
City-scale Scene Change Detection using Point Clouds

Zi Jian Yew1 and Gim Hee Lee1

Abstract— We propose a method for detecting structural
changes in a city using images captured from vehicular mounted
cameras over traversals at two different times. We first generate
3D point clouds for each traversal from the images and
approximate GNSS/INS readings using Structure-from-Motion
(SfM). A direct comparison of the two point clouds for change
detection is not ideal due to inaccurate geo-location information
and possible drifts in the SfM. To circumvent this problem,
we propose a deep learning-based non-rigid registration on
the point clouds which allows us to compare the point clouds
for structural change detection in the scene. Furthermore, we
introduce a dual thresholding check and post-processing step to
enhance the robustness of our method. We collect two datasets
for the evaluation of our approach. Experiments show that our
method is able to detect scene changes effectively, even in the
presence of viewpoint and illumination differences.

I. INTRODUCTION

3D point clouds reconstructed from image-based
Structure-from-Motion (SfM) are often frozen in time and
thus gradually loses its ability to model the constantly
changing environment with high fidelity. The first step
towards maintaining an up-to-date city-scale 3D model is to
detect changes in the geometric structure of the scene, while
excluding other nuisance factors such as appearance changes
from illumination or viewpoint differences. Detecting
temporal changes in a city is an important problem, with
many applications such as maintaining updated maps for
autonomous driving systems [1], surveillance [2], and
disaster damage assessment [3].

One naı̈ve way of computing the changes is to directly
compare images between the two traversals using some
variant of image differencing [4], [5]. However, such ap-
proaches are sensitive to illumination differences between the
two acquisitions. In addition, they require near pixel-perfect
alignment to work well which can be hard to achieve on a
moving camera. Several works [1], [6] tackle this problem
using a 3D model of the scene. These typically reconstruct
a dense 3D model and recover the camera poses using
SfM and multi-view stereo (MVS) techniques. The dense
models can later be used for dense image alignment [1] or to
reproject pixels between images to detect inconsistencies [6].
However, obtaining accurate camera poses across traversals
can be challenging. GNSS errors can often be several meters
in urban environments; SfM techniques can also fail due
to appearance differences which can be due to illumina-
tion differences or even large scene changes. In addition,

*This work is supported in part by the Singapore MOE Tier 1 grant
R-252-000-A65-114.

1Zi Jian Yew and Gim Hee Lee are with Department of Com-
puter Science, National University of Singapore {zijian.yew,
gimhee.lee}@comp.nus.edu.sg

𝑡!

𝑡" 𝑡!

𝑡"

Fig. 1. Visualization of changes detected in the Business District using
our approach. Blue and red indicate points which disappeared or appeared
respectively (i.e. only present during t0 or t1). We also show images
capturing the changed scene. Our approach detects the appearance of a
new building as well as the disappearance of cranes and road barriers.

reconstructing the dense model is computationally expensive
and dense reconstructions are arguably unnecessary for many
applications such as localization of autonomous vehicles [7].

To avoid these problems, we register and detect changes
using the 3D point clouds instead of registering images
across traversals. We first reconstruct sparse point clouds
separately for each traversal using SfM [8]. The reconstruc-
tion can be fairly robust since each traversal is captured
within a short timespan and contains limited scene and
illumination changes. The reconstructed point clouds from
the two traversals are geo-registered using GNSS/INS data,
but may not align perfectly due to GNSS/INS and reconstruc-
tion inaccuracies. We tackle this by performing a non-rigid
registration to warp one of the point clouds to the other.

The changes can now be detected by comparing the two
point clouds. Comparing point clouds generated from SfM
comes with its own challenges. In particular, reconstructions
of the same scene at different times may vary significantly
due to variations in imaging conditions. To alleviate this
issue, we employ a dual thresholding scheme where we com-
pare between subsampled and original point clouds to detect
changes. The point clouds are subsampled by considering
only points which can be reliably observed from a larger
number of images. These points are more stable and likely
to be reconstructed in the other traversal.

We demonstrate the effectiveness of our approach on two
datasets collected over two different areas. Each dataset
contains images and GNSS/INS readings of the same route
over two traversals that are roughly two months apart. Our
datasets contain large changes e.g. building construction or
demolition, and smaller ones, e.g. vehicle movements or tree
planting. Experiments show our approach can detect these

ar
X

iv
:2

10
3.

14
31

4v
1

 [
cs

.C
V

]
 2

6
M

ar
 2

02
1

structural changes even in the presence of viewpoint and
illumination differences. Fig. 1 shows an example of our
detection result. Our contributions are as follows:
• Propose a deep learning-based non-rigid point cloud

registration to align two imperfect point clouds.
• Design a point cloud comparison scheme to reliably

detect changes.
• Collect two datasets of images and GNSS/INS readings

to validate the effectiveness of our approach. Our recon-
structed point clouds and annotated image pairs will be
made available on our project webpage1.

II. RELATED WORK

Change Detection. Change detection methods can be
broadly classified as 2D or 3D. 2D methods generally com-
pare input images though some variant of image differencing
[4], [5], and tend to be sensitive to illumination differences
or misalignments between the images. To partially overcome
these issues, the images are often preprocessed to remove
illumination variations [9], and registered [10] to each other.
Despite this, 2D methods remain sensitive to viewpoint
changes as they typically require pixel perfect registration
to work well. Also, most 2D methods detect appearance
changes which may not correspond to actual scene changes.
3D methods make use of a known 3D scene structure or
reconstruct it from the input images to better detect structural
changes. Taneja et al. [6] assumes that a 3D model of the
scene in the previous time step is available and detects
changes by checking the consistency during projection be-
tween images in the later time step. Ulusoy and Mundy [11]
extends this to infer changes in the 3D model itself. Sakurada
et al. [3] foregoes the dense model and instead makes use of
stereo pairs in both time steps to perform the reprojection.
Another direction is to generate a spatio-temporal model
from images captured at various times by incorporating time
into SfM methods. [12], [13] infer the temporal ordering of
images and the temporal extent of 3D points in the scene by
analyzing the SfM output. Lee and Fowlkes [14] optimizes
a probabilistic spatial-temporal model using expectation-
maximization to simultaneously register 3D maps and infer
the temporal extents of scene surfaces. Most of the above
methods require accurate relative camera poses between the
two times, which can be difficult to obtain especially when
the scene has changed.

Change Detection using Deep Learning. More recently,
several works [1], [15]–[19] apply deep learning to detect
scene changes. These works learn to compare two input
images to detect changes in a strongly supervised manner,
requiring pixel level [1], [15], [18], [19] or patch level [17]
annotations which can be highly tedious to obtain. To avoid
the need for annotation, Sakurada and Okatani [20] compare
normalized features extracted from an upper layer of a con-
volutional neural network pretrained on a image recognition
task, and make use of super-pixel segmentations to obtain

1https://yewzijian.github.io/ChangeDet

high resolution outputs. Despite the good performance shown
by these works, these image-based methods remain sensitive
to viewpoint differences since they do not consider the 3D
structure of the scene. Alcantarilla et al. [1] partly alleviates
this issue by performing a dense warp between images, but
requires a computationally expensive dense reconstruction
and accurate relative camera poses across the two traversals.
Point Cloud Registration. The above change detection
works often require accurate image registration, which can
be difficult to achieve under scene changes or illumination
variations. We circumvent these challenges by generating
3D point clouds from the input and registering the point
clouds instead. Point cloud registration methods can be
broadly classified into 1) feature-based methods [21]–[23]
which establish correspondences by matching descriptors
before computing the transformation, and 2) simultaneous
pose and correspondence methods [24], [25] that typically
use iterative schemes to estimate both pose and correspon-
dences. Learned variants of both feature-based [26]–[30] and
simultaneous pose and correspondence [31]–[34] methods
are also available. One particular work, DeepMapping [32]
optimizes for the registration objective by training a neural
network. Depending on the application, point clouds may
undergo local deformations which requires estimating a non-
rigid transformation. In this work, we extend DeepMapping
to handle non-rigid deformations through the use of Gaussian
Radial Basis Functions (RBFs), which have been used in
many point cloud registration works [35]–[37].

III. OUR CHANGE DETECTION PIPELINE: OVERVIEW

Fig. 2 shows our change detection pipeline. The inputs
are images from two time steps and their approximate
GNSS/INS poses (Section IV-A). We first use SfM to re-
construct geo-registered point clouds (Section IV-B). Inac-
curacies in SfM result in deformations of the reconstructed
point clouds. We remove these deformations by applying a
non-rigid registration to align the two point clouds (Section
V-A). Finally, the registered point clouds are compared to
detect the scene changes (Section V-B). For convenience,
we list important algorithm parameters in Table I.

SfM
Non-rigid

Registration
Compare

Point Clouds

Images at 𝑡! , 𝑡"

3D Change map

Point clouds

SfM

Fig. 2. Our change detection pipeline

IV. FROM IMAGES TO POINT CLOUDS
A. Data Acquisition

Our data acquisition platform is a vehicle with two side-
mounted wide-angle color cameras. The cameras capture
images with a resolution of 2464 × 2056, and are set to
auto-exposure to adapt to different lighting conditions. The
vehicle is equipped with a GNSS/INS system which is time-
synchronized to the camera system. Images are captured

https://yewzijian.github.io/ChangeDet

TABLE I
TABLE OF PARAMETERS

Module Parameter Value

Registration
basis points, K 36

Max. chamfer distance δreg 10
Regularization weight, λreg 0.01

Change
detection

Subsampling track length τss 7
Max. chamfer distance δcd 10

neighbors for mean filtering, k 7
Min. distance for changes, τcd 2.0

every 0.6m of distance traveled. This distance was chosen
taking into account reconstruction efficiency, while still al-
lowing nearby objects to be observed from multiple images.

B. Sparse Reconstruction

We generate sparse point clouds from the images using a
modified version of the COLMAP [8] SfM pipeline. Follow-
ing [38], we minimize the time required for reconstruction
by only matching images that are within 20m, and use the
GNSS/INS readings to initialize the camera poses. Fig. 3
shows an example of the reconstructed point cloud with our
Business District (BD) dataset.

Fig. 3. Our reconstructed point cloud of the Business District (BD) dataset.
We also show a zoomed in view of the point cloud and a sample image.

V. DETECTION OF CHANGES

A. Non-rigid Registration

The outputs from the previous stage are two geo-registered
point clouds. However, GNSS/INS and reconstruction in-
accuracies lead to local deformations in the reconstructed
point clouds. The local deformations result in misalignment
between the two point clouds, and they cannot be compared
directly for change detection. To alleviate this problem, we
perform non-rigid registration to reduce the misalignment
of the two point clouds. More formally, given a reference
Pref and source Psrc point clouds, the goal of non-rigid

registration is to find the parameters θ of the non-rigid
warping T (Psrc;θ) that warps Psrc into the best alignment
with Pref , i.e.

argmin
θ

L(Pref , T (Psrc;θ)). (1)

We parameterize the non-rigid warping T (.) using Gaussian
Radial Basis Functions (RBFs). The quality of alignment
between reference and warped source point clouds L is
given by the squared Chamfer distance, and a regularizer
on the parameters. Instead of a direct minimization of L
using solvers such as Levenberg–Marquardt, we use it as the
registration loss in a deep neural network that takes Pref and
Psrc as inputs and outputs the optimal θ. We now describe
these components in more detail.

1) Gaussian RBF model: Gaussian Radial Basis Func-
tions (RBFs) have been used for warping images [39] and
point clouds [35], [36] due to its implicit smoothness. The
smoothness property is important as it discourages warpings
which are too arbitrary. A Gaussian RBF with K basis points
maps a 3D point xi ∈ R3 to its target position T (xi;θ) ∈ R3

with the following function2:

T (xi;θ) = xi + φ(xi) ·W, (2)

where W is the K × 3 warping coefficient matrix. φ(xi) is
the RBF kernel, and is a 1×K vector for each point xi:

φ(xi) =
[
g(‖xi − c1‖) . . . g(‖xi − cK‖)

]
, (3)

where c1...K denotes the anchor centers for the warp, ‖·‖
denotes the `2 norm and the kernel function is a Gaussian
form, i.e. g(t) = e−t

2/σ2

. Intuitively, the anchor centers ci’s
control the regions to warp, and W controls the magnitude
and direction of the warp around each of these regions.
Since the 3D point clouds are reconstructed from images
captured from a car moving on the ground, drifts typically
occur along the x and y directions. Therefore, we only
consider the distances along the xy plane when computing
the kernel values. Putting the Gaussian RBF into Eq. 1, the
goal now becomes finding the optimal RBF parameters θ =
{c1, ..., cK , σi, ..., σK ,W}. Assuming spherical covariances
for the Gaussians, there are a total of 2K +K + 3K = 6K
parameters to be estimated.

2) Registration Loss L: To encourage the alignment of
the points, we minimize the squared Chamfer distance
between the reference Pref and the transformed source
P′src = T (xi;θ) point clouds. The squared Chamfer distance
between two point clouds X,Y is defined as:

LCD(X,Y) =
1

|X|
∑
x∈X

ρreg(min
y∈Y
‖x− y‖2)

+
1

|Y|
∑
y∈Y

ρreg(min
x∈X
‖x− y‖2),

(4)

where ρreg(·) = min(·, δreg) clamps the Chamfer distance
for robustness, and we set δreg = 10m2 in all experiments.

2The equation assumes no rigid/affine component for the warp, which is
reasonable since the point clouds are already registered using GNSS/INS.

Despite the use of smooth Gaussian RBFs, we observe
empirically that severe warping may still occur, particularly
in regions with changes. We further encourage smoothness
by introducing an additional term Lreg to regularize the
warping by penalizing large motions of small regions:

Lreg(W, σ1,...,K) =
1

K

K∑
i=1

‖wi‖
σ2
i

, (5)

where wi denotes the ith row of W. The final loss is then
the sum of the two losses:

L = LCD + λregLreg. (6)

3) Optimization with Neural Network: Inspired by
DeepMapping [32], we design a deep neural network for
the non-rigid registration. As explained in [32], an indirect
optimization using a deep network is akin to changing vari-
ables [40] and leads to an empiricially easier optimization.
Our network is shown in Fig. 4. We feed Psrc into a
permutation invariant PointNet [41] network, which outputs
the transformation parameters θ for alignment to Pref . We
omit activations for the outputs with the exception of σ1..K ,
where we use the softplus activation to constrain them to
be positive. Furthermore, instead of predicting the absolute
positions for the Gaussian centers c1..K , we find it beneficial
to predict the offsets from predefined positions sampled using
a uniform 2D grid over the entire point cloud. To register
the point clouds, we simply train the network to reduce
the alignment and regularization losses in Eq. 6 using the
Adam optimizer [42] with a learning rate of 5e-4. For all
experiments, we set K = 62 = 36.

𝑃!"#

Shared FC-64

Shared FC-128

Shared FC-128
M
ax-P

ool

FC-512

FC-256

FC-6𝐾
Deep network

Transformation
parameters

𝜽 = {𝜎$..&, 𝐜̅$..&, 𝑾}

Transform
point cloud

𝑃!"#'𝑃"()

ℒ"(*

ℒ+,

Fig. 4. Our network architecture for non-rigid registration (FC-N : denotes
fully-connected layer with N output nodes).

B. Detecting Changes by Comparing Point Clouds

The reference and transformed source point clouds are
compared in this step to compute the changed regions. Fig.
5 illustrates our change detection pipeline. Point clouds
reconstructed through SfM contain a fair amount of noise and
variation, and thus our change detection pipeline compares
point clouds using a dual thresholding scheme and applies
filtering to clean up the change map.

𝑃!"#$

𝑃"%&

Subsample

Subsample

Post-process
change map

Compare

Compare
Combine

+ Changes

Fig. 5. Point cloud comparison pipeline

1) Dual Thresholding: Points reconstructed from SfM
may vary between reconstructions due to many factors (e.g.
illumination), which lead to false positives during com-
parison. To circumvent this problem, we employ a dual
thresholding scheme, where two different sampling ratios
or “thresholds” are used to detect the disappearance and
appearance of points. Specifically, when detecting new points
in the transformed source point cloud P′src, we compare its
subsampled version with the original reference point cloud
Pref . Similarly, we consider the subsampled Pref when
detecting new points in it. The points are subsampled by
retaining only those with a track length above τss = 7. The
motivation is that these points are observable in large number
of images with different viewpoints, and are likely to be more
stable and reconstructed in the other point cloud. We also
detect and remove points on the ground during this stage as
we find them to be less repeatable between reconstructions.

2) Point Cloud Comparison: We compute the change
response by considering the distances between points in the
two point clouds. Specifically, the change response C(x) of
a point x ∈ P′src describes how likely it is a changed point
not present in Pref and is given as the distance to the closest
point in Pref :

C(x) = ρcd(min
y∈Pref

‖x− y‖), (7)

where ρcd(·) = min(·, δcd) clamps the distance for robust-
ness, and we set δcd = 10m. To increase sensitivity, we
only consider point pairs with similar normals within 40◦

of each other. Points in Pref which are not present in Psrc
can be detected using a similar formulation, but this time
considering the downsampled Pref .

3) Post-processing of Change Map: We post-process the
change map in this step to filter out spurious changes.
We first smooth out the change responses by applying a
kNN-based mean filter to improve robustness against small
misalignments: for each point x, we replace its change
response C(x) by the average response of itself and its k = 7
nearest neighbors. Points with low change responses below
τcd = 2.0m after filtering, as well as isolated points with
few neighboring points having large change responses are
removed. Subsequently, we filter out points which are not
observed in the field of views (FOVs) of the cameras in the
other traversal. This step is important to handle situations
where points are missing simply because the camera trajec-
tory has changed (Fig. 6). Lastly, we repopulate the changed
points with nearby points from the point cloud before the
downsampling step in Section V-B.1.

VI. EXPERIMENTAL RESULTS

We collect two datasets from a Business District (BD)
and Research Town (RT), respectively to test our approach.
Each dataset contains data from two traversals that are two
months apart and cover roughly 0.3 square kilometers. BD
contains many high rise buildings, while RT contains mostly
low rise buildings. Despite being captured just two months
apart, construction and demolition activities lead to several

Traversal 1 Traversal 2

Fig. 6. The camera does not observe the top of the building in the first
traversal. Without considering the camera FOVs, such regions (highlighted
in magenta) will be erroneously detected as changed regions.

large structural changes in the scene. Additionally, smaller
changes such as planting/removal of trees, and movement of
vehicles and cranes are present in the dataset. We randomly
select a total of 30 image pairs that contain changes and
annotate pixel-level structural changes between them.

A. Non-rigid registration
We first show in Fig. 7 the output of our non-rigid

registration algorithm. We observe that the alignment of
buildings and roads in the scene improve significantly after
registration. In Fig. 8, we also show the effectiveness of using
neural networks for optimizing for the non-rigid parameters
θ. Despite using the same momentum-based optimizer [42]
and learning rate, the neural-network-based optimization
converges in a smaller number of steps to a better minima
compared to direct optimization.

Before After

Before After

Fig. 7. Qualitative results of non-rigid registration output (Research
Town). We also show zoomed-in views of the point clouds before and after
registration. Best viewed in color.

B. Change Detection
Figs. 1 and 9 show qualitative examples of our change

detection output. Our algorithm outputs sparse 3D point
clouds that show the changed locations, and distinguishes
between the disappearance and appearance of scene struc-
tures. Compared to algorithms which show the changes on
images, our point cloud outputs are useful in giving a quick
overview of changed regions in large scenes.

We also compare with two recent deep learning-based
change detection works [15], [16]. We initialize the net-
work weights with the weights trained3 on the publicly

3Pre-trained weights are provided by the authors for [15]. For [16], we
pre-train the network using the provided training code.

0 1000 2000 3000 4000 5000
Steps

7

8

9

10

Lo
ss

 (×
10

−5
)

Using Neural Network
Direct optimization

Fig. 8. Registration loss during optimization. Indirect optimization with a
neural network mostly converges after about 1500 steps. In contrast, direct
optimization of registration parameters using the same optimizer gives a
higher loss even after 5000 steps.

𝑡0 𝑡1

𝑡0
𝑡1

Fig. 9. Visualization of the changes detected on the point clouds (Re-
search Town). Blue and red indicate points which disappeared or appeared
respectively. We also show images capturing the changed scene.

available TSUNAMI dataset [20]. We then finetune the
network weights on our dataset using a 5-fold cross vali-
dation scheme, where each fold uses a 18/6/6 train/val/test
split. We evaluate the 2D change maps using the mean
intersection-over-union (mIOU) as suggested in [1], [16].
Since the evaluation is performed on 2D images, we generate
2D change maps for our algorithm by projecting detected
changed points within 100m of the camera location onto the
image plane, and label all pixels within a radius of 20 pixels
around each projected point as changed. Note that since we
do not compute dense models, our approach is unable to
account for occlusion of detected changes in the images, and
this may lead to additional false positives during evaluation.

TABLE II
MIOU METRICS ON OUR DATASET

Method BD RT (All)
CosimNet [15] 0.570 0.582 0.576
CSCDNet [16] 0.589 0.542 0.567
Ours 0.597 0.633 0.613

The results are shown in Table II. We also show qual-
itative comparisons of our detected changes in Fig. 10.
The viewpoint differences in our dataset makes it highly
challenging for the image-based change detection algorithms.
In contrast, our algorithm compares 3D point clouds and can
better handle viewpoint differences. As a result, our approach

𝑡0 𝑡1 Groundtruth CosimNet [15] CSCDNet [16] Ours

Fig. 10. Examples of change detection results, and images from the two traversals. For the groundtruth and our algorithm, blue and red denote the
disappearance and appearance of scene content from time t0 → t1. The image-based baseline algorithms [15], [16] are unable to differentiate between
appearance/disappearance and all detected changes are drawn in white. Rows 1-3 are from the business district, and row 4-6 are from the research town.
The last row shows a failure case by our algorithm. Best viewed in color.

outperforms image-based algorithms despite not accounting
for occlusions during image projection. The last row in Fig.
10 shows a typical failure case of our algorithm, where
strong lighting differences (e.g. in the building regions) as
well as the complex foliage structures lead to inconsistent
reconstructions and subsequently false alarms.

VII. LIMITATIONS OF OUR APPROACH

Although our approach outperformed existing image-
based algorithms, it currently suffers from several limitations.
Our approach requires point clouds of both time steps to be
reconstructed which can be time consuming in larger scenes,
although the subsequent registration and change detection
steps can be performed reasonably fast. For example, our
BD dataset requires 3 days, 25min, and 2min respectively for

the reconstruction, registration, and change detection steps.
Furthermore, since our algorithm operates on the output of
SfM, structures which are hard to reconstruct, e.g. foliage
lead to many false positives. Smaller scene structures or
objects without distinct features are also likely to be missed
as they tend to be not well reconstructed in the point cloud.

VIII. CONCLUSIONS

We propose a workflow to perform detect structural
changes in large scenes by comparing sparse point clouds.
This is useful for applications where sparse point clouds are
available, e.g. maps generated for self driving cars, and our
algorithm can detect regions in the point clouds that need
to be updated. Experiments on two datasets with viewpoint
differences show the feasibility of our approach.

REFERENCES

[1] P. F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gher-
ardi, “Street-view change detection with deconvolutional
networks,” Autonomous Robots, 2018. DOI: 10 . 1007 /
s10514-018-9734-5.

[2] P. Sidike, A. Essa, F. Albalooshi, V. Asari, and V. San-
thaseelan, “Automatic building change detection in wide area
surveillance,” in 2015 National Aerospace and Electronics
Conference (NAECON), 2015, pp. 54–57.

[3] K. Sakurada, T. Okatani, and K. Deguchi, “Detecting
changes in 3d structure of a scene from multi-view images
captured by a vehicle-mounted camera,” in Computer Vision
and Pattern Recognition (CVPR), 2013.

[4] P. Rosin, “Thresholding for change detection,” in Interna-
tional Conference on Computer Vision, 1998.

[5] A. Singh, “Digital change detection techniques using
remotely-sensed data,” International Journal of Remote
Sensing, 1989. DOI: 10.1080/01431168908903939.

[6] A. Taneja, L. Ballan, and M. Pollefeys, “Image based detec-
tion of geometric changes in urban environments,” in Com-
puter Vision (ICCV), 2011 IEEE International Conference
on, IEEE, 2011, pp. 2336–2343.

[7] T. Shi, S. Shen, X. Gao, and L. Zhu, “Visual localization
using sparse semantic 3d map,” in 2019 IEEE International
Conference on Image Processing (ICIP), 2019, pp. 315–319.

[8] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion
revisited,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[9] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam,
“Image change detection algorithms: A systematic survey,”
IEEE Transactions on Image Processing, vol. 14, no. 3,
pp. 294–307, 2005.

[10] L. G. Brown, “A survey of image registration techniques,”
ACM Computing Surveys, 1992. DOI: 10.1145/146370.
146374.

[11] A. O. Ulusoy and J. L. Mundy, “Image-based 4-d reconstruc-
tion using 3-d change detection,” in European Conference on
Computer Vision (ECCV), Springer, 2014, pp. 31–45.

[12] G. Schindler and F. Dellaert, “Probabilistic temporal infer-
ence on reconstructed 3d scenes,” in CVPR, 2010. DOI: 10.
1109/CVPR.2010.5539803.

[13] K. Matzen and N. Snavely, “Scene chronology,” in ECCV,
2014. DOI: 10.1007/978-3-319-10584-0_40.

[14] M. Lee and C. C. Fowlkes, “Space-time localization and
mapping,” in ICCV, 2017. DOI: 10.1109/ICCV.2017.
422.

[15] E. Guo, X. Fu, J. Zhu, M. Deng, Y. Liu, Q. Zhu, and H. Li,
“Learning to measure change: Fully convolutional siamese
metric networks for scene change detection,” arXiv preprint
arXiv:1810.09111, 2018.

[16] K. Sakurada, M. Shibuya, and W. Weimin, “Weakly super-
vised silhouette-based semantic scene change detection,” in
IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[17] S. Stent, R. Gherardi, B. Stenger, and R. Cipolla, “Detecting
change for multi-view, long-term surface inspection,” in
British Machine Vision Conference (BMVC), 2015. DOI: 10.
5244/C.29.127.

[18] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu,
“Change detection based on deep siamese convolutional
network for optical aerial images,” IEEE Geoscience and
Remote Sensing Letters, 2017.

[19] A. Varghese, J. Gubbi, A. Ramaswamy, and P. Balamuralid-
har, “Changenet: A deep learning architecture for visual
change detection,” in European Conference on Computer
Vision Workshops (ECCVW), 2018.

[20] K. Sakurada and T. Okatani, “Change detection from a street
image pair using cnn features and superpixel segmentation,”
in British Machine Vision Conference (BMVC), 2015.

[21] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature
histograms (FPFH) for 3D registration,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2009, pp. 3212–3217. DOI: 10.1109/ROBOT.2009.
5152473.

[22] F. Tombari, S. Salti, and L. Di Stefano, “Unique shape
context for 3D data description,” in ACM Workshop on 3D
Object Retrieval, ser. 3DOR ’10, Firenze, Italy: ACM, 2010,
pp. 57–62, ISBN: 978-1-4503-0160-2. DOI: 10 . 1145 /
1877808.1877821.

[23] S. Salti, F. Tombari, and L. Di Stefano, “Shot: Unique
signatures of histograms for surface and texture descrip-
tion,” Computer Vision and Image Understanding, vol. 125,
pp. 251–264, 2014.

[24] P. J. Besl and N. D. McKay, “A method for registration
of 3-d shapes,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), vol. 14, no. 2, pp. 239–256,
1992, ISSN: 0162-8828. DOI: 10.1109/34.121791.

[25] Y. Chen and G. Medioni, “Object modeling by registration
of multiple range images,” in IEEE International Conference
on Robotics and Automation (ICRA), 1991, 2724–2729 vol.3.
DOI: 10.1109/ROBOT.1991.132043.

[26] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and
T. Funkhouser, “3dmatch: Learning local geometric descrip-
tors from rgb-d reconstructions,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[27] M. Khoury, Q.-Y. Zhou, and V. Koltun, “Learning compact
geometric features,” in IEEE International Conference on
Computer Vision (CVPR), 2017, pp. 153–161.

[28] H. Deng, T. Birdal, and S. Ilic, “Ppfnet: Global context
aware local features for robust 3d point matching,” in IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 195–205.

[29] Z. J. Yew and G. H. Lee, “3dfeat-net: Weakly supervised
local 3d features for point cloud registration,” in European
Conference on Computer Vision, Springer, 2018, pp. 630–
646.

[30] C. Choy, J. Park, and V. Koltun, “Fully convolutional geo-
metric features,” in ICCV, 2019.

[31] Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, “Point-
netlk: Robust & efficient point cloud registration using point-
net,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 7163–7172.

[32] L. Ding and C. Feng, “Deepmapping: Unsupervised map
estimation from multiple point clouds,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[33] Y. Wang and J. M. Solomon, “Deep closest point: Learning
representations for point cloud registration,” in Proceedings
of the IEEE International Conference on Computer Vision,
2019, pp. 3523–3532.

[34] Z. J. Yew and G. H. Lee, “Rpm-net: Robust point matching
using learned features,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[35] B. Jian and B. C. Vemuri, “Robust point set registration using
gaussian mixture models,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1633–
1645, 2011.

[36] A. Myronenko, X. Song, and M. A. Carreira-Perpinán, “Non-
rigid point set registration: Coherent point drift,” in Advances
in neural information processing systems, 2007, pp. 1009–
1016.

[37] “A new point matching algorithm for non-rigid registration,”
Computer Vision and Image Understanding, vol. 89, no. 2,
pp. 114–141, 2003, Nonrigid Image Registration, ISSN:

https://doi.org/10.1007/s10514-018-9734-5
https://doi.org/10.1007/s10514-018-9734-5
https://doi.org/10.1080/01431168908903939
https://doi.org/10.1145/146370.146374
https://doi.org/10.1145/146370.146374
https://doi.org/10.1109/CVPR.2010.5539803
https://doi.org/10.1109/CVPR.2010.5539803
https://doi.org/10.1007/978-3-319-10584-0_40
https://doi.org/10.1109/ICCV.2017.422
https://doi.org/10.1109/ICCV.2017.422
https://doi.org/10.5244/C.29.127
https://doi.org/10.5244/C.29.127
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1145/1877808.1877821
https://doi.org/10.1145/1877808.1877821
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/ROBOT.1991.132043

1077-3142. DOI: 10.1016/S1077-3142(03)00009-
2.

[38] L. Heng, B. Choi, Z. Cui, M. Geppert, S. Hu, B. Kuan, P. Liu,
R. Nguyen, Y. C. Yeo, A. Geiger, et al., “Project autovision:
Localization and 3d scene perception for an autonomous
vehicle with a multi-camera system,” in International Con-
ference on Robotics and Automation (ICRA), IEEE, 2019,
pp. 4695–4702.

[39] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun, “Image
warping by radial basis functions: Application to facial ex-
pressions,” CVGIP: Graphical models and image processing,
vol. 56, no. 2, pp. 161–172, 1994.

[40] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A
rewriting system for convex optimization problems,” Journal
of Control and Decision, vol. 5, no. 1, pp. 42–60, 2018.

[41] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion,” in IEEE conference on computer vision and pattern
recognition (CVPR), 2017, pp. 652–660.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” in International Conference for Learning
Representations (ICLR), 2015.

https://doi.org/10.1016/S1077-3142(03)00009-2
https://doi.org/10.1016/S1077-3142(03)00009-2

	I INTRODUCTION
	II RELATED WORK
	III Our Change Detection Pipeline: Overview
	IV FROM IMAGES TO POINT CLOUDS
	IV-A Data Acquisition
	IV-B Sparse Reconstruction

	V DETECTION OF CHANGES
	V-A Non-rigid Registration
	V-A.1 Gaussian RBF model
	V-A.2 Registration Loss L
	V-A.3 Optimization with Neural Network

	V-B Detecting Changes by Comparing Point Clouds
	V-B.1 Dual Thresholding
	V-B.2 Point Cloud Comparison
	V-B.3 Post-processing of Change Map

	VI EXPERIMENTAL RESULTS
	VI-A Non-rigid registration
	VI-B Change Detection

	VII Limitations of Our Approach
	VIII CONCLUSIONS

