
Collaborative Visual Inertial SLAM for Multiple
Smart Phones

Jialing Liu1, Ruyu Liu1, Kaiqi Chen1, Jianhua Zhang2,B, Dongyan Guo1

1College of Computer Science and Technology, Zhejiang University of Technology
Hangzhou, China

2School of Computer Science and Engineering, Tianjin University of Technology
Tianjin, China

Abstract—The efficiency and accuracy of mapping are crucial
in a large scene and long-term AR applications. Multi-agent
cooperative SLAM is the precondition of multi-user AR interac-
tion. The cooperation of multiple smart phones has the potential
to improve efficiency and robustness of task completion and
can complete tasks that a single agent cannot do. However,
it depends on robust communication, efficient location detec-
tion, robust mapping, and efficient information sharing among
agents. We propose a multi-intelligence collaborative monocular
visual-inertial SLAM deployed on multiple ios mobile devices
with a centralized architecture. Each agent can independently
explore the environment, run a visual-inertial odometry module
online, and then send all the measurement information to a
central server with higher computing resources. The server
manages all the information received, detects overlapping areas,
merges and optimizes the map, and shares information with the
agents when needed. We have verified the performance of the
system in public datasets and real environments. The accuracy
of mapping and fusion of the proposed system is comparable
to VINS-Mono which requires higher computing resources.

Index Terms—mobile devices, centralized architecture, collab-
orative SLAM

I. INTRODUCTION

With the popularization of smart mobile terminals, aug-
mented reality (AR) industrial application scenarios are be-
coming more and more abundant. The future trend of AR
is definitely towards a durable, multi-user, and shareable AR
experience with greater immersion. AR technology can be
abstracted into calculating the position of the camera and
the 3D structure information of the environment through the
image and other sensor information. The core of realizing
multi-user sharing AR space is multi-intelligent mobile ter-
minal collaboration simultaneous localization and mapping
(SLAM), so far there is no multi-intelligent mobile terminal
collaboration SLAM. Although there is already some SLAM
for multi-agent collaboration, it has higher requirements for
devices and is not suitable for the mobile terminal.
Some of the work focuses on the single agent SLAM

system, while some studies the self-localization between
agents or the fusion of information from multiple agents

BJianhua Zhang is the corresponding author, zjh@ieee.org.
This publication was partially funded by the National Natural Science

Foundation of China (61876167, 62020106004, 92048301) and the Natural
Science Foundation of Zhejiang Province (LY20F030017).

to build a unique, global map. while few people study the
multi-agent collaborative SLAM which can coordinate to
complete the exploration task, make full use of the experience
gained by other agents in one task, reduce the exploration
time, improve the robustness of SLAM mapping, and obtain
more environmental information in a short time. However, the
multi-agent system exploration task also brings many chal-
lenges, such as local submap fusion, global map optimization,
network bandwidth, and information reuse.
In this paper, we propose a centralized monocular visual-

inertial SLAM that supports cross-device, multi-intelligence
mobile terminal collaboration. Although currently it is de-
signed for multiple ios devices, such as the iPhone and iPad,
it can be easily extended to other smart phones. Each mo-
bile terminal runs a visual-inertial odometry (VIO) module
independently, and the measurement information is shared
with the server through the network. The server manages all
the information received from the client, detects the public
areas, and then merges the map information constructed by
multiple mobile terminals into one map. At the same time, it
uses the measurement information of other mobile terminals
to optimize the map constructed by another mobile terminal
and informs the agent. The centralized architecture is chosen
because the server has more computing resources and lower
requirements for the computing power of mobile terminals.
Therefore, for mobile terminals with limited computing
power, any tasks with expensive computing requirements and
no real-time requirements can be outsourced to the server. At
the same time, it is ensured that tasks that are vital to agent
autonomy are still running online, such as VIO.
The main contribution of the SLAM framework presented

in this paper is as follows:
• A collaborative monocular visual-inertial SLAM system

for smart phones. As far as we know, this is the first
multi-agent collaboration SLAM system running on the
mobile phone and supporting cross-device collaboration.

• The collaborative SLAM on mobile has achieved com-
parable performance with VINS-Mono [1] running on
PC, such as single-agent mapping performance and
multiple agent fusion performances.

• An accurate and robust fusion strategy between multiple
maps, where a local window is constructed for bidirec-

ar
X

iv
:2

10
6.

12
18

6v
1

 [
cs

.R
O

]
 2

3
Ju

n
20

21

tional reprojection error optimization, and consequently
a more accurate transformation matrix between the two
frames can be obtained.

II. RELATED WORK

The researching work on state estimation based on VIO is
quite extensive. The classical tightly coupled algorithms in-
clude MSCKF [2] and ROVIO [3]. Weiss proposed classical
filter-based loosely coupled algorithm SSF [4] and MSF [5].
Sibley [6] added the pose transformation generated by visual
odometry (VO) calculation in the optimization framework
of the inertial measurement unit (IMU), but the effect is
not as good as tight coupling. OKVIS [7] and VINS-Mono
are the classic ones in tight coupling. The robustness of
pose estimation and the effective management of maps have
enabled the VIO field to develop very well. This marks the
maturity of VIO in a single agent and at the same time paves
the way for the development of multi-agent SLAM.
In the field of multi-agent collaboration SLAM, two prob-

lems are mainly solved: localization and map fusion. A few
works in the literature deal with localization, the purpose
of which is to estimate the relative positions of agents,
or to locate the position of an agent in an existing map.
The place recognition algorithm used by many recent visual
SLAM and VO systems is based on bag-of-words visual
place recognition. This method was proposed by Sivic [8],
and then improved by Nister [9], Gálvez-López [10] and
DLoopDetector1. Ye et al. [11] compared place recognition
in semi-dense maps using geometric and learning-based
approaches.
In the aspect of map fusion, Bonanni et al. [12] proposed

the fusion of 3D maps based on pose graph. Compared
with traditional map fusion using a rigid body transfor-
mation, the map is modeled as a deformable map, and
regarding other maps as observations, which can effectively
deal with common deformation problems in the mapping
to achieve higher accuracy. In our recently work, a fast
matching strategy among multiple submaps is proposed for
map fusion [13]. ORB-SLAM3 [14] discards the imprecise
camera positions to reduce the accumulated error. Under
the condition of ensuring the accuracy of the map, a rigid
body transformation is used to seamlessly integrate the map.
Among them, the ORBSLAM-Atlas [15] module uses camera
pose error covariance to estimate the observability of the
camera pose to determine whether to retain the camera pose
and create a new map.
There are two frameworks for multi-agent collaborative

SLAM: centralized SLAM and distributed SLAM. Schmuck
[16] proposed a multi-UAV collaborative monocular SLAM,
where each agent independently explores the environment,
and VO information is sent to a central server with higher
computing resources. The server manages submaps for all
agents, and detecting overlapping areas triggers map fusion,
optimization, and distribute of the information back to the

1DLoopDetector comes from https://github.com/dorian3d/DLoopDetector

agent. Subsequently, Schmuck [17] proposed CCM-SLAM,
where each agent only retains the basic VO to ensure that the
agent can independently build the map in the environment
and send the estimated pose and 3D point cloud map of
the environment to the server for processing. The agent
only maintains a local map with the latest N keyframes. In
addition to basic place recognition, map fusion, and global
optimization, the server also adds redundant detection and
deletion and information reuse between multiple agents. In
the same year, Karrer [18] also proposed a CVI-SLAM,
a collaborative visual-inertial SLAM, in which each agent
outsources computationally intensive tasks to the server, such
as global optimization that consumes expensive computing
resources of agents. The server also adds a detection and
deletion of redundant information. The centralized SLAM
for mobile devices [13] is based on the VO module of ORB-
SLAM and integrates IMU information. After detecting the
overlapping area, it immediately performs map fusion, but it
does not perform an effective global map fusion optimization,
and tracking failure is more likely to occur when running in
the real environment.
In multi-agent distributed collaboration SLAM, agents share

information and map online without relying on the server.
Cieslewski et al. [19] propose a DSLAM system that
sends a compact and complete image descriptor calculated
by NetVLAD to only one agent. Subsequently, Cieslewski
and Scaramuzza [20] proposed a decentralized visual place
recognition system for networked agents. Wang et al. [21]
proposed an active rendezvous for multi-agent pose graph
optimization using sensing over Wi-Fi, which realizes on-
demand information exchange through active rendezvous
without using the map or agent location.
Compared with these collaborative SLAM systems, our

proposed system adds a communication module from server
to agent. Instead of fusing maps with a rigid transformation,
all maps are modeled as deformable maps, and the fused
maps optimize each other. This solves the common map dis-
tortion problem. Moreover, with the increase of overlapping
regions among several submaps, more fusion optimization
will be carried out among multiple submaps and the better
integration can be achieved.

III. SYSTEM OVERVIEW

The proposed centralized SLAM system supports cross-
device for multiple intelligent mobile terminals and a cen-
tral server, whose architecture is illustrated in Fig. 1. The
proposed system is designed to offload tasks that require
high computational resource but not real-time performance
to the server while ensuring that the autonomous modules of
the agent run online on the agent. Each agent runs a real-
time VIO module to estimate its poses and 3D points of the
surrounding environment. In the local BA module, we define
a sliding window consisting of N frames near the current
frame. In this sliding window, all frames should be optimized
which requires high real-time performance. Meanwhile, this
module can also ensure the accuracy of the agent. Even if the

Fig. 1. The proposed system components and data exchange. The mobile agent (e.g., iPhone 6S) runs a real-time VIO module, and a communication
module to exchange data with the server. The server is a computer with higher computing resources, which performs non-real-time requirements and vital
tasks: server mapping, place recognition, inter-map BA, multi-map fusion. BA: bundle adjustment; KFs: keyframes; MPs: map points; SE(3): Lie group.

agent is disconnected from the server, it can also optimize
the pose in the short term. VIO can put the measured value
of each frame into the sliding window for optimization, limit
the number of poses to be optimized in the sliding window,
and constantly move out some frames, to prevent the number
of poses and features from increasing with time, so that the
optimization problem is always within a limited complexity
and will not increase with time.
The server creates a server submap for each agent, which

stores all the information sent by the agent, and all the server
submaps corresponding to agents are put into a global server
map container. Each agent submap uses a world coordinate
system. The proposed system does not assume any prior
information, or the configuration considers the initial position
between any two agents. All agents operate independently
until the place recognition module detects that there is a
common area between the two submaps and therefore the
server associates the corresponding agent’s measurements.
Each server submap executes a place recognition module. If
two matched frames belong to the same submap and the map
is not fused with other maps, the inter-map BA module will
be performed, and the corresponding agent will be notified of
the drift of the pose, which ensures the consistency between
the agent-side and the server-side map. Otherwise, the multi-
map fusion module optimizes the current agent’s map using
experience gained by other agents in the task.

IV. SYSTEM MODULES

The various functional modules of the proposed system
shown in Fig. 1 are described in detail below.

A. KF-based VIO and mapping

There is no doubt that every VIO system can be used as
a front end for agents to process new frames, as long as it
is keyframe-based. The VIO module used in the proposed
system is the VIO module of Vins-Mobile [22], because it is
one of the best monocular VIO available at that time, and it
can run stably on the ios system. The communication module
is integrated into this VIO system. To be able to experiment
on public datasets, such as EuRoc [23], we also add specific

processing of the data, such as dedistortion, reading and
flipping of image data, and alignment of measurement units.
The server map container contains all the server submaps

created by the agent handler and contains all the experience
gained by the agent in one task. After initializing the system,
each time an agent requests to connect to the server, an
agent handler is created for the agent. When at least two
agent handlers are created, the server creates a server map
container. A multi-map fusion optimization is carried out
when the server detects the common area of two submaps,
and the two submaps are fused into one map.

B. Agent handler

The agent handler manages the data that the agent sends
to the server and forwards messages to the server when
necessary. As shown in Fig. 1, for each agent, an agent
handler module is instantiated, creating six modules that run
on five separate threads, where the fifth and sixth modules
are running on the same thread. It creates a communication
module to communicate with the agent and a module that
parses data packets into keyframe information, initializes a
server submap for each agent, puts it in the server map, and
establishes a server submap manager. The submap manager
can detect loop inside the submap, identify the common areas
of multiple submaps, run global optimization within submap
or between multiple submaps.
For the communication module, a keyframe has an average

of 70 map points, 700 fast corners, and the corresponding
number of 256-bit descriptors. Considering the large amount
of data sent by network communication at one time, the
efficiency of automatic packet cutting and packet splicing is
lower than that of manual packet cutting and data splicing,
and the transmission frequency and density also affect the
communication efficiency. Besides, there is the phenomenon
of packet loss in the actual situation, and the loss of a
large packet means a larger amount of retransmitted data.
Therefore, we divide the packet into 4*1024 sizes artificially
and set the cache area for receiving data on the server
to 210*1024. The data sent by the server to the agent is
almost only the pose drift of the keyframe obtained by global

optimization. The amount of data for this is very small, so the
data packets communicated between the server and multiple
agents are mainly the map information sent by the agent to
the server. This is also proved in Fig. 4 below.

C. Place recognition

The place recognition module detects the common area
between a keyframe and the location in the server map con-
tainer. Since each submap sent by the agent is incremental,
the position overlap is detected each time with the latest
frame. For each keyframe received by the server, two types
of location recognition retrieval can be performed. One is
place recognition with the internal map. When the place
recognition module detects a pair of matching keyframes
inside the agent (KFold, KFcur), if the map has been fused
with other maps, it will trigger multi-map fusion module,
otherwise, it will trigger inter-map BA module. The other
is to match the location in the server map container. If the
common area between agents is detected, a SE(3) transfor-
mation between two matching keyframes is calculated, and
more constraints are added between the two submaps, which
is also the condition of the map fusion module.

D. Visual multi-map merging

When the place recognition module detects a pair of match-
ing keyframes (Kc, Km), which belong to the map Mc

and Mm respectively. The alignment transformation matrix
Tim ic between the two keyframes is solved by the PNP
algorithm (Mm world coordinate system to Mc world co-
ordinate system transformation). We check TWm

ic im ∈ SE(3)
between Kc and Km (the transformation matrix from Km to
Kc in the world coordinate system of Mm). If the yaw and
2-norm of the translation are both below the corresponding
threshold, the assumption of position recognition will be
accepted. If the location recognition assumption is accepted,
the multi-map fusion module will be triggered. A short-
term map fusion is carried out on the local window jointly
defined by the keyframes around Kc and Km and the map
points observed by the keyframes, to optimize TWm

ic im. A
long-term pose graph fusion optimization is performed for all
the keyframes between the early position overlap keyframe
and the nearest position overlap keyframe when the position
overlap is accepted. The specific steps of the algorithm are
as follows:

• Local window. Multi-map fusion module respectively
takes M − 1 frame around the Kc and Km, and put
them into vKFc and vKFm respectively, and puts Kc

and Km into the container correspondingly. Then, the
3D map point MPm observed in the keyframe of vKFm

is projected onto the image coordinate system of Kc

according to the TWm
ic im obtained previously. If the depth

is negative or higher than the threshold, the matching
of the point pair is rejected. Because of the same pose
estimation accuracy, the larger the actual depth, the
less reliable the point, and the worse the triangulation
accuracy. The projection point in the pixel coordinate

system is marked as ρ, then takes ρ as the center of the
circle and r pixels as the radius to search feature points,
and calculate the Hamming distance between MPm

and the feature points. Then, the one with the smallest
Hamming distance is selected as the candidate matching
point. Then, the fundamental matrix is calculated by
RANSAC to filter out the outer points, and the matching
point pairs are respectively placed in vMPc and vMPm.
Then the local window makes a reverse projection to
find more matching point pair. The keyframes in vKFc

and vKFm, and matching point pairs define a local
window.

• Map fusion. As shown in Fig. 2, a local BA is executed
to optimize Tim ic. If the optimized Tim ic is accepted,
the two submaps are fused into one map.

• Optimization of pose graph. As described in Fig. 3, if
the Tim ic solved in map fusion is accepted, global pose
graph optimization between multiple submaps is per-
formed. The drift corrected by the optimization results
is propagated to subsequent map sequences.

Fig. 2. The cost function of local window optimization. The blue ellipse
represents the 3D map points of each frame belonging to map Mm in
the local window. The red ellipse represents the 2D feature points of each
frame of the map Mc in the local window and the pose T in the map
Mc world coordinate system. The blue solid line represents the reprojection
relationship. MPs: 3D point clouds; T: Euclidean transformation; KPs: 2D
keypoints; Km: matching frame of the map Mm; Kc: the search frame of
the map Mc;

Fig. 3. The indirectional cost function of multi-map fusion optimization.
The blue box represents the map Mm, the red box represents the map
Mc, and the circle represents the pose of the frame participating in the
optimization. The purple circle represents the pose of the first loop frame in
the map Mm to participate in local window optimization. The purple box
indicates the optimization variable fixed in it. The purple solid line between
circles indicates that two frames are matched frames, and the gray solid line
indicates the constructed sequence edge.

V. EXPERIMENTAL RESULTS

For all the experiments presented in this section, the devices
used are listed in Table I, where PC is the machine used
by VINS-Mono. To better evaluate the proposed system,
we use the public dataset EuRoc [23]. The datasets provide
accurate ground truth data through Leica Total Station. Each
sequence is processed by a separate agent, and the agent
communicates with the server in real-time over the network.
Taking into account the actual usage, the network has no
special treatment, and the wireless campus network of the
university is used.

A. Precision evaluation of single agent mapping

To evaluate the accuracy of our proposed system, we first
evaluate the absolute trajectory error (ATE) of the keyframe
trajectory. The Table II compares the performance of VINS-
Mobile1, VINS-Mobile2, VINS-Mobile2+Server, and VINS-
Mono. VINS-Mobile1 adds the processing of reading text
data, image flipping, and dedistortion on VINS-Mobile. We
observe that the ATE of VIN-Mobile1 without loop opti-
mization on MH 02 is 0.048m. After the loop optimization
is done, the error becomes 0.10m. The ATE without loop
optimization on MH 01 is 0.083m. After the loop opti-
mization, it can reach 0.08m in the worst case. The loop
optimization effect of VINS-Mobile1 on iphone6s is better
than that on the iphone7p, even it has more computing
resources. This is because the loop optimization overfitting
the relative pose between the two matching frames, but
this relative pose is subject to error. Based on the above
analysis, we slightly modify the VINS-Mobile1 to VINS-
Mobile2 by adding a filter processing which is used to avoid
overfitting of loop optimization. Both VINS-Mobile1 and
VINS-Mobile2 run a complete SLAM system on the mobile
devices. VINS-Mobile2+Server runs VIO on the mobile
devices and performs loop detection and global optimization
on the server. VINS-Mono runs a complete SLAM system
on the PC. Table II shows that the VINS-Mobile2+Server
mode has a slightly better effect than VINS-Mono except for
the MH 04 sequence. Experiment shows that the threshold
value of the relative pose between two matching frames is
too large, leading to the removal of the correct relative pose
relationship. This threshold has not been tested much and
may need to be adjusted further. Besides, the network we
use is a little unstable because so many people are using
it at the same time. If a better network is used, part of
the experimental effect can be improved. Because during
the experiment, we find that the same data is run 6 times,
and the maximum error is 2cm different from the minimum
error. This is because the relative pose between the two
matching frames required for loop optimization is calculated
in the sliding window. The delay of the network causes the
matching frame to be removed from the sliding window, and
the relative pose has not been calculated yet, resulting in
this loop optimization not being performed. This is also the
problem we need to solve later.

TABLE I
HARDWARE SETUP FOR EXPERIMENTS

Platform Type Characteristics
Server MacBook Pro i7 2.8GHz*16GB RAM

Agent 1 iphone6s A9+M9 1.8GHz*2GB RAM
Agent 2 iphone7p A10+M10 2.23GHz*3GB RAM

PC Desktop computer i7-9700k 3.60GHz*15.6GB RAM

Fig. 4. Receiving on the left represents data information sent by the server
to an agent, and sending on the right represents data information sent by an
agent to the server. Among them, the per second module represents the real-
time transmission rate, and the total module represents the amount of data
transmitted during the operation of the entire system. In the table below, the
main body is yellow, and only the bottom left row is purple. Each column
represents the data transmission rate in that second, yellow represents the
data rate sent, and purple represents the data rate received.

B. Bandwidth requirements

When the agent is running , the source editor we used, i.e.
the Xcode, can monitor the occupancy rate of the system
resources. Fig. 4 shows the real-time network occupancy
rate of an agent, where the speed of receiving and sending
data is real-time, not the average speed computed from
total data volume divided by time, so the receiving data
speed is 0.0KB/s, and similarly 0.4MB/s only represents the
received speed of the last column in the bottom table in
Fig. 4. The average bandwidth of an agent is about 0.8MB/s
((95.4Mb + 23.6kb)/119s ≈ 0.8MB/s). Besides, we can see
that the transmitted data is relatively uniform, which also
proves that, as described in the previous section 4.2, actively
cutting large data packets and controlling the transmission
frequency can effectively alleviate network congestion. Since
the server has been fused and optimized in the later stage,
the data fed back to the agent is more low-frequency.

C. Precision evaluation of multi-map fusion

After analyzing the trajectory accuracy of a single agent, the
accuracy of the fusion between multiple agents is evaluated.
To better reflect the accuracy of the fusion, we divide each
sequence of the EuRoc datasets into two parts, denoted as
A and B, and given to two agents respectively. The two
agents run independently and only communicate with the
server, and the server integrates the map information of the
two agents. The second and third column in Table III are
the ATE of sequence A and sequence B, respectively. The
fourth column is the ATE of the global map obtained by
merging sequence B into the world coordinate system of the

TABLE II
COMPARISON OF ABSOLUTE TRAJECTORY ERROR BETWEEN PROXY LOCAL OPERATION AND PROXY SERVER MODE

Dataset VINS-Mobile1 ATE(m) VINS-Mobile2 ATE(m) VINS-Mobile2+Server ATE(m) VINS-Mono ATE(m)
iphone6s iphone7p iphone6s iphone7p iphone6s iphone7p PC

MH 01 0.076 0.070 0.061 0.061 0.053 0.050 0.082
MH 02 0.108 0.100 0.110 0.086 0.080 0.073 0.073
MH 03 0.110 0.109 0.110 0.109 0.054 0.066 0.057
MH 04 0.167 0.170 0.167 0.166 0.166 0.163 0.148
MH 05 0.087 0.101 0.087 0.090 0.096 0.093 0.107

TABLE III
MAP FUSION ABSOLUTE TRAJECTORY ERROR COMPARISON

Dataset VINS-Mobile2+Server ATE(m)
1st 2nd 1st-2nd 2nd-1st single agent(6s)

MH 01 0.119 0.101 0.071 0.046 0.053
MH 02 0.068 0.057 0.080 0.070 0.080
MH 03 0.068 0.144 0.067 0.102 0.054
MH 04 0.130 0.256 0.198 0.190 0.166
MH 05 0.173 0.119 0.159 0.090 0.096

TABLE IV
MULTI-AGENT COLLABORATION PERFORMANCE EVALUATION

Dataset VINS-Mobile2+Server ATE(m) VINS-Mono
ATE(m)

multi agent single agent(6s) multi-session
MH 03&MH 01 0.044 0.053 0.047
MH 01&MH 02 0.049 0.080 0.049
MH 04&MH 05 0.090 0.095 0.106
MH 01&MH 05 0.092 0.095 0.117
MH 02&MH 03 0.069 0.054 0.059
MH 03&MH 04 0.127 0.166 0.116
MH 05&MH 04 0.120 0.166 0.096

A sequence. The fifth column is the ATE of the global map
obtained by merging sequence A into the world coordinate
system of sequence B. The sixth column is the ATE of a
map obtained after an agent runs a complete data sequence
and sends it to the server for loop optimization.
Table III shows that the ATE of sequence A and sequence
B is almost larger than that of a complete sequence. This is
because the effect of map initialization has a greater impact
on the ATE of the entire map, and small data sequences have
less information. Moreover, A and B who are the main maps
have a great influence on the accuracy of the final fusion.
Because the proposed optimization strategy is to optimize
the keyframes between the first matching frame and the last
matching frame of the main map, while the other maps are
optimized from the first frame of the map to the last matching
frame. The drift of the optimization correction propagates to
the subsequent map sequence, but the previous map sequence
cannot be corrected unless the previous map sequence has a
new loop constraint. Column 2 and column 3 in Table III
show that mapping only through VIO tracking is bad. It is
found in the experiment that the filtering condition is too
strong to ensure the accuracy of fusion, which leads to the
common area detected in the previous sequence of the main
map being regarded as not a correct hypothesis and cannot

participate in the optimization of multi-map fusion.

D. Multi-agent collaboration assessment

The last experiment aims to analyze the ability of agents to
share and reuse information in a collaborative environment.
For this reason, we have experimented in single-agent mode,
double-agent mode and VINS-Mono multi-session mode.
Their ATE reported in Table IV are calculated by aligning
the optimized global trajectory with the ground truth. For
each experiment, in the case of multi-agent and VINS-Mono
multi-session, we only align and evaluate the results of the
second sequence. For the single-agent case, we only run the
second sequence. Because there are very few overlapping
regions in the MH 02 and MH 03, the proposed system
only accepts two overlaps, resulting in the fusion error of
the two submaps that can not be optimized. For the MH 03
sequence, the ATE after the fusion optimization is higher than
the ATE performing loop optimization only, which exists in
the proposed system and VINS-Mono. The experiment shows
that the other data sequences in Table IV have relatively more
overlapping areas, and their mapping accuracy is higher than
that in the single-agent mode. This shows that the proposed
fusion optimization strategy is feasible, even if the relative
pose of the two matched frames is inaccurate. But if there
are fewer common areas between two submaps, the error
will propagate to the subsequent map sequence and cannot
be corrected. Improving the accuracy of the relative pose
between two frames is an important problem we will solve
in the future. Table IV also shows that the fusion accuracy of
the proposed method has achieved similar results to VINS-
Mono, and the benefits of sharing information obtained by
multiple agents to improve accuracy during collaboration.

VI. CONCLUSIONS

In this paper, we propose a cooperative monocular visual-
inertial SLAM system for smart phones. The experiments
show that the accuracy of mapping and fusion of the pro-
posed SLAM system is comparable to VINS-Mono running
on PC. Furthermore, our evaluation confirms that sharing
information between participating agents during collaborative
SLAM mapping can improve the accuracy of each agent pose
estimation in real-time compared to a single agent scenario.
To the best of our knowledge, the proposed system is the
first visual inertial cooperative SLAM system running on
the mobile phone and achieving two-way communication
between the agent and the server.

REFERENCES

[1] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[2] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, 2007,
pp. 3565–3572.

[3] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual in-
ertial odometry using a direct ekf-based approach,” in 2015 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, 2015, pp. 298–304.

[4] S. Weiss, M. W. Achtelik, M. Chli, and R. Siegwart, “Versatile
distributed pose estimation and sensor self-calibration for an au-
tonomous mav,” in 2012 IEEE International Conference on Robotics
and Automation. IEEE, 2012, pp. 31–38.

[5] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart,
“A robust and modular multi-sensor fusion approach applied to mav
navigation,” in 2013 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 2013, pp. 3923–3929.

[6] J. M. Falquez, M. Kasper, and G. Sibley, “Inertial aided dense & semi-
dense methods for robust direct visual odometry,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 3601–3607.

[7] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[8] J. Sivic and A. Zisserman, “Video google: A text retrieval approach
to object matching in videos,” in null. IEEE, 2003, p. 1470.

[9] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 2. Ieee, 2006, pp. 2161–
2168.

[10] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast
place recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, 2012.

[11] Y. Ye, T. Cieslewski, A. Loquercio, and D. Scaramuzza, “Place recog-
nition in semi-dense maps: Geometric and learning-based approaches,”
2017.

[12] T. M. Bonanni, B. Della Corte, and G. Grisetti, “3-d map merging on
pose graphs,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
1031–1038, 2017.

[13] J. Zhang, J. Liu, K. Chen, Z. Pan, R. Liu, Y. Wang, T. Yang, and
S. Chen, “Map recovery and fusion for collaborative ar of multiple
mobile devices,” IEEE Transactions on Industrial Informatics, 2020.

[14] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “Orb-slam3: An accurate open-source library for visual, visual-
inertial and multi-map slam,” arXiv preprint arXiv:2007.11898, 2020.

[15] R. Elvira, J. D. Tardós, and J. Montiel, “Orbslam-atlas: a robust and
accurate multi-map system,” arXiv preprint arXiv:1908.11585, 2019.

[16] P. Schmuck and M. Chli, “Multi-uav collaborative monocular slam,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 3863–3870.

[17] ——, “Ccm-slam: Robust and efficient centralized collaborative
monocular simultaneous localization and mapping for robotic teams,”
Journal of Field Robotics, 2018.

[18] P. Schmuck, M. Karrer, and M. Chli, “Cvi-slam-collaborative visual-
inertial slam,” IEEE Robotics & Automation Letters, pp. 1–1, 2018.

[19] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-efficient
decentralized visual slam,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 2466–2473.

[20] T. Cieslewski and D. Scaramuzza, “Efficient decentralized visual
place recognition from full-image descriptors,” in 2017 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE,
2017, pp. 78–82.

[21] W. Wang, N. Jadhav, P. Vohs, N. Hughes, M. Mazumder, and S. Gil,
“Active rendezvous for multi-robot pose graph optimization using
sensing over wi-fi,” arXiv preprint arXiv:1907.05538, 2019.

[22] P. Li, T. Qin, B. Hu, F. Zhu, and S. Shen, “Monocular visual-
inertial state estimation for mobile augmented reality,” in 2017 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE, 2017, pp. 11–21.

[23] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”
International Journal of Robotics Research, vol. 35, no. 10, pp. 1157–
1163, 2016.

	I Introduction
	II RELATED WORK
	III SYSTEM OVERVIEW
	IV SYSTEM MODULES
	IV-A KF-based VIO and mapping
	IV-B Agent handler
	IV-C Place recognition
	IV-D Visual multi-map merging

	V EXPERIMENTAL RESULTS
	V-A Precision evaluation of single agent mapping
	V-B Bandwidth requirements
	V-C Precision evaluation of multi-map fusion
	V-D Multi-agent collaboration assessment

	VI Conclusions
	References

