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Abstract— Rewards play a crucial role in reinforcement
learning. To arrive at the desired policy, the design of a suitable
reward function often requires significant domain expertise
as well as trial-and-error. Here, we aim to minimize the
effort involved in designing reward functions for contact-rich
manipulation tasks. In particular, we provide an approach
capable of extracting dense reward functions algorithmically
from robots’ high-dimensional observations, such as images and
tactile feedback. In contrast to state-of-the-art high-dimensional
reward learning methodologies, our approach does not leverage
adversarial training, and is thus less prone to the associated
training instabilities. Instead, our approach learns rewards
by estimating task progress in a self-supervised manner. We
demonstrate the effectiveness and efficiency of our approach
on two contact-rich manipulation tasks, namely, peg-in-hole
and USB insertion. The experimental results indicate that the
policies trained with the learned reward function achieves better
performance and faster convergence compared to the baselines.

I. INTRODUCTION

Reinforcement learning (RL) has shown promising perfor-
mance on a variety of complex tasks, ranging from playing
video games to vision-based robotic control [1], [2], [3].
However, the success of RL techniques relies heavily on the
availability of high-quality, dense reward signals. Learning
policies on tasks with sparse rewards, such as Montezuma’s
revenge [2], remains notoriously challenging. In robotics,
these dense rewards often need to be hand-crafted by a hu-
man. This reward engineering typically requires significant
domain expertise as well as trial-and-error. In contact-rich
manipulation tasks, due to the discontinuous dynamics and
high-dimensional observation spaces, the challenge of reward
specification is further amplified; thus, making the adoption
of RL methods for robotic manipulation difficult in practice.

The goal of our work is to reduce the effort involved
in reward specification for contact-rich manipulation tasks,
such as peg-in-hole and connector insertion [4]. Inverse
reinforcement learning (IRL) techniques, which learn reward
functions from expert demonstrations, offer one such alter-
native to circumvent the challenge of reward engineering [5].
However, classical IRL techniques require hand-engineered
states or features, making their application to tasks with
high-dimensional and continuous observation spaces (such as
camera images and tactile feedback) challenging [5], [6], [7].
More recently, by leveraging generative adversarial learning
[8], IRL techniques have been developed to address continu-
ous [9], [10], high-dimensional observation spaces [11], [12]
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Fig. 1: We provide a reward learning approach (DREM) based
on the notion of task progress. For instance, in the figure, the
robot is performing a peg-in-hole task. As the robot moves
closer to the peg, the learned reward signal increases, thereby
facilitating sample efficient training of RL algorithms. DREM
arrives at this reward function algorithmically by learning
a mapping from robot’s multi-modal observations to task
progress in a self-supervised manner.

and successfully demonstrated on robotic manipulation tasks.
However, despite their encouraging performance, this class
of methods inevitable inherits the instabilities associated
with adversarial training [13] and fail to utilize multi-modal
observations.

To learn reward functions for contact-rich manipulation
tasks while avoiding the challenges of generative adversarial
learning, we propose a novel approach Dense Rewards for
Multimodal Observations (DREM). Several contact-rich
manipulations tasks can be specified through sparse reward
signals, such as a goal state or a Boolean measure of task
success (e.g., a peg being inside a hole, electricity passing
through a connector and socket pair). While these readily
available sparse reward signals are often insufficient for
sample efficient high-dimensional RL, they can help design
dense reward signals when coupled with expert demonstra-
tions or, even, self-supervision. Our approach, thus, combines
a sparse reward signal, self-supervision, and (optionally)
observation-only expert demonstrations to extract a dense
reward function. This dense reward can then be used with
any appropriate RL technique to arrive at the robot policy.

Given the sparse measure of task success and optional
expert demonstrations, DREM learns a mapping from the
high-dimensional observation space to a latent measure of
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task progress. For an arbitrary robot observation, this latent
measure aims to provide its task-specific distance to the goal
state, thereby serving as a proxy for the dense reward signal.
Intuitively, our approach builds on the insight that a state
that is closer to the task goal (in a task-specific metric)
should be assigned a higher reward than one that is farther,
as shown in Fig. 1. Our core contribution is to realize this in-
sight computationally for high-dimensional, multimodal, and
continuous observation spaces. DREM achieves this by first
creating a dataset of observations and their corresponding
task progress (latent space labels) through an efficient, self-
supervised sampling process. This dataset is then used to
train an encoder-decoder network, attain a latent space, and
obtain the dense reward function.

We evaluate the proposed approach to reward learning on
two representative contact-rich manipulation tasks: peg-in-
hole and USB insertion. In these evaluations, DREM learns
the reward using only one expert demonstration. The learned
reward function is then used to generate robot policies
using Soft Actor-Critic, a model-free RL algorithm [14].
Experimental results show that the policies trained with our
learned reward achieves better performance and faster con-
vergence compared to baseline reward functions, including
those obtained by recent reward learning approaches.

II. PROBLEM STATEMENT

A. Tasks of Interest

Motivated by near-term applications in assembly, we focus
on contact-rich robotic manipulation tasks. In particular, we
consider tasks that can be suitably modeled as discrete-
time Markov decision processes (MDPs) [15]. Briefly, MDPs
describe sequential decision-making problems and are pa-
rameterized via the tuple M ≡ (S,A, T , R), where S
corresponds to the state space, A corresponds to the action
space, T denotes the transition model, and R(s) → <
represents the real-valued reward of state s.

In contact-rich manipulation tasks, the state space is com-
posed of high-dimensional, continuous observations available
from robot sensors. The robot observation is typically multi-
modal, e.g., visual (through cameras), tactile (through force-
torque sensors), and proprioceptive (through measurements
of joint angles and velocities). The action space models the
actuation capability of the robot. Prior works have explored a
variety of action spaces across the joint space, the operational
space, and their combinations [16]. Our problem is agnostic
to the specification of the action space. In our analysis,
without loss of generality, we model actions as the end-
effector twist (linear and angular velocity) of the robot.

The transition model represents the physics of the envi-
ronment. Due to the task being contact-rich, the model is
highly non-linear, potentially discontinuous, and difficult to
specify analytically. This motivates the need for model-free
RL techniques. The objective of an agent solving the MDP
is to arrive at a policy π(s)→ a that maximizes its expected
cumulative reward. Several contact-rich manipulation tasks
encountered in the manufacturing domain can be suitably

described by the above MDPs, such as peg-in-hole, connector
insertion, and gear assembly [4].

B. Inputs and Outputs

Assembly tasks are typically categorized by their repeata-
bility and presence of a goal state sG, which can be used
to arrive at a sparse reward (i.e., a positive value at sG and
zero otherwise). We denote this sparse goal reward as RG.
However, as motivated in Section I, this sparse signal is often
inadequate for learning the policy for high-dimensional con-
tinuous MDPs, requiring prohibitive amounts of exploration.
Instead, to achieve sample efficiency, RL techiques require
a richer reward signal that can guide exploration and result
in faster convergence to the optimal policy.

Hence, our problem focuses on learning a dense reward
function (denoted as R), which when provided as the reward
signal to RL techniques results in the optimal policy for
the MDP, M ≡ (S,A, T , RG). To solve this problem, we
assume access to the MDP state and action specifications,
the sparse reward function RG, a training environment (i.e.,
robot’s real or simulated environment), and (optionally)
expert observation-only demonstrations1, i.e., state sequences
from an expert performing the task. Further, we delimit our
scope to manipulation tasks where task progress is monotonic
(i.e., the optimal policy does not induce cycles in the state
space). In relation to RL, the two rewards RG and R can
be viewed as extrinsic (specified by the human designer)
and intrinsic (self-supervised) reward signals of the robot,
respectively [18].

III. LEARNING REWARDS
FOR MULTIMODAL OBSERVATIONS

The core idea of our method is to learn a continuous vari-
able p ∈ [0, 1] from the observation to represent the current
progress towards completing the given task. We name it the
task progress variable. When p = 0, it indicates the robot is
at the initial state and p = 1 indicates the task is finished. If
task progress is learned for each observation, it can then be
directly used as the reward for policy learning algorithms,
i.e., R(st) = p(st). We propose to learn the function R(s),
such that on a nominal task execution trajectory, the task
progress variable is aligned with the temporal positions of
the states observed. Namely, for any nominal task execution
trajectory τ = [s0, s1, ..., sN−1] and sN−1 coincides with the
goal state sG, we have

t2 − t1 > ε → R(st2) > R(st1) (1)

where 0 ≤ t1 < t2 ≤ N − 1 and ε > 0. Our approach uses
this insight for learning an embedding from the observation
space S to a latent space H, hφ : S → H, in which the task
progress can be measured as the distance between any state
st and the goal state sG. Once the embedding is learned,

1Acquiring measurements of actions is challenging when collect-
ing demonstrations from human experts [17], motivating the focus on
observation-only demonstrations.
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Fig. 2: DREM takes three sensor signals: RGB images from a fixed camera, RGB images from a wrist-mounted camera, and
6-axis force data of the last 8 frames from a F/T sensor. The latent embedding is learned using a reconstruction loss (defined
between the input and the decoded output) and a triplet loss (defined on the temporal neighboring and non-neighboring pairs
as detailed in Section III-B, where the data pairs are sampled from the task progress tree in Section III-A).

the reward function can be easily derived using the ratio of
distance in the latent space:

R(st) = 1− dist(hφ(st), hφ(sG))
dist(hφ(s0), hφ(sG))

. (2)

Our proposed framework, titled DREM, is composed of two
stages. First, we adopt a novel backward sampling process,
i.e., sampling from the goal state to the feasible start region,
to create a dataset of observations s and their temporal
positions p(s) . Second, we use the generated data to learn
the embedding that satisfies the constraints defined in Eq. (1)
and Eq. (2). It is worth noting that a single observation-only
expert trajectory is used in the backward sampling process
and the embedding is learned in a self-supervised manner.

A. Backward Sampling

To learn the embedding hφ, state observations with dif-
ferent temporal positions are required as the training data.
One straightforward solution is to collect many (tens to hun-
dreds of) expert demonstrations and record the corresponding
observations for each state. However, such data collection
can be extremely time-consuming, making the adoption of
our method difficult in practice. Thus, we propose a novel
backward sampling process (i.e., sampling from the goal
state to start region) to tackle the data generation problem.
The similar idea was also explored in [19] for policy learning
with increasing difficulty and [20] for learning generalizable
shape descriptor for kit assembly.

Our proposed sampling process is based on the insight that
for most manipulation problems the variance of goal state
is much smaller than the start state. For instance, consider
the peg-in-hole task where goal state corresponds to the peg
being inside the hole, while the start state corresponds to the
robot holding the peg in free space. For this task, the goal
state is significantly more constrained than the start state
(which has much larger variance), thereby making backward
sampling more efficient compared to forward sampling. We
demonstrate the efficacy of the backward sampling method
with a single observation-only (without action annotations)
expert demonstration available.

We achieve the backward sampling process by construct-
ing a state tree, named as the task progress tree, where each
node represents a state observation and the node’s depth
represents its temporal position (in reverse order). A general
framework to build task progress trees is detailed as follows:
1) Add goal state sG to an empty seed set Q0 with maximum

capacity N ; assign the current depth d to 0.
2) For each of the state sq in Qd, sample M random actions
{ak, k = 1, 2, ...,M} and apply each of them to sq to get
the next state observations {sd+1

k|q , k = 1, 2, ...,M}. Add
the M next state observations into the tree as the child
nodes of the parent node sq .

3) For each child node sampled in Step 2, compute an
approximate progress measure f(sd+1

k|q ). Intuitively, the
progress measure f(·) indicates whether the state obser-
vation is progressing away from the goal state. It can
either be task-agnostic such as measuring the information
gain on the distribution of visited states [21], or task-
specific such as using one or multiple observation-only
expert trajectories as a reference. The latter option is
adopted in our implementation and detailed below.

4) Select N samples from the M ·N child nodes in Step 2
as the new seed set Qd+1 based on the progress measure
in Step 3; increment d to d+ 1.

5) Repeat Steps 2-4 until the number of the states in Qd

that are in the start region is above a threshold N · δ,
where δ ∈ (0, 1). For instance, for the peg-in-hole task,
the start region is defined as the set of states with robot’s
end effector position being above a pre-defined height
threshold.

As mentioned above, a single observation-only expert tra-
jectory is used to construct the task-specific progress measure
in our implementation (Step 3). Specifically, given the expert
trajectory ξ = {s0e, s1e, ..., sN−1e }, we simplify Steps 2-4 by
setting N = 1. At depth d, we assign Qd as a single element
set, containing the state closest to sN−d−1e (the d−th state in
reversed order of the expert trajectory ξ) measured by robot’s
end-effector pose difference. The obtained task progress tree,
consists of state observation nodes along with their depths,
equivalently, temporal positions (in reversed order). These



states and temporal positions are then used as training data
to train the desired embedding hφ.

B. Multi-Modal Representation Learning

We aim to learn the embedding from multi-modal inputs
that satisfy Eq. (2) using the data generated in Section III-A.
Fig. 2 illustrates our representation learning model.

1) Multi-Modality Encoder: Three sources of sensory
data are used as the inputs of our multi-modality encoder:
RGB images from a fixed camera, RGB images from a
wrist-mounted camera, and force-torque (F/T) readings from
a wrist-mounted F/T sensor. We adopt a similar encoder
architecture as used in [22]. For 128x128x3 RGB images,
we use a 6-layer Convolutional Neural Network, followed
by a fully-connected layer to transform each image to a
64 dimensional vector. For F/T readings, we take the last
8 readings from the 6-axis F/T sensor as a 8x6 time-series
and perform 4-layer causal convolution [23] to transform
the F/T readings into a 32 dimensional vector. The three
vectors are concatenated and passed as input to a 2-layer
Multi-Layer Perceptron to produce the final 128 dimensional
hidden vector.

2) Multi-Modality Decoder: The decoder takes the fused
hidden representation as input and tries to reconstruct the
multi-modal sensor input. For reconstructing RGB images,
we use 7-layer transposed convolution to upsample the hid-
den vector to the original 128x128x3 size. For F/T readings,
we use 3-layer 1-d transpose convolution to convert the
data back to 8x6 size. The loss function is defined between
the original sensor input and reconstructed output. We use
Sigmoid loss for RGB images and L2 loss for F/T readings.

3) Task Progress Latent Representation Learning: Our
goal is to obtain a latent space, where the distance measure
between any state latent representation hφ(st) and goal state
latent representation hφ(sG) reflects the current task progress
(reward), as shown in Eq (2). The supervision signal comes
only from the corresponding temporal positions of the states.
This is achieved by enforcing the prior that for any state
pair (st1 , st2) , when t1 < t2, st2 should be closer to the
goal state sG than st1 in terms of the distance measure in
the latent space. Let g(st1 , st2) be the distance gap between
(st1 , sG) and (st2 , sG) in the latent space, i.e., g(st1 , st2) =
dist(hφ(st1), hφ(sG))−dist(hφ(st2), hφ(sG)). We train the
desired latent representation by defining the triplet loss as:

Ltriplet =


max[0, β1(t2 − t1)− g(st1 , st2)],

ifε < (t2 − t1); and
max[0, g(st2 , st1)] + max[0, g(st1 , st2)− β2],

if 0 ≤ (t2 − t1) ≤ ε,

where ε, β1, β2 are hyper-parameters in our model. We set
ε = 4, β1 = 0.04, β2 = 0.04. ε is the temporal margin
we set to distinguish temporally neighboring pairs from
non-neighboring pairs. For temporally neighboring pairs, we
enforce them to have similar distances w.r.t. the goal state
in the latent space. For non-neighboring pairs, we enforce

(a) The peg-in-hole task (b) The USB insertion task

Fig. 3: The two manipulation tasks used in our experiments.

states whose temporal positions are closer to the goal state
should also be closer to the goal state in terms of the distance
measure in the latent space. The distance metric in the latent
space is defined as:

dist(hφ(st), hφ(sG)) = 1− 〈hφ(st), hφ(sG)〉, (3)

where 〈·, ·〉 denotes the dot product and h denotes L2

normalization. Intuitively, the distance from any state to the
goal state is represented by 1− cos(θ), where θ denotes the
angle between the two corresponding embedding vectors.2

The whole network is trained using a weighted sum
of the reconstruction loss and triplet loss, L = Ltriplet +
αLreconstruction. We set α = 0.2 during training. To prevent
the data imbalance issue, we collect the same number of
temporal neighboring pairs and non-neighboring pairs when
sampling from the task progress tree. Once the embedding is
trained, we obtain the reward function according to Eq. (2).

IV. EXPERIMENTS

We aim to investigate two questions in the experiments.
First, we examine if the learned reward realizes our insight,
namely, states that are closer to the task goal should have
higher rewards. This allows us to evaluate the effectiveness
of our learned reward. Second, we study how the learned
reward can be applied to policy learning in acquiring contact-
rich manipulation skills. Our study is based on the evaluation
in two common contact-rich manipulation tasks: peg-in-hole
and USB insertion (shown in Fig. 3).

A. Experimental Setup

All the experiments are conducted in Isaac Gym [24], a
GPU-accelerated simulator based on NVIDIA PhysX and
Flex simulation backends, which provides high physics fi-
delity for contact-rich simulation. We defer validating our
approach on real-robots to future work. The tasks are per-
formed using a 7-DoF robotic arm modeled on the Kuka LBR
IIWA robot. Three types of sensor observations are served
as the input to the robot: 128x128 RGB images from a fixed
camera, 128x128 RGB images from a wrist-mounted camera,
and 6-axis F/T readings from a wrist-mounted F/T sensor.
For the peg-in-hole task, we use a round peg with a clearance
of 2.4mm. For the USB insertion task, the clearance is
1.0mm. The simulated robot is torque controlled and the

2We explored other distance metrics, e.g., the Euclidean distance, using
which our method also works. We empirically found policies trained with
rewards using the chosen metric achieves the fastest convergence.



Fig. 4: Visualization of the learned reward function on four
different scripted policies.

torque command is computed via the following control law:

τ = −JTKD(ẋ− ẋref ), (4)

where τ denotes the 7-dimension joint torque, J the Jaco-
bian, and KD the gain matrix. ẋ is the current end-effector
twist, and ẋref is the twist command (action) computed by
an RL agent or a scripted policy. The joint torques are sent
to the robot at 100Hz and the policies are queried at 5Hz.

B. Implementation Details

In the backward sampling process for both tasks, we set
the number of random actions M = 500. We randomly
perturb the colors of the objects (peg & hole and USB male
& USB female) in the scene to prevent overfitting to certain
colors. To train the latent embedding model, we adopted the
network architecture detailed in Section III-B. We trained the
model on a Titan 2080Ti GPU for 20, 000 iterations using
Adam [25] with learning rate lr = 2e−4.

C. Learned Reward Examination

In this experiment, we want to examine the rationality of
the learned reward. Specifically, we want to test if the output
of our reward model assigns sensible values to the visited
states under various policies. To achieve this, we test our
learned reward model with four different scripted policies
on the peg-in-hole task listed below.

1) Imitate the expert demonstrator by directly inserting the
peg into the hole (Direct Success).

2) Approach the hole with a small translation error until
contact → Align the peg with the hole center → Insert
the peg into the hole (Align Success).

3) Approach the hole with a small translation error until
contact → Move away from the hole center while the
peg is in contact with the hole→ The peg loses contact
with the hole (Search Fail).

4) Random policy (Random).
The results of the learned reward model on the four scripted
policies are shown in Fig. 4. In Direct Success, the
reward increases (approximately) linearly from 0 to 1 along
with the number of timesteps in the trajectory. The reward
in Align Success first increases similarly as in Direct

Success, until the peg makes contact with the hole surface.
Then it roughly stays the same while attempting to align
with the hole center, and continues increasing to 1 when the
peg is aligned and being inserted into the hole. For Search
Fail, the reward behaves similarly as in Align Success
at the beginning (increases and then plateaus). The reward
then abruptly decreases to a small value (below 0.1). That is
exactly the timestep when the peg loses contact with the
hole surface (the force in z-axis rapidly changes from a
large positive value to around 0). The reward of Random
just fluctuates around a small value close to 0. The above
observations demonstrate the interpretability of our learned
reward model and its potential to provide denser supervision
for policy learning.

D. RL Policy Learning with Learned Reward

The policy learning experiments aim to demonstrate the
effectiveness of our learned reward, and provide a rigor-
ous comparison with other reward design methods. While
our approach to reward learning is agnostic to the RL
algorithm being used, we use Soft Actor-Critic (SAC) in
our evaluations [14]. DREM refers to our learned reward
model introduced in Section III, with all three modalities as
input. We compare it with four baseline methods: Sparse
represents the sparse reward, i.e., the binary success indicator
at the end of episode; Engineered represents a hand-
crafted reward − exp(κ||x− xG||2), i.e., a function of the
L2 distance between the current robot’s end-effector pose
and the target pose; VICE-RAQ represents the state-of-the-
art reward learning algorithm on high-dimensional (image)
input [11]; Image learned represents our reward model
with only images as input. For all baseline experiments, we
use RGB images as the input of the policy, while for DREM
we use RGB images and force data as the input. We adopted
a similar neural network in Section III-B.1 as the policy
network. The experimental results are shown in Fig. 5.

It can be observed that our learned reward (DREM and
Image learned) outperforms the other reward designs
in both peg-in-hole and USB insertion, indicating that our
proposed reward learning framework is able to learn re-
ward functions that boosts RL training. The fact that DREM
achieves faster convergence and a higher success rate than
Image learned demonstrates the advantages of multi-
modal input (force-torque signals in our case), i.e., enabling
a more efficient and robust policy. Sparse does not achieve
any success within the training budget, showing difficulty of
the two contact-rich tasks. Engineered performs satisfac-
torily at peg-in-hole but much worse at the more difficult
USB insertion, as it requires a tighter fit and a strict orienta-
tion alignment. It should be noted that VICE-RAQ does not
succeed at the two tasks experimented with; the success rate
remains 0 after 150k training steps. We hypothesize that only
using images, adversarial training is easily stuck in a local
optimal as similar images got similar rewards even though
they might be in different contact states. We constructed a
significantly easier task by configuring the peg to be close
to the hole initially (aligned right above the hole center), to
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Fig. 5: Results of the policy learning experiments on peg-
in-hole (a) and USB insertion (b). Each method is run with
three different random seeds for each task.

avoid training getting stuck due to frequent contact states.
A 0.10 success rate is achieved after 50k training steps;
however, if the peg is initially misaligned with the hole
center, though close, training fails to achieve any success.

V. RELATED WORK

In this section, we provide a brief review of research on
reward learning, with emphasis on applications in contact-
rich manipulation. Rewards provide a mechanism for humans
to specify tasks to robots [1]. However, reward specifica-
tion is challenging and can lead to unanticipated behavior
[26], [27]. Consequently, approaches to reward learning
have attracted increasing attention in the last two decades
[28], [29], [30], with inverse reinforcement learning (IRL)
being the prominent paradigm [17]. IRL aims to recover a
reward function given expert demonstrations [31], [32], [5].
However, as many rewards may explain the demonstrations
equally well, additional objective criteria that help identify
the correct reward have been explored [33], [6], [7], [34].
For instance, [7] utilize the principle of maximum entropy
to learn the reward.

Recently, deep variants of IRL have also been developed
with the goal of addressing tasks with larger state, obser-
vation, and action spaces [9], [10], [35]. For instance, Finn
et al. [9] provide guided cost learning, which uses neural
networks to parameterize the reward function. [10] provide
a reward learning approach robust to changes in environment
dynamics. These IRL techniques and others have been suc-
cessfully demonstrated on a diverse set of problems, such as
modeling driving behaviors [7], [36], [37], robotic manipula-
tion [9], [38], and grasping [39]. Despite the steady success
of IRL techniques, several open challenges remain. First,
most techniques require hand-engineered features (or states)

while efficient learning of rewards from high-dimensional
observations remains difficult. Second, state-of-the-art IRL
techniques utilize adversarial optimization [9], [10], [35],
thereby inheriting the associated training instabilities [13].
Consequently, we seek to develop a reward learning approach
that can reason over high-dimensional observations spaces
without utilizing adversarial training.

There are a few related attempts along this line of research.
Specifically, [40] re-framed imitation learning within the
standard reinforcement learning setting using expert pol-
icy support estimation. However, they only evaluated their
method on a low-dimensional state space. [41] proposed
to use reward sketching provided by annotators to learn a
dense model from the image input. The major drawback
of their work is that their method requires many execution
trajectories and the corresponding annotations, which are
expensive to acquire. By contrast, in our proposed method,
the data used to train the reward model is self-generated by
the robot. The sampling process only takes a single execution
trajectory, much cheaper than [41].

Many research efforts have been devoted in recent years
to learning contact-rich manipulation skills, such as peg
insertion, block packing, etc. However, most of the works
use either images [42], [43], [44] or haptic feedback [45],
[46], [47] as the policy input. There are only a few works that
exploit image and force together. Specifically, [48] combined
vision and force to learn to play Jenga, [22] proposed to
learn a multi-modal representation of sensor inputs and
utilize the representation for policy learning on peg insertion
tasks, and the authors in [49] achieved motion generation
for manipulation with multi-modal sensor feedback using
manipulation graphs. However, all the previous works focus
on policy learning for manipulation tasks, while our method
tries to learn the reward function that can be seamlessly
integrated into policy learning algorithms for manipulation.
To the best of our knowledge, our work is the first attempt
to learn dense rewards from multi-modal inputs.

VI. CONCLUSION AND FUTURE WORK

In summary, we propose an approach to learn dense
rewards from multi-modal observations (DREM), with par-
ticular emphasis on contact-rich manipulation tasks. A novel
backward sampling method is proposed to generate requisite
training data through exploration, guided by a single expert
demonstration. Dense rewards are learned from the high-
dimensional observation space without adversarial training.
We evaluate DREM on two assembly tasks and demonstrate
its efficacy through comparisons with other learned and
handcrafted reward functions.

Our work also motivates several future directions. For
instance, currently DREM is geared towards monotonic tasks,
i.e., where task progress is monotonic in the observation
space. While this assumption is valid for a range of assembly
tasks (due to the presence of defined start and goal states), ex-
tension of DREM to non-monotonic tasks remains of interest.
Further, the experiments indicate that task-specific logical
concepts (such as in-contact or losing-contact) underlie our



learned reward. Hence, another interesting direction is to for-
malize the problem of recovering such logical concepts from
dense rewards to enable multi-task learning and consequently
further improve sample efficiency.
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