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Abstract— The emergency department (ED) is a safety-
critical environment in which healthcare workers (HCWs)
are overburdened, overworked, and have limited resources,
especially during the COVID-19 pandemic. One way to address
this problem is to explore the use of robots that can support
clinical teams, e.g., to deliver materials or restock supplies.
However, due to EDs being overcrowded, and the cognitive
overload HCWs experience, robots need to understand various
levels of patient acuity so they avoid disrupting care delivery.
In this paper, we introduce the Safety-Critical Deep Q-Network
(SafeDQN) system, a new acuity-aware navigation system for
mobile robots. SafeDQN is based on two insights about care
in EDs: high-acuity patients tend to have more HCWs in
attendance and those HCWs tend to move more quickly. We
compared SafeDQN to three classic navigation methods, and
show that it generates the safest, quickest path for mobile robots
when navigating in a simulated ED environment. We hope this
work encourages future exploration of social robots that work
in safety-critical, human-centered environments, and ultimately
help to improve patient outcomes and save lives.

I. INTRODUCTION

The emergency department (ED) is a high-stress, fast-
paced safety-critical environment, which is frequently over-
crowded, under-staffed, and under-funded, all of which has
become worse during the COVID-19 pandemic. ED health-
care workers (HCWs) are overworked and overstressed,
leading to high rates of burnout and adverse mental health
outcomes [1], [2]. Thus, many roboticists have explored the
use of robots in clinical settings to help lessen the burden of
HCWs, such as by engaging in non-value added tasks, like
supporting material delivery and patient triage [3], [4], [5],
[6], and providing support to patients at the bedside when
providers are not available [7], [8], [5].

To perform these tasks, robots must understand the context
of complex hospital environments and the people working
around them. Furthermore, robots must make intelligent,
acuity-aware navigation decisions that take this context into
account. For example, a robot will encounter different groups
of HCWs, some of whom may be performing safety-critical
work on a high-acuity patient (e.g., severely ill, such as
having a heart attack or stroke), while others may be con-
versing [9], [2], [10]. If a robot interrupts a clinical team
treating a high-acuity patient, it could lead to adverse patient
harm. As such, the goal of our work is to design robots
that can navigate through these safety-critical environments,
incorporating key clinical contextual information.

While there has been prior work in robotics in safety-
critical navigation [11], social navigation [12] and deploy-
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ment of robots in general hospital wards [5], [6], to our
knowledge very few autonomous mobile robots have been
deployed in the ED. This represents a major gap, as the ED
is a unique type of safety-critical setting which presents novel
navigation challenges for robots [1]. For example, patients
are often placed in the hallways of the ED, making it a
more challenging setting to navigate. Hallways are also often
cluttered with carts and equipment, and HCWs often need
to quickly move patients on gurneys through the ED. Also,
patients often have high acuity conditions which require
immediate medical attention.

In this paper, we address this gap by introducing the
Safety-Critical Deep Q-Network (SafeDQN) system, which
enables a robot to navigate in the ED while taking pa-
tient acuity level into account. We employ a reinforcement
learning (RL) agent with the objective to deliver supplies to
HCWs. As the agent generates a path, its objective is to avoid
high-acuity patient areas as much as possible to maximize its
cumulative rewards. SafeDQN uses a neural network (NN)
to model state-action transitions as the agent explores the
activities in the ED.

We estimate the acuity of patients in video data using two
intuitions: 1) high-acuity patients tend to require fast, precise
treatment which ultimately results in very dynamic motion
by the HCWs and 2) high-acuity patients tend to require
treatment from more HCWs than low acuity patients. When
the robot visually observes a team in the ED, it detects the
number of HCWs observed and tracks their average body
movement to model the acuity level of a patient. By avoiding
areas of high-acuity patients, we ensure that SafeDQN does
not interrupt patient treatment.

The main contribution of our work is that we introduce
a new computational model of patient acuity to enable
robots to socially navigate without introducing additional
causes of patient harm. To the best of our knowledge, this
is the first work that presents an acuity-aware navigation
method for robots in safety-critical settings. We hope this
work inspires robotics researchers to enable robots to work
safely in safety-critical, human-centered environments, and
ultimately help improve patient outcomes, alleviate clinician
workload, and support people in numerous other applications
like supporting first responders.

II. RELATED WORK

A. Social Navigation in Robotics

Navigation is a fundamental problem in robotics with the
goal of generating the shortest path from a starting location
to a goal location while avoiding obstacles [12], [13]. In
the field of human-robot interaction (HRI) specifically, the
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Fig. 1: SafeDQN System Architecture. SafeDQN performs acuity detection using Eq. 2. Then, it assigns an acuity score
(AS) to each observed patient in the ED and uses the AS to assign a reward to the agent. The state-action value transitions
for the agent exploration are modeled by a neural network, which predicts optimal Q-values.

objective is to generate a socially compliant path that obeys
social norms dictated by human nature [12], [13]. For ex-
ample, people often stand in group formations which robots
can sense and use as part of how they plan [14], [15].

Some prior work uses context to improve a robot’s social
awareness during task execution [16], [17]. Some of these
methods include environmental constraints in their planning
such as robots that consider other agents’ plans to avoid
resource conflicts [18], and find paths that favor areas with
high bandwidth or other resources [19]. Robots can also learn
to avoid areas that might distract people from working, such
as by imitating typical human paths using Hidden Markov
Models (HMMs) [20] or by learning to avoid areas that afford
working [21]. In contrast to prior work, we investigate social
navigation in safety critical settings, where understanding the
situational context can potentially save lives [22].

B. Navigation and Reinforcement Learning

Reinforcement learning (RL) is frequently used in plan-
ning. RL typically models an agent as a Markov Decision
Process (MDP) which interacts with an environment E
through sequential states st. The goal of the agent is to
generate a policy π which maps states to actions, such
that the agent maximizes its cumulative reward. This pro-
cess obeys Bellman’s equation, which generates the optimal
action-value function. At each timestep, the agent takes an
action A = 1, . . . ,K and is given a reward rt where the
cumulative reward for all timesteps is Rt =

∑∞
t=0 γ

trt where
t is the timestep where the agent’s interaction with E ends.
γ is the discount factor, which corresponds to a priority on
future rewards given to the agent. For example, a high γ
corresponds to a priority on future rewards and prioritizes
immediate rewards. The agent’s actions are chosen using Q-
values to estimate the optimal action the agent should take
to receive the highest cumulative reward.

In our work, we use a model-free approach, as it is
challenging to model the ED, due to its frequently changing
nature, sensor occlusion, noise, and the inability to mount

sensors due to privacy concerns [22]. There are many model-
free approaches in the literature, such as actor-critic and
policy search methods, which search directly over a policy
space to maximize the reward [23]. Another model-free
method which has been extensively studied is Q-learning,
a temporal difference learning algorithm that learns the
action-value function to choose the optimal action at each
timestep [24], [25]. We employ Q-learning, as it is well-
suited for learning through exploration. It can efficiently
learn in discrete action spaces, and has a useful exploration
property which is beneficial for planning.

Mnih et al. [26] proposed a deep Q-network (DQN)
to learn a policy for Atari 2600 games, which surpassed
human performance. The authors entered the raw pixels
from the game screen into convolutional neural networks
(CNNs), which outputted a state-action value. This approach
is beneficial because it uses an experience replay buffer to
store the agent’s experiences et = (st, a, rt, st+1) in replay
memory M = (e1, . . . , et) [27]. Also, it maintains a learning
network Q(s, a; θ) with updated parameters, and a target
Bellman network with the original parameters θ−.

Li(θi)← E[(r + γmax
a′

Q(s′, a′; θ−i )−Q(s, a; θi))
2] (1)

DQN networks are trained using samples from mini-
batches in M and the parameters are updated using an
optimizer such as stochastic gradient descent (SGD) or
RMSProp [26], [28]. The agent’s behavior is based on ε-
greedy policy which employs a random strategy at proba-
bility ε and a greedy strategy with probability 1-ε. Many
improvements have been proposed to improve DQN, such as
Double Q-Learning [24] and Dueling Q-Networks [29]. The
key difference between our work and DQN is that we aim to
build a computational model of patient acuity togenerate the
reward for the agent. Another approach, Safe Reinforcement
Learning (SafeRL) [30], learns policies that maximize the
expectation of accumulated return, while respecting security
constraints in the learning and deployment process. Our work
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is similar to SafeRL in that by modeling patient acuity, we
are inherently modeling risk. However, to our knowedge, it
does not explore visually modeling risk, particularly patient
acuity, as we do.

III. SAFETY-CRITICAL DEEP Q-NETWORK (SAFEDQN)

We designed SafeDQN drawing on inspiration both from
the Emergency Medicine literature as well as by engaging
in several years of co-design work with ED staff, to help
us understand the ED’s operational context [9], [2]. For
instance, ED HCWs explained that high-acuity patients typ-
ically require more HCWs to attend to them, and that they
sometimes treat patients in the hallways when rooms are full.
Fig. 1 and Algorithm 1 present an overview of SafeDQN.

When designing SafeDQN, we made several assumptions.
First, we model the ED as a discrete 2D, grid-world environ-
ment, as commonly done in the literature [31], [32]. Second,
typically in the ED, patients are being admitted, transferred,
and discharged; therefore, we assume a discrete number of
patients are being treated in the ED at any given time. Third,
when the agent moves from one position to the next, it
observes a video of patient treatment at the new position.
Finally, we assume that patients have stationary positions on
the map as they are not frequently moved in a typical ED.

SafeDQN models patient acuity using two intuitions: 1)
high-acuity patients tend to require fast, precise treatment
which ultimately results in very dynamic motion by the ED
workers and 2) high-acuity patients tend to require treatment
from more ED workers than low acuity patients. We use
videos to represent high and low acuity patients. SafeDQN
measures the maximum number of people P , which reflects
the amount of resources needed to treat a patient. This is
calculated by employing the object detector proposed by
Redmond et al. [33] which determines the number of people
in an image. Second, it calculates relative motion in a video
#»v , which reflects the chaotic motion of healthcare workers
as they treat patients. Typically, high-acuity patients have
time-sensitive conditions which requires healthcare workers
to move quickly and dynamically. #»v is calculated using the
average from one of two methods which include optical flow
[34] and keypoint detector [35] over the course of a video.

SafeDQN estimates patient acuity, denoted Acuity Score
(AS ∈ [0, 1]). The AS is inspired by Term Frequency Inverse
Document Frequency (tf-idf) from the Natural Language
Processing (NLP) community [36]. Tf-idf models the im-
portance of words in documents relative to a collection of
documents and has been used to predict topics of documents.
We translate this equation to our problem domain but instead
of placing importance on words, we place importance on the
amount of resources needed to treat patients. Another key
difference is that we model the number of patients being
treated in the ED instead of documents. We weight this
equation by the relative motion magnitude from a given video
such that videos with more motion will generate a higher AS.

AS ← #»v
|P |

1 + |T |
(2)

ALGORITHM 1: Safety-Critical Deep Q-Learning
Initialize Replay Memory M
Initialize Training Q-Network Q(s, a; θ)
Initialize Target Q-Network Q(s, a; θ−) with weights θ− = θ
for episode = 1:M do

Data generation phase:
Initialize start state to st
for t=1:T do

at = maxaQ(st, a; θ)
rn← random number between 0 and 1
if rn < ε then

at ← select random at
end
st+1, rt ← ExecuteAction(at)
Store transition (st, at, rt, st+1) in M

end
Training phase:
Randomize a memory M for experience replay
for k=1:n do

Sample random minibatch B from M
while B 6= {} do

rk = RewardFunction()

yk =

{
rk , if step k + 1 terminal
rk + γyk - Q(sk, ak; θ

−), otherwise
Perform gradient descent on loss

(yk - Q(sk, ak; θ))
2 w.r.t the network parameters

end
end
After every C-episodes sync θ− with θ

end

• #»v average velocity of all image frames from a motion
estimation method in a given video.

• |P | is the maximum number of people in a given video.
• |T | number of patients being treated in the ED.
SafeDQN employs a neural network (NN) where the input

layer is the size of the state-space (i.e., size of the 2D
grid), followed by two hidden layers and a Rectified Linear
Unit layer (ReLU) where the final hidden layer uses ReLU
as the activation function which is the size of our action-
space (i.e., number of actions) (See Fig. 1). We use a mean
squared error loss function and we conduct ablation studies
to explore the use of one of three optimizers which include
Adam, RMSProp, and Stochastic Gradient Descent (SGD).
SafeDQN outputs the Q-values and selects the action with the
maximum Q-value, where higher Q-values correspond to the
optimal actions. The SafeDQN agent employs a discrete set
of actions which include “move up”, “move down”, “move
left”, “move right” (See Fig 1).

The reward function, r, captures the necessary behaviors
for our agent to navigate in an environment while taking into
account the acuity of patients being treated. r prevents the
agent from going outside the grid (r = .05∗R∗C where R is
number of rows and C is number of columns) or re-visiting
a cell (r = −.25); enables it to avoid navigating in areas of
patient rooms (r = −.75), low-acuity patients (r = −.15),
and high-acuity patients (r = −.30); and ensures it reaches
its goal (r = +1). In all other cases, (r = −.04).

IV. IMPLEMENTATION

For our experimental testbed, we deployed our agent in a
simulation environment that we designed in OpenAI Gym
[37], a standard library used to test RL systems. Each
position on the map corresponds to an observation from our
dataset (see Section IV-A). We encode random locations of
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Fig. 2: Maps of the environment used to train SafeDQN. We
used a single block easy (Map 1) and hard map (Map 2),
and a double block easy (Map 3) and hard map (Map 4).

clinical teams treating low and high-acuity patients. Also, we
generate blank videos (zero-padded) for empty locations on
the map.

We expected certain maps would be more difficult for the
agent to navigate than others (See Fig. 2). For instance, Map
3 has more space than the other maps, so it should be easier
for the agent to find a path to its goal. On the other hand,
Map 2 has less space than Maps 3 and 4 and fewer hallways
than Map 1, so it might be harder for an agent to find a path
that does not interfere with a clinical team.

A. Dataset

For a robot to function within the ED, it needs an accurate
representation of real-world observations. However, to the
best of our knowledge, there are no existing video datasets
with real-world data. Thus, we constructed our own dataset,
composed of videos that reflect realistic conditions in an ED.
The videos show day-to-day tasks of HCWs, and reflect how
dynamic, chaotic, and crowded it can be (See Fig. 3). We
used the following search terms on YouTube: “emergency
medicine trauma,” “gunshot wound trauma,” “heart attack
trauma,” “traumatic injuries emergency department,” “Untold
Stories of the E.R.,” “Trauma: Life in the E.R.,” “Emergency
Room: Life + Death at VGH,” “Boston Med,” “Hopkins,”
“Save my life,” “NY Med,” “The Critical Hour,” “Boston
EMS,” “Big Medicine,” and “medical documentaries.”

After collecting videos, we reviewed them to ensure
they contained clinical activities. We then removed image
sequences that did not show patient treatment. Next, we
split all videos to create fixed, uniform segments of 100
images each. Segments consisting of less than 100 images
were adjusted to the appropriate length by applying circular
padding. The final dataset contains 689 videos.

Each video was labeled with the maximum number of
people along with two velocity measures, optical flow (OF)
[34] and a keypoint detector (KD) [35] as these are com-
monly used methods in the literature. In order to generate
a velocity measurement using the keypoint detector, we use
the temporal difference of keypoints throughout the video.

Fig. 3: To train SafeDQN, we constructed a new dataset con-
taining real world video from acute care settings that reflect
realistic ED conditions, showing how dynamic, chaotic, and
crowded it can be.

We calculated the number of people in each video using
the pedestrian detector from [33], which we used to classify
videos as low or high-acuity. 550 videos were labeled as
low-acuity and 139 videos were labeled as high-acuity.

B. Training Procedure

We trained SafeDQN using a data generation procedure
and training procedure, similar to [28]. In the data generation
procedure, the agent explores the ED environment with
constant ε = 0.1 in which the agent takes a random action
at probability ε and a greedy strategy at probability ε-1. This
process generates a sequence of tuples (st, rt, at, st+1) that
are stored in replay memory M . In the training procedure, the
agent samples from the replace buffer without replacement
and trains the Q-Network to minimize the loss (See Section
III). We randomly sampled 5 high-acuity and 5 low-acuity
videos from our dataset and assigned them random locations
on the map.

We trained SafeDQN on K80 GPUs using one of three
optimizers, Stochastic Gradient Descent (SGD), Adam, and
RMSProp, as done in [40], [23]. We conducted experiments
with each optimizer and we report the results for SGD as this
achieved the best performance. We trained SafeDQN for a
maximum of 10k episodes or until convergence where we
iteratively trained the NN using SGD with a momentum=0
and learning rate of 0.001 using a sample size of 32 with a
mini-batch size of 1.

V. EVALUATION

We seek to test the SafeDQN’s ability to navigate among
low- and high-acuity patients in our simulated environment.
To facilitate this, we follow evaluation procedures from [41],
[12] which employs similar methods such as random walk,
greedy search, among others (described below) [42], [43].
• Random Walk: baseline method that employs a simple

heuristic for navigation. The agent randomly selects an
action until it reaches the goal.

• A* Search: a classic graph traversal method that uses a
simple heuristic to generate the shortest path [38]. This
heuristic considers the path that it has already traveled
and an approximated distance to the goal in order to
generate the shortest path.

• Dijkstra: a shortest path method that models the envi-
ronment as an undirected graph. It aims to find a series
of nodes with shortest distance [39].
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Map 1 Map 2
Avg. Path
Length ↓

Avg.
Reward ↑

Avg. HA
Penalties ↓

Avg. LA
Penalties ↓

Avg. Path
Length ↓

Avg.
Reward ↑

Avg. HA
Penalties ↓

Avg. LA
Penalties ↓Method OF KD OF KD OF KD OF KD OF KD OF KD OF KD OF KD

Random Walk 243.6 231.0 -54.8 -53.3 5.9 5.6 15.4 25.0 231.6 240.6 -49.9 -54.5 3.1 10.9 11.3 11.3
A* 12.6 11.7 -2.4 -2.5 0.1 0.2 0.4 0.9 11.2 11.9 -2.1 -2.3 0 0 0.3 0.1
Dijkstra 11.6 10.4 -2.4 -2.1 0.1 0.3 0.2 0.4 12.0 12.0 -2.6 -2.4 0.1 0 0.2 0.4
SafeDQN 11.3 9.4 -0.6 -0.6 0 0.1 0.7 0.7 17.2 10.6 -1.7 -0.5 0.1 0 0.6 0.4

Map 3 Map 4

Method Avg. Path
Length ↓

Avg.
Reward ↑

Avg. HA
Penalties ↓

Avg. LA
Penalties ↓

Avg. Path
Length ↓

Avg.
Reward ↑

Avg. HA
Penalties ↓

Avg. LA
Penalties ↓

OF KD OF KD OF KD OF KD OF KD OF KD OF KD OF KD
Random Walk 247.9 215.9 -54.2 -46.6 6.7 2.1 4.6 7.8 225.6 215.8 -50.3 -48.7 4.7 10.4 13.1 6.0
A* 10.9 11.7 -2.1 -2.3 0 0.1 0.1 0 11.6 10.7 -2.4 -2.4 0.1 1.0 1.1 0.2
Dijkstra 10.2 11.4 -2.1 -2.3 0 0.1 0.1 0 11.6 12.3 -2.3 -2.7 0.1 1.5 0.5 0.1
SafeDQN 10.1 10.6 -0.5 -0.6 0 0 0.1 1.0 10.5 11.5 -0.6 -0.8 0 0.3 1.1 1.4

TABLE I: Comparison between SafeDQN variants and Random Walk, A* search [38], and Dijkstra’s [39] shortest path
methods over 100 iterations where ↑ means higher is better and ↓ means lower is better. We compare the optical flow (OP)
[34] and keypoint detection (KD) [35] methods which we used to determine the number of low and high acuity patients for
each map. We ran all methods on four maps which have single and double block hallways (See Fig. 2).

We employ several metrics that are consistent with prior
work to evaluate SafeDQN [41], [12]. To understand the
overall performance of each method we report descriptive
statistics for average path length, average cumulative reward
achieved in each episode, and average high- and low-acuity
penalties (See Fig. I). To determine which method performed
the best, we focused our analysis on path length (PL), which
indicates path efficiency, and high-acuity penalties (HAP),
which indicate the safest path. We performed a three-way
multivariate analysis of variance (MANOVA) test on HAP
and PL. The independent variables we tested were naviga-
tion method (A*, Dijkstra, or SafeDQN), motion estimation
method (optical flow or keypoint detector), and map (1-4)
(See Table I).

Mauchly’s test indicated that the assumption of sphericity
had been violated for all main effects except for HAPs
for map (p > .05) χ2(2) = 10.3, PL for map (p > .05)
χ2(2) = 8.6, and PL for map*motion (p > .05) χ2(2) =
1.4. As a result, we correct the degrees of freedom using
Greenhouse–Geisser estimates of sphericity (ε = .96 for
HAP for the main effect of map, ε = .97 for PL for the
main effect of map, ε = 1.0 for PL for the main effect
of map*motion) with Bonferroni adjustment. All effects are
reported as significant at p < .05. Table I and Fig. 4
summarizes the results of the experiments.

1) Navigation Method: There was a significant main effect
of the navigation method on HAP, F(1.15, 114.12) =605.17,
p < 0.001, r = 0.859. Contrasts between navigation methods
revealed that for HAP, SafeDQN performed significantly
better than Random Walk, F(1,99) = 688.475, p < 0.001,
r = 0.874; A*, F(1,99) = 9.032, p < 0.005, r = 0.084; and
Dijkstra, F(1,99) = 15.954, p < 0.001, r = 0.139.

There was also a significant main effect of the navigation
method on PL, F(1.0, 99.65) =2,697.030, p < 0.001, r =
0.965. Contrasts between navigation methods revealed that
SafeDQN performed significantly better than Random Walk,
F(1,99) = 2,739.96, p < 0.001, r = 0.965, A*, F(1,99) =
90.44, p < 0.001, r = 0.477, and Dijkstra, F(1,99) = 104.67,
p < 0.001, r = 0.514.

2) Motion Estimation Method: There was a significant
main effect of the motion estimation method on HAP, F(1,
99) = 42.15, p < 0.001, r = 0.299, but not for PL, F(1,
99) = 1.13, p > 0.05, r = 0.011. Contrasts revealed that for
HAP, OF, F(1,99) = 42.15, p < 0.001, r = 0.299, performed
better than KD.

3) Map: There was a significant main effect of the map
on HAP, F(3, 276) = 16.45, p < 0.001, r = 0.142, but not
for PL, F(3, 282) = 0.70, p > 0.05, r = 0.007. Contrasts
revealed that for HAP, Map 1, F(1,99) = 17.60, p < 0.001,
r = 0.151; Map 2, F(1,99) = 6.74, p < 0.05, r = 0.064; and
Map 3, F(1,99) = 44.93, p < 0.001, r = 0.312, performed
better than Map 4.

4) Navigation Method * Motion Estimation Method: There
was a significant interaction between the navigation method
and map in HAP, F(1, 116) = 17.98, p < .001, r = .154
and insignificant for PL, F(1, 100) = 2.3, p > .05, r =
.022 (See Fig. 4). Contrasts were performed to compare all
navigation methods to SafeDQN and all motion estimation
methods which revealed SafeDQN performed significantly
better than A* for HAP (F(1, 99) = 6.5, r = .062, p < .05)
and Dijkstra for HAP (F(1, 99) = 12.9, r = .115, p < .05) for
OF and KD. Contrasts also revealed that SafeDQN achieves
a significantly lower PL than A* (F(1, 99) = 23.3, r = .190,
p < .001) and Dijkstra (F(1, 99) = 20.0, r = .168, p < .001)
for OF and KD.

5) Navigation Method * Map: There was a significant
interaction between the navigation method and map for HAP,
F(3, 320) = 7.7, r < .072, p < .001 and a insignificant
interaction for PL F(2, 285) = 1.1, p > .05 r < .011.
Contrasts were performed to compare all navigation methods
to SafeDQN and all maps and showed a significant difference
in all interactions except HAP for Random Walk compared
to SafeDQN for Map 2 compared to Map 4 F(1, 99) = .35,
r = .004, p > .05, PL for Random Walk compared to
SafeDQN for Map 1 compared to Map 4 F(1, 99) = 6.5,
r = .062, p > .05, and Map 2 compared to Map 4 F(1, 99)
= .35, r = .004, p > .05, and Map 3 compared to Map 4
F(1, 99) = .876, r = .009, p > .05 Additional insignificant
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Fig. 4: Interactions between navigation methods for each map and compare the path length (PL) and high-acuity patients
(HAP) for optical flow (OF) and keypoint detection (KD) methods. The y-axis shows the mean high and low acuity penalties.

interactions include PL for A* compared to SafeDQN for
Map 3 compared to Map 4 F(1, 99) = 1.2, r = .013, p > .05,
PL for Dijkstra compared to SafeDQN for Map 1 compared
to Map 4 F(1, 99) = .82, r = .008, p > .05, and PL for
Dijkstra compared to SafeDQN for Map 3 compared to Map
4 F(1, 99) = .61, r = .006, p > .05.

6) Navigation Method * Motion Estimation Method *
Map: There was a significant three-way interaction for HAP
F(3,314) = 38.2, p < .001, r = .279 and a insignificant
interaction for PL, F(2, 290) = 38.2, p > .05, r = .011.
This indicates navigation method and motion estimation had
different effects on HAP and PL depending on the map being
used. This is reflected in the interaction graphs in Fig. 4.

Overall, Random Walk had the worse performance of all
methods p < .001. Table I shows that SafeDQN achieved
the highest reward in all test cases.

VI. DISCUSSION

We presented SafeDQN, one of the first acuity-aware
navigation methods for mobile robots in the ED. Our results
show that SafeDQN outperforms classic navigation methods
in terms of avoiding high-acuity patients and generating the
most efficient, safest path. Another key feature of our system
is that it has an understanding of patient acuity inferred from
live video, while others do not, making it well-suited for use
by robots in the ED and other clinical environments.

Our results indicate that the motion estimation method
used in our experiments had an impact on high-acuity and
low-acuity penalties. This may be because the keypoint
detector generated more noisy motion estimates than OF.
Another potential cause of this is the threshold we applied to
our dataset to generate the high and low acuity videos. The
threshold needs to be tuned based on how frequently high-
acuity patients visit the ED. For instance, if an ED frequently
has many high-acuity patients, the robot may need to have a
higher threshold for what it considers high-acuity, so it can
still find a path while avoiding the most critical patients.

SafeDQN has several benefits for mobile robots working
in safety-critical environments. It enables robots to visually
infer patient acuity, so it will not disturb healthcare providers
during critical care procedures. This may also be useful
in other safety critical settings, such as disaster response.
Furthermore, other researchers can easily build on our work
to explore the benefits of other types of neural networks.
For example, SafeDQN is easily expandable to other Deep
Q-Learning approaches such as Double Q-Learning and
Dueling Q-Networks.

In addition to the benefits of SafeDQN, it is also important
to discuss its limitations. The primary limitation is that we
evaluated SafeDQN in a simulation environment; real-world
environments and mobile robot deployments will no doubt
present many challenges. For example, as we have discussed
previously [22], real-world perception is challenging for
mobile robots in the ED due to occlusion, noise, and privacy
concerns, making the use of visual sensors difficult. As
SafeDQN relies on vision to determine patient acuity, this
creates a question as to how well it will succeed in real-world
settings. However, many recent privacy-preserving methods
have been explored recently within the computer vision and
ubiquitous sensing communities [44], [45], [46], suggesting
a path forward for SafeDQN as well.

In the future, we plan to deploy SafeDQN on a physical
robot in a medical simulation training center to evaluate its
effectiveness in real-world settings. Our robot will deliver
supplies to medical students as they treat patients during their
clinical training sessions. Some areas of improvement that we
plan to explore include ways to reduce training time as DQN
methods are well known for being computationally expensive
to train [26]. Also, we plan to explore how we might employ
SafeDQN in a continuous 3D environment (e.g., [47]) for
visual navigation in safety-critical settings. Finally, it would
be exciting to explore SafeDQN within other safety-critical
contexts, such as search and rescue.
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