using further and more training data, be it from
simulation or real, to enable the network to achieve proper
domain transfer from simulation to real data as well. Finally,
we call for the inclusion of more information, such as
rotational configurations of objects, into newly generated
datasets, so that more training data for this type of problem
may be more easily available.
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