
Embedding Symbolic Temporal Knowledge into Deep Sequential Models

Yaqi Xie∗, Fan Zhou∗, and Harold Soh
Dept. of Computer Science, National University of Singapore.

{yaqixie, zhoufan ,harold}@comp.nus.edu.sg

Abstract— Sequences and time-series often arise in robot
tasks, e.g., in activity recognition and imitation learning. In
recent years, deep neural networks (DNNs) have emerged as
an effective data-driven methodology for processing sequences
given sufficient training data and compute resources. However,
when data is limited, simpler models such as logic/rule-based
methods work surprisingly well, especially when relevant prior
knowledge is applied in their construction. However, unlike
DNNs, these “structured” models can be difficult to extend, and
do not work well with raw unstructured data. In this work,
we seek to learn flexible DNNs, yet leverage prior temporal
knowledge when available. Our approach is to embed symbolic
knowledge expressed as linear temporal logic (LTL) and use
these embeddings to guide the training of deep models. Specif-
ically, we construct semantic-based embeddings of automata
generated from LTL formula via a Graph Neural Network.
Experiments show that these learnt embeddings can lead to
improvements on downstream robot tasks such as sequential
action recognition and imitation learning.

I. INTRODUCTION

Sequence learning is crucial building-block for AI and
robotics; it is applied to various problems including ac-
tion prediction and policy learning. Significant advances
have been made in sequence learning, exemplified by im-
provements on tasks ranging from visual tracking [1] and
language translation [2] to human modeling [3] and game
playing [4]. This progress has been largely powered by
deep learning [5]. However, deep models often require large
amounts of training data, which may limit their application in
situations where data is not as readily available. For example,
in imitation learning contexts, expert demonstrations are
typically expensive and difficult to procure.

In many settings, high-level structured knowledge is often
available in addition to data. Consider that humans teach
children not only by giving examples, but also through struc-
tured information. For example, a parent who is assembling
a Lego toy with child may point out that “two blocks can
be put together to form a bigger block,” or “according to
the picture, the red brick should be on the left”. Similarly,
cooking recipes include general tips such as the following
when making apple pie: “to cook apples thoroughly, first
bring the water to a simmer, and after lowering in the apples,
cover the pot with a baking parchment”. However, it remains
unclear how we can best leverage these types of structured
knowledge in deep neural networks (DNNs).

In this work, we seek to incorporate temporal knowl-
edge into deep sequential learning. We focus on temporal

∗Equal Contribution.

knowledge expressed in finite Linear Temporal Logic (LTLf).
LTLf is well-defined and unambiguous compared to natural
language, yet relatively easy for humans to derive and
interpret. These properties make LTLf a useful language for
specifying temporal relationships and dynamic constraints,
and for automated reasoning. As such, various attempts have
been proposed to incorporate LTLf in sequential models, e.g.,
in reinforcement learning via planning [6]–[8] and by using
logic checkers as auxiliary losses [9]–[11].

Different from prior work, we explore the incorporation
of LTLf knowledge into neural networks via real-vector
embeddings. In contrast to symbols and their operators,
embeddings are naturally processed by standard deep neural
networks. When properly structured/learned, distances (e.g.,
Euclidean) in the embedding space can be exploited to
quickly compute whether a given output from a deep network
is consistent with related LTLf formulae. Unlike standard
model checkers, our approach enables a form of “soft”-
satisfiability, which can potentially generalize knowledge.
In our cooking example, when making a fruit pie, the
knowledge for using apples (e.g., cutting, poaching) may
apply to other fruits (e.g, pears). However, these advantages
are contingent upon a successful transfer of the information
contained within LTLf formulae into corresponding real-
vectors. A principal challenge is that LTLf syntax trees are
multifarious; the same formulae can often be written in many
different ways, which makes it hard for neural networks to
learn relevant semantics.

Our insight is that a deterministic finite automaton (DFA)
(translated from an LTLf specification) incorporates the
needed semantics, yet has a structure that is amenable to
learning via graph neural networks (GNN) [12], [13]. In
particular, we note that the message propagation between
nodes in graph convolutional layers can approximate the
path traversals used in LTLf model checking algorithms.
Indeed, our model-checking experiments in Sec. V show
that embedding DFAs resulted in far better performance
compared to syntax trees.

Based on this idea, we take first steps towards a practical
approach for training deep sequential models using a combi-
nation of data and prior temporal knowledge. We propose the
Temporal-Logic Embedded Automata Framework (T-LEAF)
that “steers” deep models during training to be consistent
with specified LTLf formulae (Fig. 1). Specifically, T-LEAF
uses a custom-designed hierarchical embedder to convert
DFAs into embeddings that are then used in a logic loss. The
logic loss encourages the output of models to be consistent

ar
X

iv
:2

10
1.

11
98

1v
1

 [
cs

.A
I]

 2
8

Ja
n

20
21

Knowledge Sources

Related LTLf

DFA Embedding

Input Sequence Task Model
(e.g., DNN)

Total Loss

LTLf
Extraction <latexit sha1_base64="Ibc4bRAITNJO5Cv4H9LpSdWII/w=">AAACFXicbVDLSgMxFL3j2/qqunQTLEIFKTO1o3YhCi50qWBV6JSSSTNtaCYTkoxQij/hxl9x40IRt4I7/8JPMJ2q+Dqrwzn3cO89oeRMG9d9dUZGx8YnJqemczOzc/ML+cWlM52kitAaSXiiLkKsKWeC1gwznF5IRXEccnoedg8G/vklVZol4tT0JG3EuC1YxAg2VmrmN4JLrGSHoV1UDARtI9kso4Ck0hJvPbBxdIg+jWa+4JbcDOgv8T5IYe8NMhw38y9BKyFpTIUhHGtd91xpGn2sDCOcXuWCVFOJSRe3ad1SgWOqG/3sqyu0ZpUWiuwFUSIMytTviT6Ote7FoZ2Mseno395A/M+rpybaafSZkKmhggwXRSlHJkGDilCLKUoM71mCiWL2VkQ6WGFibJG5rIRqxfN93/5e3fLLm9UB2fHdyvZXCWflkueX3JNKYb84bAOmYAVWoQgebMM+HMEx1IDANdzCPTw4N86d8+g8DUdHnI/MMvyA8/wOZMaeDw==</latexit>

' = (¬p2 [p1) _ G¬p2

LTLf to DFA
Conversion

0 1

2

3

4
<latexit sha1_base64="GlBSTCIJm6E//WPzEvg6mLGLUl4=">AAAB6nicbVDLSsNAFL3xWeur6tJNsAhdlaQ2tl1ZcOOyon1AG8pkOmmHTiZhZiKU0E9w40IRt36RO//CT3CSFvF14MLhnHu59x4vYlQqy3o3VlbX1jc2c1v57Z3dvf3CwWFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut70MvW7d0RIGvJbNYuIG6Axpz7FSGnpJhraw0LRKlsZzL/EXpLixQdkaA0Lb4NRiOOAcIUZkrJvW5FyEyQUxYzM84NYkgjhKRqTvqYcBUS6SXbq3DzVysj0Q6GLKzNTv08kKJByFni6M0BqIn97qfif14+VX3cTyqNYEY4Xi/yYmSo007/NERUEKzbTBGFB9a0mniCBsNLp5LMQGlXbcRz9e+PcqZw1UlJ3rGrtK4ROpWw7Zeu6WmyWFmlADo7hBEpgQw2acAUtaAOGMdzDIzwZzHgwno2XReuKsZw5gh8wXj8Bu7OPDg==</latexit>

p1
<latexit sha1_base64="GlBSTCIJm6E//WPzEvg6mLGLUl4=">AAAB6nicbVDLSsNAFL3xWeur6tJNsAhdlaQ2tl1ZcOOyon1AG8pkOmmHTiZhZiKU0E9w40IRt36RO//CT3CSFvF14MLhnHu59x4vYlQqy3o3VlbX1jc2c1v57Z3dvf3CwWFHhrHApI1DFoqehyRhlJO2ooqRXiQICjxGut70MvW7d0RIGvJbNYuIG6Axpz7FSGnpJhraw0LRKlsZzL/EXpLixQdkaA0Lb4NRiOOAcIUZkrJvW5FyEyQUxYzM84NYkgjhKRqTvqYcBUS6SXbq3DzVysj0Q6GLKzNTv08kKJByFni6M0BqIn97qfif14+VX3cTyqNYEY4Xi/yYmSo007/NERUEKzbTBGFB9a0mniCBsNLp5LMQGlXbcRz9e+PcqZw1UlJ3rGrtK4ROpWw7Zeu6WmyWFmlADo7hBEpgQw2acAUtaAOGMdzDIzwZzHgwno2XReuKsZw5gh8wXj8Bu7OPDg==</latexit>

p1

<latexit sha1_base64="xvzXvr3v0cyixgkn+ZWvli4X8rE=">AAAB6HicbVDJTgJBEK3BDXFDPXrpSEw4kRlkBE6SePEIiSwJTEhP0wMtPUu6e0wI4Qu8eNAYr36SN//CT7BnIMbtJZW8vFeVqnpuxJlUpvluZNbWNza3stu5nd29/YP84VFHhrEgtE1CHoqeiyXlLKBtxRSnvUhQ7Lucdt3pVeJ376iQLAxu1Cyijo/HAfMYwUpLLWuYL5glMwX6S6wVKVx+QIrmMP82GIUk9mmgCMdS9i0zUs4cC8UIp4vcIJY0wmSKx7SvaYB9Kp15eugCnWllhLxQ6AoUStXvE3PsSznzXd3pYzWRv71E/M/rx8qrOXMWRLGiAVku8mKOVIiSr9GICUoUn2mCiWD6VkQmWGCidDa5NIR6xbJtW/9ev7DL5/WE1GyzUv0KoVMuWXbJbFUKjeIyDcjCCZxCESyoQgOuoQltIEDhHh7hybg1Hoxn42XZmjFWM8fwA8brJzbfjis=</latexit>

1

<latexit sha1_base64="xvzXvr3v0cyixgkn+ZWvli4X8rE=">AAAB6HicbVDJTgJBEK3BDXFDPXrpSEw4kRlkBE6SePEIiSwJTEhP0wMtPUu6e0wI4Qu8eNAYr36SN//CT7BnIMbtJZW8vFeVqnpuxJlUpvluZNbWNza3stu5nd29/YP84VFHhrEgtE1CHoqeiyXlLKBtxRSnvUhQ7Lucdt3pVeJ376iQLAxu1Cyijo/HAfMYwUpLLWuYL5glMwX6S6wVKVx+QIrmMP82GIUk9mmgCMdS9i0zUs4cC8UIp4vcIJY0wmSKx7SvaYB9Kp15eugCnWllhLxQ6AoUStXvE3PsSznzXd3pYzWRv71E/M/rx8qrOXMWRLGiAVku8mKOVIiSr9GICUoUn2mCiWD6VkQmWGCidDa5NIR6xbJtW/9ev7DL5/WE1GyzUv0KoVMuWXbJbFUKjeIyDcjCCZxCESyoQgOuoQltIEDhHh7hybg1Hoxn42XZmjFWM8fwA8brJzbfjis=</latexit>

1

<latexit sha1_base64="xvzXvr3v0cyixgkn+ZWvli4X8rE=">AAAB6HicbVDJTgJBEK3BDXFDPXrpSEw4kRlkBE6SePEIiSwJTEhP0wMtPUu6e0wI4Qu8eNAYr36SN//CT7BnIMbtJZW8vFeVqnpuxJlUpvluZNbWNza3stu5nd29/YP84VFHhrEgtE1CHoqeiyXlLKBtxRSnvUhQ7Lucdt3pVeJ376iQLAxu1Cyijo/HAfMYwUpLLWuYL5glMwX6S6wVKVx+QIrmMP82GIUk9mmgCMdS9i0zUs4cC8UIp4vcIJY0wmSKx7SvaYB9Kp15eugCnWllhLxQ6AoUStXvE3PsSznzXd3pYzWRv71E/M/rx8qrOXMWRLGiAVku8mKOVIiSr9GICUoUn2mCiWD6VkQmWGCidDa5NIR6xbJtW/9ev7DL5/WE1GyzUv0KoVMuWXbJbFUKjeIyDcjCCZxCESyoQgOuoQltIEDhHh7hybg1Hoxn42XZmjFWM8fwA8brJzbfjis=</latexit>

1

<latexit sha1_base64="41csr7MzBYaktb4w9jZq6LPElXw=">AAAB+3icbZDLTgIxFIbP4A3xNuLSTSMxYUVmkBFYSeLGJSZySYCQTinQ0OlM2o6REF7FjQuNceuLuPMtfATLQIy3P2ny5T/n5Jz+fsSZ0o7zbqXW1jc2t9LbmZ3dvf0D+zDbVGEsCW2QkIey7WNFORO0oZnmtB1JigOf05Y/uVzUW7dUKhaKGz2NaC/AI8GGjGBtrL6d7Qo6QlHfRV2OxcBQsW/nnIKTCP0FdwW5iw9IVO/bb91BSOKACk04VqrjOpHuzbDUjHA6z3RjRSNMJnhEOwYFDqjqzZLb5+jUOAM0DKV5QqPE/T4xw4FS08A3nQHWY/W7tjD/q3ViPaz0ZkxEsaaCLBcNY450iBZBoAGTlGg+NYCJZOZWRMZYYqJNXJkkhGrJ9TzP/L167hXPqguoeE6p/BVCs1hwvYJzXcrV8ss0IA3HcAJ5cKEMNbiCOjSAwB3cwyM8WXPrwXq2XpatKWs1cwQ/ZL1+AhBUlMc=</latexit>¬p1 ^ p2
<latexit sha1_base64="41csr7MzBYaktb4w9jZq6LPElXw=">AAAB+3icbZDLTgIxFIbP4A3xNuLSTSMxYUVmkBFYSeLGJSZySYCQTinQ0OlM2o6REF7FjQuNceuLuPMtfATLQIy3P2ny5T/n5Jz+fsSZ0o7zbqXW1jc2t9LbmZ3dvf0D+zDbVGEsCW2QkIey7WNFORO0oZnmtB1JigOf05Y/uVzUW7dUKhaKGz2NaC/AI8GGjGBtrL6d7Qo6QlHfRV2OxcBQsW/nnIKTCP0FdwW5iw9IVO/bb91BSOKACk04VqrjOpHuzbDUjHA6z3RjRSNMJnhEOwYFDqjqzZLb5+jUOAM0DKV5QqPE/T4xw4FS08A3nQHWY/W7tjD/q3ViPaz0ZkxEsaaCLBcNY450iBZBoAGTlGg+NYCJZOZWRMZYYqJNXJkkhGrJ9TzP/L167hXPqguoeE6p/BVCs1hwvYJzXcrV8ss0IA3HcAJ5cKEMNbiCOjSAwB3cwyM8WXPrwXq2XpatKWs1cwQ/ZL1+AhBUlMc=</latexit>¬p1 ^ p2

<latexit sha1_base64="LIpPhZ5pB1Me/zdBYPKtPh7bhy8=">AAACAHicbVDLTgIxFL2DL8TXqAsXbhqJCSsyg4zAShI3LjGRRwKEdEqBhk5n0nZMCGHjr7hxoTFu/Qx3/oWfYBmI8XWSm5yec2967/EjzpR2nHcrtbK6tr6R3sxsbe/s7tn7Bw0VxpLQOgl5KFs+VpQzQeuaaU5bkaQ48Dlt+uPLud+8pVKxUNzoSUS7AR4KNmAEayP17KOOoEMU9VzU4Vj00fJZ6NlZJ+8kQH+JuyTZiw9IUOvZb51+SOKACk04VqrtOpHuTrHUjHA6y3RiRSNMxnhI24YKHFDVnSYHzNCpUfpoEEpTQqNE/T4xxYFSk8A3nQHWI/Xbm4v/ee1YD8rdKRNRrKkgi48GMUc6RPM0UJ9JSjSfGIKJZGZXREZYYqJNZpkkhErR9TzP3F459wpnlTkpe06x9BVCo5B3vbxzXcxWc4s0IA3HcAI5cKEEVbiCGtSBwAzu4RGerDvrwXq2XhatKWs5cwg/YL1+AoPolq8=</latexit> ¬p1 ^ ¬p2
<latexit sha1_base64="LIpPhZ5pB1Me/zdBYPKtPh7bhy8=">AAACAHicbVDLTgIxFL2DL8TXqAsXbhqJCSsyg4zAShI3LjGRRwKEdEqBhk5n0nZMCGHjr7hxoTFu/Qx3/oWfYBmI8XWSm5yec2967/EjzpR2nHcrtbK6tr6R3sxsbe/s7tn7Bw0VxpLQOgl5KFs+VpQzQeuaaU5bkaQ48Dlt+uPLud+8pVKxUNzoSUS7AR4KNmAEayP17KOOoEMU9VzU4Vj00fJZ6NlZJ+8kQH+JuyTZiw9IUOvZb51+SOKACk04VqrtOpHuTrHUjHA6y3RiRSNMxnhI24YKHFDVnSYHzNCpUfpoEEpTQqNE/T4xxYFSk8A3nQHWI/Xbm4v/ee1YD8rdKRNRrKkgi48GMUc6RPM0UJ9JSjSfGIKJZGZXREZYYqJNZpkkhErR9TzP3F459wpnlTkpe06x9BVCo5B3vbxzXcxWc4s0IA3HcAI5cKEEVbiCGtSBwAzu4RGerDvrwXq2XhatKWs5cwg/YL1+AoPolq8=</latexit> ¬p1 ^ ¬p2

Hierarchical Graph
 Embedder

DFA

Predicted
Sequence

<latexit sha1_base64="dzYKQE6lZpCR8we57IkM9vFOKwQ=">AAAB8HicbVDLSsNAFL2pr1pfVZdugkVwFZLa2HZlxY3LCvYhbSiT6aQdOnkwMymU0K9w40IRt36OO//CT3CSFvF14MLhnHu59x43YlRI03zXciura+sb+c3C1vbO7l5x/6Atwphj0sIhC3nXRYIwGpCWpJKRbsQJ8l1GOu7kKvU7U8IFDYNbOYuI46NRQD2KkVTS3eWgP0U8GtNBsWQaZgb9L7GWpHTxARmag+Jbfxji2CeBxAwJ0bPMSDoJ4pJiRuaFfixIhPAEjUhP0QD5RDhJdvBcP1HKUPdCriqQeqZ+n0iQL8TMd1Wnj+RY/PZS8T+vF0uv5iQ0iGJJArxY5MVMl6Gefq8PKSdYspkiCHOqbtXxGHGEpcqokIVQr1i2bavf6+d2+ayekpptVqpfIbTLhmUb5k2l1DAWaUAejuAYTsGCKjTgGprQAgw+3MMjPGlce9CetZdFa05bzhzCD2ivn3pskdY=</latexit>

A'

Task Loss
<latexit sha1_base64="lJ1k9bztLn7FYEh4iZ8uIs6Xe4Q=">AAACAnicbVDLSgNBEOz1GeMr6km8LAbBU9jVrElOBrx48BDBRCEJYXYySYbMPpjpFcMSvPgrXjwo4tWv8OZf+AnOboL4Kmgoqrrp7nJDwRVa1rsxMzs3v7CYWcour6yurec2NhsqiCRldRqIQF65RDHBfVZHjoJdhZIRzxXs0h2eJP7lNZOKB/4FjkLW9kjf5z1OCWqpk9tueQQHlIj4bNxpIbtB6cVI1HDcyeWtgpXC/EvsKckff0CKWif31uoGNPKYj1QQpZq2FWI7JhI5FWycbUWKhYQOSZ81NfWJx1Q7Tl8Ym3ta6Zq9QOry0UzV7xMx8ZQaea7uTA5Wv71E/M9rRtgrt2PuhxEyn04W9SJhYmAmeZhdLhlFMdKEUMn1rSYdEEko6tSyaQiVou04jv69cuQcHFYSUnasYukrhMZBwXYK1nkxXy1M0oAM7MAu7IMNJajCKdSgDhRu4R4e4cm4Mx6MZ+Nl0jpjTGe24AeM109LDpml</latexit>

Ltask

Prediction
Embedding

<latexit sha1_base64="MXaTyInqJSRJaHHmisZ83uhmiG8=">AAACN3icbVBNSxxBEK1RE3U1yUaPuTQugiAsM2ZH3YMoeMkhiEJWhZ1lqentXZvt+aC7JrgM86+8+De86SWHSMgx/gN7ZiUY44OG1+9VdVe9MFXSkOveOjOzc2/ezi8s1paW373/UP+4cmqSTHPR4YlK9HmIRigZiw5JUuI81QKjUImzcHxY+mffhTYyib/RJBW9CEexHEqOZKV+/SiIkC44qvxrwfbYs1s/D0hcko5yQjMuis1A2WcH+HqNSkaSF0W/3nCbbgX2P/GeSGP/D1Q47tdvgkHCs0jExBUa0/XclHo5apJciaIWZEakyMc4El1LY4yE6eXV3gVbt8qADRNtT0ysUp935BgZM4lCW1nObF56pfia181ouNvLZZxmJGI+/WiYKUYJK0NkA6kFJzWxBLmWdlbGL1AjJxt1rQqh3fJ837e7t7f9rc/tkuz6bmvnbwinW03Pb7onrcZBc5oGLMAnWIMN8GAHDuALHEMHOFzBHfyEe+fa+eH8cn5PS2ecp55V+AfOwyOyN7CF</latexit>

L = Ltask + �Llogic Logic Loss
<latexit sha1_base64="hgdwpF6aELdQcW9IwCu9Bx7K5o4=">AAACBXicbVDLSgNBEOyNrxhfUY96WAyCp7Abs2pOBrx48KBgNJCEMDuZJENmH8z0imHZixd/xYsHRbz6D978Cz/B2Y2Ir4KGoqqb7i43FFyhZb0Zuanpmdm5/HxhYXFpeaW4unahgkhS1qCBCGTTJYoJ7rMGchSsGUpGPFewS3d0lPqXV0wqHvjnOA5ZxyMDn/c5JailbnGz7REcUiLik6Qbt5Fdo/RiEQw4TZJusWSVrQzmX2J/ktLhO2Q47RZf272ARh7zkQqiVMu2QuzERCKngiWFdqRYSOiIDFhLU594THXi7IvE3NZKz+wHUpePZqZ+n4iJp9TYc3VnerP67aXif14rwv5BJ+Z+GCHz6WRRPxImBmYaidnjklEUY00IlVzfatIhkYSiDq6QhVCr2o7j6N9re05lt5aSA8eq7n+FcFEp207ZOquW6uVJGpCHDdiCHbBhH+pwDKfQAAo3cAcP8GjcGvfGk/E8ac0ZnzPr8APGywfd1psW</latexit>

LlogicT-LEAF

<latexit sha1_base64="EFrpVIYeugMVOmmQK/L8R7dviLc=">AAAB83icbVDLTsJAFL3FF+ILdemmkZjghrRIBVZi3LjERB4JNGQ6DDBh2o4zUxLS8BtuXGiMW3/GnX/hJzgUYnyd5CYn59ybe+/xOKNSWda7kVpZXVvfSG9mtrZ3dvey+wdNGUYCkwYOWSjaHpKE0YA0FFWMtLkgyPcYaXnjq7nfmhAhaRjcqiknro+GAR1QjJSWunf5y153ggQf0dNeNmcVrATmX2IvSe7iAxLUe9m3bj/EkU8ChRmSsmNbXLkxEopiRmaZbiQJR3iMhqSjaYB8It04uXlmnmilbw5CoStQZqJ+n4iRL+XU93Snj9RI/vbm4n9eJ1KDihvTgEeKBHixaBAxU4XmPACzTwXBik01QVhQfauJR0ggrHRMmSSEasl2HEf/Xj13imfVOak4Vqn8FUKzWLCdgnVTytUKizQgDUdwDHmwoQw1uIY6NAADh3t4hCcjMh6MZ+Nl0ZoyljOH8APG6ycZZZK2</latexit>

q(A')

<latexit sha1_base64="kKEs21sYMez6LN4nPUSyPB3zybo=">AAAB63icbVDLSsNAFL3xWeur6tLNYBHqJiS1se3KghuXFewD2lAm00k7dPJwZqKU0F9w40IRt/6QO//CTzBJi/g6cOFwzr3ce48TciaVYbxrS8srq2vruY385tb2zm5hb78tg0gQ2iIBD0TXwZJy5tOWYorTbigo9hxOO87kIvU7t1RIFvjXahpS28Mjn7mMYJVKN6W7k0GhaOhGBvSXmAtSPP+ADM1B4a0/DEjkUV8RjqXsmUao7BgLxQins3w/kjTEZIJHtJdQH3tU2nF26wwdJ8oQuYFIylcoU79PxNiTcuo5SaeH1Vj+9lLxP68XKbdmx8wPI0V9Ml/kRhypAKWPoyETlCg+TQgmgiW3IjLGAhOVxJPPQqhXTMuykt/rZ1b5tJ6SmmVUql8htMu6aenGVaXY0OdpQA4O4QhKYEIVGnAJTWgBgTHcwyM8aZ72oD1rL/PWJW0xcwA/oL1+Ajm3j1c=</latexit>

q(w)

<latexit sha1_base64="6VCWjiR/klRwObThNTH0bHNfI0Y=">AAAB73icbVDJTgJBEK1xRdxQj146EhO8TGaQETgYSbx4xESWBCakp2mgQ89id49KCD/hxYPGePV3vPkXfoLNQIzbSyp5ea8qVfW8iDOpLOvdWFhcWl5ZTa2l1zc2t7YzO7t1GcaC0BoJeSiaHpaUs4DWFFOcNiNBse9x2vCG51O/cUOFZGFwpUYRdX3cD1iPEay01LxFp2iQuzvqZLKWaSVAf4k9J9mzD0hQ7WTe2t2QxD4NFOFYypZtRcodY6EY4XSSbseSRpgMcZ+2NA2wT6U7Tu6doEOtdFEvFLoChRL1+8QY+1KOfE93+lgN5G9vKv7ntWLVK7ljFkSxogGZLerFHKkQTZ9HXSYoUXykCSaC6VsRGWCBidIRpZMQygXbcRz9e/nEyR+Xp6TkWIXiVwj1vGk7pnVZyFbMWRqQgn04gBzYUIQKXEAVakCAwz08wpNxbTwYz8bLrHXBmM/swQ8Yr5840ZBr</latexit>

w = h(x)

<latexit sha1_base64="270cfpM1LCP9KYTwghn+na37vsk=">AAAB6HicbVDLSsNAFL2pr1pfVZdugkVwFZLa2HZlwY3LFuwD2lAm00k7dvJgZiKW0C9w40IRt36SO//CT3CSFvF14MLhnHu59x43YlRI03zXciura+sb+c3C1vbO7l5x/6Ajwphj0sYhC3nPRYIwGpC2pJKRXsQJ8l1Guu70MvW7t4QLGgbXchYRx0fjgHoUI6mk1t2wWDINM4P+l1hLUrr4gAzNYfFtMApx7JNAYoaE6FtmJJ0EcUkxI/PCIBYkQniKxqSvaIB8IpwkO3SunyhlpHshVxVIPVO/TyTIF2Lmu6rTR3Iifnup+J/Xj6VXcxIaRLEkAV4s8mKmy1BPv9ZHlBMs2UwRhDlVt+p4gjjCUmVTyEKoVyzbttXv9XO7fFZPSc02K9WvEDplw7INs1UpNYxFGpCHIziGU7CgCg24gia0AQOBe3iEJ+1Ge9CetZdFa05bzhzCD2ivn6RJjng=</latexit>

x

Temporal-Logic Embedded Automata Framework

<latexit sha1_base64="ufn6hOaSxaVs8/6TaEosIymAAQo=">AAAB6HicbVDLSsNAFL2pr1pfVZdugkVwFZLa2HZlwY3LFuwD2lAm00k7dvJwZiKU0C9w40IRt36SO//CT3CSFvF14MLhnHu59x43YlRI03zXciura+sb+c3C1vbO7l5x/6Ajwphj0sYhC3nPRYIwGpC2pJKRXsQJ8l1Guu70MvW7d4QLGgbXchYRx0fjgHoUI6mk1u2wWDINM4P+l1hLUrr4gAzNYfFtMApx7JNAYoaE6FtmJJ0EcUkxI/PCIBYkQniKxqSvaIB8IpwkO3SunyhlpHshVxVIPVO/TyTIF2Lmu6rTR3Iifnup+J/Xj6VXcxIaRLEkAV4s8mKmy1BPv9ZHlBMs2UwRhDlVt+p4gjjCUmVTyEKoVyzbttXv9XO7fFZPSc02K9WvEDplw7INs1UpNYxFGpCHIziGU7CgCg24gia0AQOBe3iEJ+1Ge9CetZdFa05bzhzCD2ivn5mtjnE=</latexit>

q

Embedding Space

<latexit sha1_base64="zmgpxA5zpkgZg4JhSblbUFfS5XU=">AAAB6HicbVDJTgJBEK3BDXFDPXrpSEw8kRlkBE4SvXiERJYEJqSnaaClZ0l3jwmZ8AVePGiMVz/Jm3/hJ9gzEOP2kkpe3qtKVT035Ewq03w3Miura+sb2c3c1vbO7l5+/6Atg0gQ2iIBD0TXxZJy5tOWYorTbigo9lxOO+70KvE7d1RIFvg3ahZSx8Njn40YwUpLzckgXzCLZgr0l1hLUrj4gBSNQf6tPwxI5FFfEY6l7FlmqJwYC8UIp/NcP5I0xGSKx7SnqY89Kp04PXSOTrQyRKNA6PIVStXvEzH2pJx5ru70sJrI314i/uf1IjWqOjHzw0hRnywWjSKOVICSr9GQCUoUn2mCiWD6VkQmWGCidDa5NIRa2bJtW/9eO7dLZ7WEVG2zXPkKoV0qWnbRbJYL9ctFGpCFIziGU7CgAnW4hga0gACFe3iEJ+PWeDCejZdFa8ZYzhzCDxivn5INjnw=</latexit>

h

<latexit sha1_base64="Kjyug2wlbAOx7AQOWtZC7XUTayw=">AAAB83icbVDLSsNAFL3xWeur6tJNsAiuSlIb264sunFZwT6wCWUynbRDJw9mJkIJ/Q03LhRx68+48y/8BCdJEV8HBg7n3Ms9c9yIUSEN411bWl5ZXVsvbBQ3t7Z3dkt7+10RxhyTDg5ZyPsuEoTRgHQklYz0I06Q7zLSc6eXqd+7I1zQMLiRs4g4PhoH1KMYSSXZto/kBCOW3M6Lw1LZqBgZ9L/EXJDy+QdkaA9Lb/YoxLFPAokZEmJgGpF0EsQlxYzMi3YsSITwFI3JQNEA+UQ4SZZ5rh8rZaR7IVcvkHqmft9IkC/EzHfVZJpR/PZS8T9vEEuv4SQ0iGJJApwf8mKmy1BPC9BHlBMs2UwRhDlVWXU8QRxhqWrKS2jWTMuy1N+bZ1b1tJmShmXU6l8ldKsV06oY17Vy6yJvAwpwCEdwAibUoQVX0IYOYIjgHh7hSYu1B+1Ze8lHl7TFzgH8gPb6CZMHkxQ=</latexit>Z

Fig. 1: An overview of the Temporal-Logic Embedded Automata Framework (T-LEAF). T-LEAF trains a deep task model h (red box)
to be consistent with prior knowledge encoded as LTLf formulae. The extracted LTLf formulae are first converted to a DFA Aϕ. Both
the DFA Aϕ and the predicted sequence w (from the task model h) are projected to their respective embeddings using a hierarchical
graph embedder q. The two embeddings, zϕ = q(Aϕ) and zw = q(w), are compared to give a logic loss Llogic, which is back-propagated
to the task model together with the task loss Ltask (by following the solid red arrows in reverse). In effect, Llogic provides an additional
training signal that encourages the model h to produce outputs compatible with existing knowledge.

with the embedding, and hence the LTLf specification. Our
experiments on two tasks in the robot cooking domain give
positive evidence that T-LEAF is able to improve deep
models. Specifically, we tested T-LEAF on sequential human
activity recognition and imitation learning. In both tasks,
training with T-LEAF led to better performance for baseline
and state-of-the-art deep networks.

In summary, the main contribution of this paper is a new
framework for utilizing symbolic temporal logic in sequential
deep models. Experiments show T-LEAF is able to enhance
deep models on two challenging tasks. To our knowledge,
this is the first work to study graph-based embeddings of
LTLf formulae, and to demonstrate their usefulness for
training better models. We believe further improvements are
possible by fine-tuning T-LEAF. More broadly, our results
indicate that temporal logic embeddings are promising and
warrant further research.

II. PRELIMINARIES: LINEAR TEMPORAL LOGIC

Linear Temporal Logic (LTL) is a propositional modal
logic often used to express temporally extended constraints
over state trajectories [14]. In this work, we use LTL in-
terpreted over finite traces, which is also called finite LTL
(LTLf). LTLf has a natural and intuitive syntax. As a formal
language, it has well-defined semantics and thus is unam-
biguously interpretable, which is an advantage over using
natural language directly as auxiliary information [15]1. In
this section, we briefly review relevant background on LTLf ;
we focus on material relevant to our method and refer readers
to excellent review articles [17]–[19] for more information.

Finite Linear Temporal Logic. The syntax of LTLf for a
finite set of propositions p ∈ AP includes the standard logic

1It is also possible to translate natural language into LTLf [16], which can
then be analyzed using developed tools (e.g., model checkers) and embedded
using T-LEAF.

connectives (∧,∨,¬), true and false symbols, and temporal
operators next (X) and until (U),

ϕ := false|true|p|¬p|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|¬ϕ|Xϕ|ϕ1Uϕ2

Finite LTLf formulae are interpreted over finite traces w =
σ0σ1...σn of propositional states, where each σi is a set
of propositions from P that are true in σi. We say that w
satisfies a formula ϕ, denoted w |= ϕ, when w, 0 |= ϕ,
where:

w, i |=p iff p ∈ AP and σ1 |= p (1)
w, i |=¬α iff w, i 6|= α (2)
w, i |=α ∧ β iff w, i |= α and w, i |= β (3)
w, i |= X α iff w, i+ 1 |= α (4)
w, i |=α U β iff w, k |= β for some i ≤ k < n (5)

and w, j |= α for all i ≤ j < k (6)

LTLf has been used in AI and robot planning to specify
temporally-extended goals [20]–[22] and preferences [23],
[24]. Compared to low-level robot programming, specifying
(and interpreting) high-level task requirements using LTLf

is relatively easy for humans. To define a task, LTLf needs
a high-level domain specific vocabulary comprising a set of
propositions that relates to properties of the environment, or
the occurrence of events that can be determined to be true
or false.

LTL and Automata. For every LTLf formula ϕ, we can
construct a deterministic finite-state automaton (DFA), Aϕ,
which accepts the models of ϕ [25], [26], i.e. the interpreta-
tions that satisfy ϕ. A DFA is a tuple Aϕ = 〈O,Σ, o0, δ, α〉,
where O is a finite set of states, Σ contains all subsets of
propositions ϕ, o0 ∈ O is the initial state, δ ⊆ O×L(P)×O
is a transition relation, where L(P) is the set of propositional
formulae over P , and α ⊆ O is a set of accepting states. A
run of Aϕ on a word w = x1...xn ∈ Σ∗ is a sequence of

states o0o1...on such that (oi−1, ϕi, oi) ∈ δ and xi |= ϕi for
each i ∈ 1, ...n. A run is accepting if on ∈ α.

A DFA Aϕ can be represented as a directed graph Gϕ =
(V, E) with nodes vi ∈ V representing the automata states,
and directed edges ej = (vs, vt,Fs,t) ∈ E from a source
node vs ∈ V to a target node vt ∈ V . Each edge ej contains
a propositional logic formula Fs,t (also denoted Fj) that
defines the conditions under which transit is permitted from
vs to vd. There are three types of node states: an initial state,
intermediate states, and acceptance states A given trace is
satisfying trace if it begins at the initial state and terminates at
one of the acceptance states. For the remainder of this paper,
we will assume DFAs are represented as directed graphs.

III. METHOD: EMBEDDING DFAS FOR DEEP MODEL
TRAINING VIA T-LEAF

This section details our primary contribution, i.e., a frame-
work for using symbolic temporal knowledge in the training
of deep models. An overview of our proposed Temporal-
Logic Embedded Automata Framework (T-LEAF) is shown
in Fig. 1. Briefly, the key component in our framework is
a hierarchical graph embedder q that embeds DFAs and
predicted sequences from deep models (traces) into a shared
real-vector space Z ⊆ Rd. We train q such that embedded
formulae are closer to their satisfying traces. We can then
easily evaluate a logic loss — that captures show much a
given trace satisfies related formulae (and hence the sym-
bolic knowledge) — by computing distances in Z . In the
following, we first detail the DFA embedder, followed by
the logic loss.

Hierarchical DFA Embedder. Recall that a DFA can be
represented as a directed graph Gϕ = (V, E) with three
node types and propositions along the edges. To embed the
information contained in the DFA, we need to embed the
overall graph structure, together with the propositions.

We propose a hierarchical embedder q that comprises an
edge-embedder qe and a meta-embedder qm. Embedding a
given DFA involves the construction of an intermediate graph
Ĝϕ that will be embedded using qm. At a high-level, our goal
is to convert each edge formula into a corresponding node
feature vector2 The key steps are:

1) Embed each proposition Fj along edge ej into a
corresponding vector sj = qe(Fj).

2) Construct Ĝϕ = (V̂, Ê), where V̂ contains all nodes in
the original graph G.

3) For each edge ej = (vs, vd) ∈ E (in the original DFA
graph), create a new node v̂ej in V̂ , and add edges
(vs, v̂ej) and (v̂ej , vd) to Ê .

4) Embed the graph Ĝ using the meta-embedder qm
5) Obtain the entire graph representation by aggregating

node embeddings sampled via random walks initiated
from the initial state node [27].

2GNNs can process edge features but we found using node features led
to better empirical performance.

In this work, both edge-embedder qe and meta-embedder q
are multi-layer Graph Convolutional Networks (GCNs) [28]
with four layers.

Embedder Training. To train our meta embedder, we use
a triplet loss that encourages formulae embeddings to be
close to satisfying traces, and far from unsatisfying traces.
Let zϕ = q(Aϕ) be the DFA embedding. Define zT = q(wT)
and zF = q(wF) as the trace embeddings for a satisfying and
unsatisfying trace, respectively. Note that the graph structures
for traces are linear; edges are a conjunction of propositions
at each respective time-step. Our triplet loss is a hinge loss:

`triplet(Aϕ, wT, wF) = max{d(zϕ, zF)− d(zϕ, zT) +m, 0},
(7)

where d(x, y) is the squared Euclidean distance between x
and y, and m is the margin. Training the embedder entails
optimizing a combined loss:

Lemb =
∑
Aϕ

∑
wT,wF

`triplet(Aϕ, wT, wF), (8)

where the summation is over formulas and associated pairs of
satisfying and unsatisfying traces in our dataset. In practice,
pairs of traces are randomly sampled for each formula during
training. In our experiments, the edge-embedder qe is trained
first (and fixed), followed by the meta-embedder qm. We
found this approach to improve training stability, and leave
alternative training schemes (e.g., joint or interleaved) to
future work.

The Logic Loss. We train a given target task model h by
augmenting its per-datum task loss with a logic loss `logic,

` = `task + λ`logic, (9)

where `logic = ‖q(Aϕ)−q(h(x))‖22 is the embedding distance
between the DFA (converted from LTLf formula related to
the input x) and the predicted output sequence w = h(x).
The task-specific loss `task depends on the application, e.g.,
cross-entropy for classification. Lastly, λ is hyper-parameter
that trades-off task performance and compliance with prior
knowledge.

IV. RELATED WORK

T-LEAF is related to a body of work on embedding sym-
bolic logic for prediction [29]–[35] and reasoning tasks [36]–
[38]. The key difference is that past work has largely focused
on general propositional and first-order logic. In contrast,
T-LEAF embeds temporal logic, which is useful for many
robotics applications.

Prior work using LTLf for robotics has focused primarily
on planning [6]–[8], [39]—e.g., synthesizing controllers from
the product of LTLf automata and environment automata—
and using temporal-logic checkers to shape reward func-
tions [9]–[11], [40]–[42]. Recently, a differentiable LTL loss
was proposed in [43]. However, it is limited to continuous
control or regression tasks; in binary symbolic domains, the
loss is non-differentiable and equivalent to a model checker.

TABLE I: Prediction Accuracy (with Std. Error) on Synthetic
Datasets with Varying Complexity. Highest Accuracies in Bold.

Embedder Input Accuracy
Low Moderate High

Syntax tree 56.16 (0.92) 54.13 (0.62) 50.00 (0.00)
DFA 83.43 (0.73) 78.43 (1.54) 66.90 (0.70)

Different from the work above, T-LEAF is designed to
improve “target” deep sequential models by embedding prior
knowledge. Compared to a direct application of a model
checker, we posit that learned embeddings may yield a
more informative loss and gradients; intuitively, the gradients
may provide “directional” information towards regions of
complying models. To our knowledge, the T-LEAF logic loss
is only differentiable loss for (binary) propositional temporal
logic.

V. EXPERIMENT: MODEL CHECKING

In this section, we focus on testing whether deterministic
finite-state automata (DFA) are more amenable to embedding
compared to LTLf syntax trees. Specifically, we conduct
an experiment using a model checking problem: given the
embedding of a LTLf formula ϕ and the embedding of a
trace w, predict whether w models ϕ.

Dataset and Experiment Setup. The complexity of for-
mulae is (coarsely) reflected by its number of propositions
nv and the syntax tree width wt. As such, we synthesized
three datasets with (nv, wt) = (3, 10), (3, 20), (6, 20), cor-
responding to “Low”, “Moderate” and “High” complexi-
ties, respectively. Formulae were translated into DFA using
LTLfKit [25], [26].

Our T-LEAF hierarchical embedder uses 4 graph convo-
lution layers, with 100 hidden units per layer, and outputs a
200-dimension embedding for each input automata or trace.
The neural network used for classification is a multi-layer
perceptron with 512 and 128 hidden units in the first and
second layers, respectively.

Results. Prediction accuracies with standard errors over
three independent runs are reported in Table I. Across the
datasets, we observe that using DFA graphs results in far
better accuracy compared to LTLf syntax trees; the difference
in performance is large ≈ 16% − 27%. This difference can
be explained by examining the embedding spaces; Fig. 2
illustrates a 2D projection of a sample formula and its
satisfying/unsatisfying traces. The Syntax Tree embeddings
appear to lack structure. In contrast, there is a clear separation
between satisfying traces and unsatisfying traces in the DFA
embedding space, and the satisfying traces are closer to
the formula. These results support our hypothesis that DFA
can more easily embedded using graph neural networks,
compared to syntax trees.

VI. SEQUENTIAL HUMAN ACTION RECOGNITION

In this section, we show how T-LEAF can be applied to
Sequential Human Action Recognition. This task is impor-
tant in many contexts, e.g., a robot needs recognize human

A. B.

Fig. 2: t-SNE 2D-projection of the learnt embedding spaces for
(A.) Syntax Tree inputs, and (B.) DFA inputs. The DFA space
shows a clear separation between satisfying traces (blue dots) and
unsatisfying traces (red crosses) for the shown formula (star).

actions to assist appropriately. We focus on a cooking domain
where a model is trained to predict an (action, object)
pair sequentially given temporal visual information (i.e.,
image frames). Target models could benefit from temporal
common-sense knowledge, such as the affordances of certain
objects and the likely ordering between actions. Our goal
was to establish if incorporating such prior knowledge via
T-LEAF results in better task models.

Dataset. We evaluated our method on the Tasty Video
Dataset [44], which contains 4027 recipe videos involving
1199 unique ingredients. Each recipe is self-contained with
an ingredient list, step-wise instructions with temporal align-
ment, and a video demonstrating the preparation. The Tasty
Videos are captured with a fixed overhead camera and focus
entirely on preparation of the dish. However, target labels
((action, ingredient) pairs for each step) were not provided,
so we crowd-sourced labels for 500 videos. To balance the
labels, we trimmed the number of action and ingredient
classes (to 64 actions and 155 ingredients) by removing
low frequency classes and combining similar classes, such
as cheddar and cheese.

Temporal Knowledge. We used (action, ingredient) pairs
as propositions, such as (grill, salmon), which is true at time
step t if it exists in the tth step. Two type of rules are defined
over the propositions:

• Affordance Constraints. These constraints helps to elim-
inate action and ingredient pairs where the action is not
afforded by the object, such as (cut, milk).

• Ordering Constraints. Certain actions must come before
other actions if they appear in the same video and
are applied on the same object. For example, (rinse,
cabbage) should take place before (cook, cabbage).
Note that there is no constraint if only one of pairs
takes place, or they are not applied on the same object.

We extract affordance constraints and ordering constraints
from the complete dataset to form our knowledge base K.

Hierarchical Embedder. The meta embedder q used was a
four-layer GCN with the same structure described in Sec. V.
The edge embedder qe was two-layer GCN (256 hidden units
per layer) that outputs a 100-dimensional embedding.

Image Frame
Features &
Segments

Output
Sequence

season(salt) brush(oil) grill(salmon) grill(lemon) serve(salmon)

TCN/LSTM

LSTM

A. B.

LS
TM

TC
N

Fig. 3: Sequential Human Action Recognition Experiment. (A.) An overview of the target model. We use ResNet-50 [45] to extract
visual features of each video frame, which are aggregated using a LSTM/TCN. The model is topped with two independent bi-directional
LSTMs that predict the action and ingredient pair. (B.) Boxplots of relative changes after applying T-LEAF to reference models. T-LEAF
improves performance on both the LSTM and TCN target models, as indicated by the positive changes, and generally outperforms target
model training using a model checker.

We trained the hierarchical embedder using LTLf formulae
constructed from K. For each sample xi, we constructed
a LTLf formula ϕi that only contained propositions and
constraints related to current video sample. Specifically, we
enumerated all (action, ingredient) pairs in current video, and
extracted relevant constraints from K if all propositions, i.e.,
action ingredient pairs, involved in the constraint appeared
in the video. The constraints were then combined together
to form an LTLf formula ϕi specific to the video. ϕi was
then translated into a DFA Aϕi

. The edges of Aϕi
are

propositional formulae in Conjunctive Normal Form (CNF),
which were fed into edge embedder qe. To obtain the vector
representation of a given proposition, we concatenated the
GLoVe [46] embeddings of the action and ingredient words
(100-dimensions each), resulting an 200-dimension vector
for each proposition. The edge embedder qe was trained first
using the triplet loss described in Sec. III, and then fixed to
generate edge features of DFA graph Aϕi during the training
of meta embedder q.

Target Model. In this experiment, the target model h is a
sequential human action recognition model (Fig. 3.A.). As
visual segmentation was not the main focus of our work,
we assumed the temporal alignment boundaries as given.
We tested two slightly different models that use either a
bi-directional LSTM [47] (with 1024 hidden units) or a
temporal convolution network (TCN) [48] to aggregate the
video features. The TCN is a multi-layer one-dimension
convolutional neural network (conv1d) with different dilation
factors across layers; it serves as a representative of a
state-of-the-art model for temporal data. The TCN in our
experiment has 3 channels of conv1d with 800 hidden units
and kernel size 2.

The input to the model h is the video segment feature
sequence. Suppose the jth video segment cj is composed
of L frames, i.e. cj = {f jt }t=1,2,...,L. Each frame f jt is
represented as a feature vector (2048-dimensions), which is
the output of last fully-connected layer before the softmax

layer in ResNet-50 [45]. We obtain the segment vector zj by
applying max pooling on output of LSTM or TCN. Then, zj
is passed to two independent one-layer bidirectional LSTMs
for action and ingredient classification. The prediction gen-
erated by model at each time step j is an action-ingredient
pair (aj , oj). The complete prediction sequence for a video
sample i is wi = {(ai1, oi1), (ai2, o

i
2), ..., (ain, o

i
n)}, where n

is the number of steps in the video.

Target Model Training via T-LEAF. Training the target
model h using T-LEAF is straightforward given the hierar-
chical embedder q. For each input i, we simply compute the
logic loss

`logic = ‖q(Aϕwi
) − q(wi)‖22.

The DFA Aϕwi
was obtained by extracting the constraints

related to the predicted sequence wi from the knowledge base
K (in a similar manner as the training data for the hierarchical
embedder). We then optimized the total loss ` = `task+λ`logic,
where the `task is the cross entropy loss and we set λ = 5.0.
Optimization was carried out using Adam [49] with learning
rate 10−4.

Results. We compared the relative change in accuracy
between five pairs of models; each pair was initialized with
the same random seed, but trained using only the task loss
(the reference model) or using the task loss together with
the T-LEAF logic loss or a model-checker loss. Fig. 3.B.
summarizes our results in box-plots. We observed T-LEAF
improves action prediction by an average of ≈ 3.3 − 3.4%.
The difference in average ingredient prediction accuracy is
smaller (≈ 1.0− 1.5%), possibly due to the logic statements
being defined over actions, e.g., the ordering temporal logic
was only relevant for actions. Nevertheless, we see improve-
ments over the reference models simply by incorporating
temporal logic via our embedder. The relative differences are
also consistently higher than the model checker, suggesting
that learned embeddings can be more effective at training
models to use prior knowledge.

Raw Pre-
Processed

Heated

Seasoned

Cooked Post-
Processedwash

season fry

fry season

mix

wash(lettuce) fry(lettuce)season(lettuce) mix(lettuce, …)

Creative Cooking Dependency Constraints:A. B.

Fig. 4: Creative Cooking Imitation Learning Experiment. (A.) The dependency constraints in the environment, along with a sample
sequence of actions executed by the robot. The ingredient (lettuce) changes its status from raw to post-processed as actions are performed.
Note an alternative path is permitted by the constraints (the lettuce is fried before seasoned). (B.) T-LEAF improves the convergence rate
of the GAIL reference model compared to a model-checker loss.

VII. IMITATION LEARNING FOR CREATIVE COOKING

Our second experiment involves imitation learning in
an object-manipulation and temporal-reasoning environment
that we call “Creative Cooking”. The robot starts with a set
of randomly sampled raw ingredients (e.g. apple and corn)
and is tasked to prepare a meal. Imitation learning is useful in
this scenario where the reward function is difficult to define;
the evaluation criteria are complex and diverse.

Unlike the previous experiment, our goal is to obtain a
policy π(at|st), rather than a sequence model. The robot
has access to the environment and a set of expert trajectories.
As in many settings, the number of expert demonstrations is
small due to high collection cost. We assume that the robot
cannot query the expert for more data nor directly observe
the reward signals. However, in addition to demonstrations,
the experts could provide domain knowledge, high-level
guidance, and preferences, which may be hard to learn
from limited demonstrations. These type of knowledge could
be expressed as LTLf , and integrated into our policy via
T-LEAF. Due to space constraints, we focus on the key
concepts and relegate details to the appendix.

Environment. We model Creative Cooking as a discrete
Markov Decision Process (MDP) where the each state com-
prises the sampled ingredients and their corresponding status.
There are 50 ingredients and 15 ingredient properties (e.g.,
liquid, seasoning). Each ingredient has at least one property
and one of six possible statuses. All ingredients start from
the raw status. At each step, the robot chooses one out of 31
possible actions (e.g. wash, cut, cook) and the ingredient(s)
to apply the action on. Each action is associated with
affordance constraints and pre-requisite status requirements
(e.g., a carrot needs to be in a pre-processed status before
cooking). Failing the meet the affordance constraints or
the pre-requisite requirements renders the action infeasible
and state remains unchanged. Otherwise, the ingredient will
change to a specified status. The task goal is to change
all ingredients to their required status, which depends on
ingredient properties.

Temporal Knowledge and Hierarchical Embedder. The

propositions here are action ingredient combinations; the
proposition, action(ingred) at time step t is True if it’s
selected by the robot at time t, and False otherwise. The
expert provides affordance constraints and the dependency
relationships (Fig. 4.A.) expressed in LTLf , which comprises
our knowledge base.

Our embedder structure is similar to the previous experi-
ment. As the training dataset, we randomly sample 300 sub-
formulae from the knowledge base along with 10 satisfying
assignments and 10 unsatisfying assignments. As before, the
embedder is trained and fixed before imitation learning.

Target Model and Training via T-LEAF. We use
GAIL [50] as the imitation learning reference method. Dur-
ing training, we extract the related clauses for the current
ingredient to form the DFA Aϕ, which is then used in the
logic loss. The policy is trained using a linear combination of
the logic loss and the GAIL discriminator loss with λ = 1.0.

Results. Fig. 4.B. summarizes our results and shows the
accumulated rewards across the training iterations (averaged
over 20 independent runs, with standard-errors shaded). The
final performance of the models are similar, but GAIL
with T-LEAF loss converges faster compared to a model
checker loss. These results again support the notion that DFA
embeddings can be used to train deep models. Note also
that the formula related trajectories were previously unseen
by T-LEAF embedder, which suggests T-LEAF is able to
generalize to unseen formulae.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes T-LEAF, a novel approach for utiliz-
ing symbolic temporal logic by embedding LTLf DFA via
graph neural networks. Empirical results are promising: T-
LEAF improved deep models for sequential human action
recognition and imitation learning. We believe T-LEAF is a
first-step towards an alternative approach for training deep
models to be compliant with pre-existing knowledge. We
look forward to future improvements and applications in
domains where utilizing prior knowledge can be beneficial,
such as medical and human-collaborative robotics.

REFERENCES

[1] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2015.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NIPS, 2017.

[3] H. Soh, Y. Xie, M. Chen, and D. Hsu, “Multi-task trust transfer
for human–robot interaction,” The International Journal of Robotics
Research, vol. 39, no. 2-3, pp. 233–249, 2020.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. R. Baker, M. Lai, A. Bolton, Y. Chen, T. P.
Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis, “Mastering the game of go without human knowledge,”
Nature, 2017.

[5] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature,
2015.

[6] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in ICRA, 2005.

[7] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s waldo?
sensor-based temporal logic motion planning,” in ICRA, 2007.

[8] S. Karaman and E. Frazzoli, “Linear temporal logic vehicle routing
with applications to multi-uav mission planning,” International Jour-
nal of Robust and Nonlinear Control, 2011.

[9] I. P. Min Wen and U. Topcu, “Learning from demonstrations with
high-level side information,” in IJCAI, 2017.

[10] A. A. Mohammadhosein Hasanbeig and D. Kroening, “Logically-
correct reinforcement learning,” in arXiv preprint arXiv:1801.08099,
2018.

[11] M. L. Littman, U. Topcu, C. I. Jie Fu, M. Wen, and J. Mac-
Glashan, “Environment-independent task specifications via gltl,” in
arXiv preprint arXiv:1704.04341, 2017.

[12] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE transactions
on neural networks and learning systems, March 2020.

[13] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph neural
networks: A review of methods and applications,” in arXiv preprint
arXiv:1812.08434, 2018.

[14] A. Pnueli, “The temporal logic of programs,” in FOCS, 1977.
[15] P. Goyal, S. Niekum, and R. J. Mooney, “Using natural language for

reward shaping in reinforcement learning.” in IJCAI, 2019.
[16] J. Dzifcak, M. Scheutz, C. Baral, and P. W. Schermerhorn, “What

to do and how to do it: Translating natural language directives into
temporal and dynamic logic representation for goal management and
action execution,” in ICRA, 2009.

[17] C. Baier and J.-P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

[18] K. Y. Rozier, “Survey: Linear temporal logic symbolic model check-
ing,” Comput. Sci. Rev., 2011.

[19] T. French, J. McCabe-Dansted, M. Reynolds, and D. Larchey-
Wendling, “Model checking general linear temporal logic,” in Au-
tomated Reasoning with Analytic Tableaux and Related Methods.
Springer Berlin Heidelberg, 2013.

[20] F. Bacchus and F. Kabanza, “Using temporal logics to express search
control knowledge for planning,” Artif. Intell., 2000.

[21] J. Baier and S. Mcilraith, “Planning with first-order temporally ex-
tended goals using heuristic search.” in Proceedings of the National
Conference on Artificial Intelligence, 2006.

[22] A. Camacho, E. Triantafillou, C. J. Muise, J. A. Baier, and S. A. McIl-
raith, “Non-deterministic planning with temporally extended goals: Ltl
over finite and infinite traces,” in AAAI, 2017.

[23] J. Baier, F. Bacchus, and S. Mcilraith, “A heuristic search approach to
planning with temporally extended preferences,” Artif. Intell., 2009.

[24] M. Bienvenu, C. Fritz, and S. A. McIlraith, “Specifying and computing
preferred plans,” Artif. Intell., 2011.

[25] S. Zhu, L. M. Tabajara, J. Li, G. Pu, and M. Y. Vardi, “Symbolic ltlf
synthesis,” in IJCAI, 2017.

[26] A. Camacho, J. A. Baier, C. J. Muise, and S. A. McIlraith, “Finite
LTL synthesis as planning,” in ICAPS, 2018.

[27] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, 2018.

[28] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[29] Y. Xie, Z. Xu, K. S. Meel, M. S. Kankanhalli, and H. Soh, “Embedding
symbolic knowledge into deep networks,” in NeurIPS, 2019.

[30] J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. Van den Broeck, “A
semantic loss function for deep learning with symbolic knowledge,”
in ICML, 2018.

[31] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware
neural language models,” in AAAI, 2016.

[32] M. Allamanis, P. Chanthirasegaran, P. Kohli, and C. A. Sutton, “Learn-
ing continuous semantic representations of symbolic expressions,” in
ICML, 2017.

[33] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic repre-
sentations from tree-structured long short-term memory networks,” in
ACL, 2015.

[34] P. Le and W. Zuidema, “Compositional distributional semantics with
long short term memory,” in *SEM@NAACL-HLT, 2015.

[35] X.-D. Zhu, P. Sobhani, and H. Guo, “Long short-term memory over
recursive structures,” in ICML, 2015.

[36] D. Lee, C. Szegedy, M. Rabe, S. Loos, and K. Bansal, “Mathematical
reasoning in latent space,” in ICLR, 2020.

[37] J. W. Mingzhe Wang, Yihe Tang and J. Deng, “Premise selection for
theorem proving by deep graph embedding,” in NIPS, 2017.

[38] A. Paliwal, S. Loos, M. Rabe, K. Bansal, and C. Szegedy, “Graph
representations for higher-order logic and theorem proving,” in arXiv
preprint arXiv:1905.10006, 2019.

[39] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, 2009.

[40] M. Wen and U. Topcu, “Approximately correct learning in stochastic
games with temporal logic specifications,” in IJCAI, 2016.

[41] C. I. V. Xiao Li and C. Belta, “Reinforcement learning with temporal
logic rewards,” in IROS, 2017.

[42] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith,
“Teaching multiple tasks to an rl agent using ltl,” in AAMAS, 2018.

[43] S. R. Craig Innes, “Elaborating on learned demonstrations with
temporal logic specifications,” in RSS, 2020.

[44] F. Sener and A. Yao, “Zero-shot anticipation for instructional activi-
ties,” in ICCV, 2019.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[46] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in EMNLP, 2014.

[47] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[48] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” in arXiv
preprint arXiv:1803.01271, 2018.

[49] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[50] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
NIPS, 2016.

APPENDIX

In the following, we provide additional details on the
Creative Cooking experiment.

MDP States. The environment states consist of both sampled
ingredients and their corresponding status. There are 50
ingredients and 15 ingredient properties (e.g., liquid, season-
ing). Each ingredient has at least one property and exactly
one status. Properties are used to define and determine action
feasibility and environment transitions, and are not reflected
in state representation. Each item’s status starts from raw
and changes depending on the robot actions and environ-
ment constraints. There are six possible statuses: raw, pre-
processed, heated, seasoned, cooked, post-processed. The
transitions between these different status is illustrated in Fig.
4.A.

At initialization of each trajectory (environment reset), 5
ingredients sampled from ingredients set uniformly without
replacement, together with a special ingredient mixture which
handles ingredients merging, composes trajectory ingredi-
ents. The trajectory ingredients’s status are initialized to
raw, and change via actions as described below. Properties
of each ingredient, except mixture, remain unchanged by
actions. As such, the state representation comprises the 6
trajectory ingredients and their respective statuses, resulting
a 12-dimensional vector, i.e. (mixture idx, mixture status idx,
ingred1 idx, ingred1 status idx, ..., ingred5 idx, ingred5 status
idx).

MDP Actions. At each step, the robot chooses one action
and the ingredient(s) to apply the action on. There are 31
possible actions classified to 10 categories (e.g. cut, wash,
cook). All actions are applied on exactly one ingredient,
except action top-with and combine which are applied on two
ingredients. These actions (together with add) are specially

designed to handle the merging of ingredients:
• add(ingred): Add ingred in mixture. The properties

of ingred will be appended to mixture. The original
position of ingred in the state representation will be
replaced by zeros, which represents that the ingredient
no longer exists separately from the mixture.

• combine(ingred1, ingred2): The effect is equivalent to
add(ingred1) and add(ingred2), i.e. add ingred1 to mix-
ture then add ingred2 to mixture.

• top-with(ingred1, ingred2): Top ingred1 with ingred2.
ingred2’s position in the state representation will be
replaced by zeros, while the status of ingred1 will
change appropriately (its properties remain unchanged).
For example, topping meat with salt changes the status
of the meat to seasoned.

MDP Transitions Each action is associated with affordance
constraints and pre-requisite status requirements. Failing the
meet either of these renders the action infeasible and state
remains unchanged. Otherwise, the ingredient will change to
a specified status.

Affordance constraints are common-sense facts about
whether actions can only or cannot be applied to some
ingredients (e.g., we cannot cut milk). Pre-requisite status
requirements refer to status dependencies (Fig. 4.A.) (e.g.,
a carrot needs to be in a pre-processed status before cook-
ing). Our temporal knowledge consists of both affordance
constraints and pre-requisite status requirements, i.e., the
dependency relationships.

MDP Rewards The task goal is to change all ingredient to
their required status, which depends on ingredient properties.
The robot gets a large positive reward, +20, if the goal is
reached. There is a −1 penalty for each step taken and an
extra −1 penalty if the action chosen is infeasible.

	I Introduction
	II Preliminaries: Linear Temporal Logic
	III Method: Embedding DFAs for Deep Model Training via T-LEAF
	IV Related Work
	V Experiment: Model Checking
	VI Sequential Human Action Recognition
	VII Imitation Learning for Creative Cooking
	VIII Conclusion and Future Work
	References

