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Abstract—Quadrupedal robots are skillful at locomotion tasks
while lacking manipulation skills, not to mention dexterous
manipulation abilities. Inspired by the animal behavior and the
duality between multi-legged locomotion and multi-fingered ma-
nipulation, we showcase a circus ball challenge on a quadrupedal
robot, ANYmal. We employ a model-free reinforcement learning
approach to train a deep policy that enables the robot to
balance and manipulate a light-weight ball robustly using its
limbs without any contact measurement sensor. The policy is
trained in the simulation, in which we randomize many physical
properties with additive noise and inject random disturbance
force during manipulation, and achieves zero-shot deployment
on the real robot without any adjustment. In the hardware
experiments, dynamic performance is achieved with a maximum
rotation speed of 15 ° /s, and robust recovery is showcased under
external poking. To our best knowledge, it is the first work
that demonstrates the dexterous dynamic manipulation on a real
quadrupedal robot.

I. INTRODUCTION

With the great progress on both hardware and algorithm,
quadrupedal robots recently have shown significant perfor-
mance in locomotion tasks, such as high-speed running [1]],
[2], robust falling recovery [3]], [4], walking on challenging
terrain [5]—{7]. Compared to wheeled or biped robots, thanks
to the flexible limbs and larger support region, quadrupedal
robots are more robust to cope with complex environments,
such as stairs and uneven terrain. Consequently, quadrupedal
robots are expected to achieve various real-world missions.
These vehicles have proven to be extremely robust and can
cope with complex environments and terrains, which opened
the potential for application in real world missions [8]], [9].

However, most quadrupedal robots’ applications focus on
navigation and inspection, while active interaction and ma-
nipulation of the environment are still lacking. To overcome
these limitations and extend the advanced locomotion capa-
bility with manipulation skills, several groups equipped their
quadrupedal robots with a robotic arm and gripper [2], [10]—
[12]. This enables basic manipulation tasks such as pick-
and-place, door opening, and cooperative carrying, whereby
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Fig. 1. Inspired by the manipulation skills of animals (a) and babies (b), we
enable the quadrupedal robot ANYmal (c) to manipulate objects with its legs.
Experiment video: https://youtu.be/lImWSw_HI918

the manipulation problem is largely decoupled from locomo-
tion. On the downside, payload limitations of the existing
quadrupedal robots mostly only allow carrying a single arm,
which limits the manipulation skills.

In contrast to these developments in robotics, where lo-
comotion and manipulation are tackled with separate hard-
ware components, we can observe truly amazing manipulation
skills in nature. Quadrupedal animals can utilize their legs
to dexterously manipulate the environment (Fig. [Th). Inspired
by this ability, a few approaches have suggested utilizing
the legs as manipulators to achieve dexterity with minimal
hardware modification. In [13]], [14], two limbs are used to
pick up a box and the other two limbs for stance balancing.
For multi-legs robots such as hexapod robots, four limbs are
used balancing while the other two limbs are manipulating
objects [15]-[18]]. Another solution is to add additional support
legs to the quadrupedal robot to maximize the robustness of
loco-manipulation [19]]. Compared to dual-limbs manipulation,
the most extreme idea is to synthesize all the limbs for
manipulation. Inchworm-like motion with four legs is achieved
in to manipulate two boards. In [2I], a quadrupedal
robot in the simulation balances on a ball and simultaneously
manipulates it.

Locomotion and manipulation are regarded as the dual
problem in some aspects [22]-[24], whereby legs could be
viewed as the fingers of in-hand manipulation. Dexterous in-



hand manipulation has a long history and is still a chal-
lenging problem [25]-[31]. A high-DoF hand’s controller
must handle complex contact dynamics that are difficult to
model accurately and challenging to compute online. Recently,
deep reinforcement learning shows great progress on in-hand
dexterous manipulation [32]-[39]. Robots can learn robust
policies in simulation or real environment to operate valve
[36]], rotate block [38]] and even solve the Rubik’s Cube [37]
in the real world.

On the other hand, for quadrupedal locomotion, deep rein-
forcement learning also plays a vital role in recent progress.
Walking policy is learned on a small-size quadrupedal robot
[40]-[43]. Actuator network is developed to reduce the sim-
to-real gap and achieve robust dynamic locomotion skills on
ANYmal robot [3]], [4], [7]. Gait selection is learned to cope
with rough terrain with less energy usage [6]. Animal behavior
is imitated and further improved by RL to deploy on the real
robot [44].

A. Contribution

Motivated by the recent progress in learning quadrupedal
locomotion and in-hand manipulation, we revisit the leg-
manipulation task to attain four-limbs manipulation skills. Our
main contribution is to develop a framework that enables a
quadrupedal robot to achieve a first step towards dexterous
full-limbs manipulation. We demonstrate our framework’s
effectiveness by showcasing it on a series of challenging circus
tasks such as rotating a ball in roll, pitch, and yaw direction
with different velocity. To the best of our knowledge, it is
the first work to achieve the quadrupedal dexterous dynamic
object manipulation on a real robot.

II. METHOD

In this paper, we propose a method for in-limb manipulation
with ANYmal [45], a quadruped robot actuated with 12 series
elastic actuators (SEAs), as illustrated in Fig. Q Our method
allows dynamically rotating a circus ball based on user-defined
target velocities. To verify the SO(3) rotation ability, we train
the policy to rotate the ball in roll, pitch, and yaw directions.
Moreover, we limit the manipulation contact points only on
feet, where the robot’s base should not touch the ball.

The proprioceptive measurements are limited only to the
joints’ position and velocity without any contact measurement
such as contact state or contact force. To further simplify the
problem, position and orientation of the ball are obtained from
an external motion capture system, and mass and radius of
the ball are known to the controller. We train the policy with
model-free RL in the Raisim simulator [46], and achieve the
zero-shot deployment on the real robot.

In the rest of this section, the whole learning process would
be introduced, including the environment’s Markov Decision
Process(MDP) formulation, detailed training settings, network
architecture, and policy gradient algorithm.

A. Observation and Action

The observation includes joint states, previous action, ball
states, and task-related inputs. Compared to the locomotion

Fig. 2. Circus experiment with ANYmal-C robot in the Raisim simulator
[46]. Each leg has 3 DoF driven by SEA actuators, which are Hip Ab-
duction/Adduction (HAA), Hip Flexion/Extension (HFE), and Knee Flex-
ion/Extension (KFE) from the bottom to the top.

task [J3], [44]], the position and velocity of robot base are elim-
inated since the robot lies on its back during the manipulation
task. The joint state includes positions and velocities measured
by joint encoders on the robot. The action in the previous time
step (i.e., joint position command) is recorded and included
as well. The ball’s position and orientation (relative to the
robot base) is observed by the external motion capture system.
The original command is the ball’s target angular velocity. We
translate it into two parts: (1) target orientation represented by
quaternion and (2) time to reach the goal orientation. Both
parts are updated periodically.

We stack the observations of the last three time steps [3],
[44]], which is the same history length as the input to the
actuator model. This enables the policy to handle latencies
and partially observable states of the hardware [41]

The history of joint position 6, joint velocity 6., action ay,
ball position p; and quaternion difference to target orientation
g: are sampled at 10 and 20 ms previously to avoid being too
sparse or dense. Thus the observation, s, € R'3°, is defined
as

x; =(0,0:,p1, g1, ar)
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The action (output of the policy) is sent to the robot as the
joint target position. A low-level joint position PD controller
translates the policy output to motor torque command.

B. Reward Function

The goal of our reward design is to encourage the robot
to manipulate the ball to track the commanded speed while
being intuitive and simple with a minimum number of terms.
In contrast to locomotion tasks [3]], [44], here, the speed
is implicitly represented by the periodically updated target
orientation. The reasons are twofold: first, assuming sphere
manipulation as the complex-terrain locomotion, it is difficult
to keep constant speed [7]]; and second, for most manipulation
tasks, it is not necessary to maintain constant speed, but
accurate tracking for target orientation is more critical [37],



[38]. Thus the reward is represented as the angle difference
dq between the current and target orientation
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where dg could be calculated from quaternion difference in
the observation state: 5¢ = 2 cos~'(q;(0)).

Aggressive leg motions can result in base motion, which
is dangerous to the hardware and can cause task failure. To
avoid this behavior and keep the base still, a negative reward
is added to punish any base velocity.

Ty = —ky * ||Vbase(t)]], )

here vpqsc(t) denotes the linear velocity of robot base, which
could be obtained in the simulation. This reward is dominant
in the early training stage and reduces to zero in the middle
stage.

Joint torque is punished for keeping the feasible and energy-
efficient torque distribution and preventing high contact force
during manipulation. High contact forces often denote that the
legs are forcefully squeezing the ball, which can deform the
object and leads to task failure.

r{ = —k. x| (t)]. 4)

Although less slippage at contact points is desirable, com-
pletely avoiding it is not realistic. It would cause a significant
reality gap between simulation and real robot, which is also
the limitation in the previous model-based method [21]. Thus,
we only moderately punish the slipping velocity instead

wip _ {k | [vean(®)]l;

Tt
0, no contact

in contact

(&)

where v, (t) denotes the relative tangent velocity between
the ball and the end-effector of each leg.

Compared to walking on the stiff ground, most of the
manipulated daily object is more deformable under large
contact force. Since our simulator [46] could not simulate
deformation, it would lead to huge difference between the sim
and real especially in the normal direction of contact forces. In
our real experiment, a yoga ball is used, which is even more
deformable. To tackle this problem, we punish the normal
contact velocity.

pcollide _ ) ~Keollide * [ Vnorm (£)]],
' 0, no contact

in contact

(6)

where v,,0rm (t) is the relative contact velocity in the normal
direction between ball and the end-effector of each leg.

Compared to the reward design in quadrupedal locomotion
task [4f], [7], [44], [46], the joint speed reward, and foot
clearance reward are eliminated. The former one is implicitly
contained in the robot base and contact velocity reward. The
latter one, whose essential part is the foot clearance threshold,
is not intuitive to select in our setup with shaped objects
compared to flat terrain.

Additive noise in ball physics
model, position, initial state

External force

Additive noise in robot (-
model, joint state

@ (b)

Fig. 3. Visualization of domain randomization and external disturbance force
during training.

C. Early Termination

Early termination is one of the essential components in the
training procedure [47]], which eliminates the local minimum
or corner case with unnatural performance. In our manipula-
tion task, the early termination would be triggered when:

o The robot gets in self-collision.

o The ball contacts with other links except for the end-
effector on feet.

o The ball’s position is out of a feasible region.

o The period in which the ball is in a no-contact state
exceeds a threshold.

The threshold region is set as a horizontal plane being +1.5
radius of the ball and vertical axis being £1 radius. The limit
on ball-no-contact time is to avoid solutions in which the robot
throws the rotating ball into the air.

D. Domain Randomization

Domain randomization is a simple technique to improve a
policy’s robustness against modeling errors and sensor mea-
surement noise as Fig. [3| In our circus task, the randomization
takes place in the followings:

o Leg configuration. The shank positions and lengths are

perturbed with additive noise ~ A(0.03,0) m.

« Joint state observation. Additive noise ~ A(0.05,0) rad to

joint positions and ~ A(0.3,0)rad/s to velocities.

o Ball physical model, including mass with a random

v(£5) % of its original weight and radius with v(+10) %

« Ball contact model. The friction and restitution coeffi-

cients are sampled from uniform distributions U (0.5, 1.1)
and U(0.9,1.0)

« Ball state observation. Additive noise ~ AN(0.04,0)m to

position and ~ A(0.03,0) rad to orientation in each axis

« Initialization state, including initial robot position and

configuration, ball position and orientation
where the policy is encouraged to learn strategies under these
varying dynamics and initialization to better deal with real
world conditions.

E. External Disturbance

Injecting random disturbance force has shown to be effective
in achieving sim-to-real transfer [7]], [48]. During training,
the ball is applied with SON external force from a random
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Fig. 4. Network architecture used for policy is a two-layers Multi-Layer
Perceptron (MLP) with tanh activation function. The output is directly send
to robot as joints position commands. The value network is similar architecture
but with 1d output value.

direction. The disturbance force lasts for 0.4 s and appears at
the random time point with 20 % probability.

FE. Policy Training

The policy and value network are multi-layer perceptron
(MLP) with 2 hidden layers with 256 and 128 units for each
and tanh activation function as Fig. [

The Proximal Policy Optimization (PPO) [49] algorithm is
used for training. The hyperparameters are: discount factor
~v = 0.998, clipping range € = 0.2, learning rate [r = 0.001.
The parameterized policy mg(a¢|o;) is used to maximize the
expected reward return:

oo
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G. Curriculum Learning

Curriculum learning [50] is an effective strategy to solve
challenging tasks, in which the task difficulties gradually
increase during the learning process. Such a technique has
proven to be useful in locomotion tasks where the terrain’s
complexity is gradually increased in the course of training,
resulting in a higher survival time in training rollouts [7]], [51]].
In this work, the curricula focus on the domain randomization
ranges, target rotation speed, and discrete period for updating
target orientation. The robot is initially trained with the low-
speed manipulation commands and small additive noise in
domain randomization. The target speed and noise would
increase monotonically, while the updating period decreases.
The initial target speed is 0°/s and the final speed is 15°/s.
The updating period is set as discrete value from 1, 0.5 to
0.33 s, in which the target orientation is updated at 1, 2 and
3 Hz. To maximize total reward, the policy would generate the
higher-frequency gait when the updating period decreases. The
modeling and additive noise in Sec. is discounted with a
curriculum factor whose value would increase to 1 in the end.

III. EXPERIMENT

The policy is trained in simulation and achieves zero-shot
transfer to the real robot. We demonstrate our framework on

ANYmal-(f| with a total mass of about 40kg and 12 SEAs
with a maximum torque of 80 Nm. The ball in the experiment
is a commercial yoga ball with 3 kg mass and 0.8 m diameter.
A VICON syste measures Center-of-gravity (CoG) position
and orientation of the ball.

We have identified the following mismatches between sim-
ulation and the real robot experiments: the joints position
tracking errors, the softness and deformation in yoga ball, the
unexpected slip between ball surface and feet, the non-standard
ellipse shape after inflation and CoG position error. However,
our learned control policy has proven to be robust to these
uncertainties.

To avoid the robot’s feet colliding with the motion capture
markers, we separately demonstrate the rotation in roll, pitch,
and yaw direction with a maximum rotational speed of 15 °/s.
In the real robot, we conducted manipulation experiments for
over 2 mins, during which the controller could recover robustly
under external disturbance such as pocking the ball.

A. Simulation

The policy is trained in the Raisim simulator [46], which
is used to simulate the rigid-body contact dynamics. During
training, an actuator network [3|] is used to reduce the mod-
eling mismatch between simulation and real robots due to
unmodeled actuator dynamics.

The quality of the trained policy is strongly related to both
target speeds and updating periods of the target orientation.
Larger target speed leads to more aggressive motion, while
a shorter period leads to more frequent contact changes. The
policy is trained with different updating periods, as described
in Sec. The simulation results show that the policy
with an extended period generates smoother motion with less
contact switch but easier to fail when the target speed and
domain randomization noises are increased. In contrast, the
policy with a short period leads to more contact switch, but
enables larger target speed with more robustness. Due to the
joints’ physical limitations in velocity and acceleration, the
updating period could not be infinitely small. Analogous to
the gait scheduling settings in locomotion, the final period is
selected to be 0.33 s by updating the target orientation at 3 Hz.

We also notice that policy becomes more conservative
with increasing external disturbance and growing domain
randomization. One example is foot clearance decreases during
training to quickly respond to the unexpected disturbance.

B. Real Robot

We run the same policy in the real robot without any
modification. The policy runs 100 Hz on the real robot and
sends joints position command to the robot’s joint position
PD controllers.

In the real experiment, we evaluate the roll, pitch, and yaw
rotation separately. For each direction, the target rotation speed
is set as 10°/s and 15 °/s to demonstrate the dynamic perfor-
mance. To verify the robustness of the policy, we randomly

Uhttps://www.anybotics.com
Zhttps://www.vicon.com
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Fig. 5. Tracking results of different direction and different speeds on the real robot, in which (a), (b) show a yaw-rotation experiment with 15 ° /s speed,
and (c), (d) show a pitch-rotation experiment with 10 ° /s speed under the external disturbance. Among them, (a) is the quaternion tracking results; (b) is the
position and angular velocity of the ball, which are measured by the motion capture system; (c) is the quaternion tracking results under external pokes, in
which the second poke is snapshotted as Fig. m (d) is the joint torque and velocity during the manipulation.

poke the ball and robot to simulate external disturbances
during the experiments.

The tracking performance is shown in Fig. [5] in which the
results of accurate tracking and recovery from the external
force are presented. We randomly poke the ball and robot
limbs from different directions, as the snapshots in Fig. [6] and
Fig. Our robot quickly recovers and continues the task,
though we do not have a high-level task planner, and our non-
prehensile style is less stable. Moreover, we notice in Fig. [5(b)
that the angular velocity fluctuates from the target value,
even if the orientation is tracked pretty well. As Fig. [5(d),
the peak and averages of joints’ torque and velocities during
manipulation are about i of locomotion tasks using a similar
ANYmal robot [3].

As for larger rotation speeds, we realize that when the target
velocity is over 20 ° /s, there is more severe slippage between
feet and ball because of the under-actuated legs design and
limited contact area, which drives the system more likely to
fail. When speeds become more enormous, the joints motion
becomes more aggressive with higher acceleration, leading to
a large force on the robot against the ground, which is more
likely to damage the robot base.

IV. DISCUSSION
A. Locomotion and Manipulation

Multi-legged locomotion shows the duality with multi-
fingered manipulation [22]-[24]. This section compares the
similarity and difference between locomotion and our manip-
ulation task under the reinforcement learning settings.

a) Speed Reward: In locomotion, the reward mostly
directly depends on velocity [3]l, [4], [6l], [42]. In contrast
for our manipulation task, we discretize the time at a fixed
frequency and update the target quaternion value based on the
velocity command. Compared to direct velocity-based reward,
we found that our reward design converges better during
training. We speculate that the main reason is that the terrain
is more complicated in our manipulation case than during
flat ground locomotion, making it more difficult to track the

constant speed. A similar observation was made for rough-
terrain locomotion [7]]. As it is shown in the experimental
results Fig. [5b), the average velocity is pretty accurate, while
the speed can be quite noisy. We also study humans conducting
a similar task with a soccer ball and using their fingers.
While establishing a direct parallel is impossible, we observe
resembling undulant motions during the task execution.

b) Foot Clearance: Foot clearance denotes the distance
between legs end-effector and the environment. It is a popular
reward term in shaping gait behavior during locomotion to
avoid foot scuffing [3]], [4], [7]. The reward is often calculated
by variations to a heuristic clearance value. In our manipula-
tion task, foot clearance term is removed because it is not
intuitive to decide on a heuristic value.

¢) Gait Pattern: In a quadrupedal locomotion task, the
gait pattern is often preset with specific contact sequences
provided as input to the learned policy [40], [42]-[44]. In our
work, we do not define any gait pattern. In contrast to legged
locomotion, where the heuristics can be directly inspired by
well-studied animal gaits, we cannot rely on comparable gait
information for in-limb manipulation.

d) Model-based and Model-free: In quadrupedal loco-
motion tasks, model-based RL combines learned gait with
a model-based whole-body controller [6]. However, due to
the whole-body controller’s sensitivity to model-mismatches,
it was not suitable for our task as the ball deformation and
slippage impede any accurate modeling.

B. In-Limb vs Dexterous Hand Manipulation

Our task is similar to in-hand manipulation with a dexterous
robot hand. However, the fingers in the robot hand are usually
driven by compact actuators with limited torque output and
joint velocity. On the contrary, the actuators in our quadrupedal
robot are much more powerful with respect to the manipulan-
dum’s weight. The maximum torque in each SEA motor is
80 Nm, while the torque usage during manipulation is less
than 5Nm in the most time as Fig. [5[d). This difference in
relative actuator power influences the reward design. While
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Fig. 6. Recovery from the ball being poked, while the robot is commanded to manipulate in the roll direction with 15 °/s. (a) shows the ball being poked,
in which the deformation could be noticed obviously; (b) shows the ball’s state after poking; (c) shows the recovery motion generated by the policy.

(d) (e)

()

Fig. 7. Recovery from the robot leg being poked, while the robot is commanded to manipulate in the pitch direction with 10°/s. (a), (b) show the leg
is poked with an apparent displacement in the end-effector; (c) shows influences of the contact’s displacement because of the poking, in which the ball’s
orientation varies abnormally; (d), (e) show the recovery motion generated by the policy; (f) shows the final state after the recovery.

previous RL-based in-hand dexterous manipulation researches
could design the reward with only target orientation term [36]—
[38], our setup requires accounting for limbs actuation. We
have realised that without penalizing the control effort, the
trained policy would generate an overly aggressive motion
with large joint velocity and acceleration without punishment
in the reward design.

V. CONCLUSION

This paper has proposed a novel and robust approach based
on deep reinforcement learning for the quadrupedal robot to
achieve a first step towards dexterous full-limbs manipulation.
The policy is trained in the simulation with model-free RL,
and achieve zero-shot deployment on the real robot. This is,
to our best knowledge, the first work to achieve dexterous
dynamic manipulation on the real quadrupedal robot.

The proposed controller exhibits dynamic manipulation
performance and achieves a maximum 15deg/s ball rotation
speed on hardware experiments. The controller’s robustness is
verified on hardware by showing first, a continuous manipu-
lation for more than 2 minutes, and second, a robust recovery
under external disturbances during manipulation.

In the end, we revisit the classical argument of the duality
between manipulation and locomotion. By comparing the
similarities and differences in reward design under RL settings,
for the challenging terrain, we hope to inspire a more closed
connection on both sides.
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