
Reachable Polyhedral Marching (RPM): A Safety Verification
Algorithm for Robotic Systems with Deep Neural Network Components

Joseph A. Vincent1 and Mac Schwager1

Abstract— We present a method for computing exact
reachable sets for deep neural networks with rectified linear
unit (ReLU) activation. Our method is well-suited for use
in rigorous safety analysis of robotic perception and control
systems with deep neural network components. Our algorithm
can compute both forward and backward reachable sets for a
ReLU network iterated over multiple time steps, as would be
found in a perception-action loop in a robotic system. Our
algorithm is unique in that it builds the reachable sets by
incrementally enumerating polyhedral cells in the input space,
rather than iterating layer-by-layer through the network as in
other methods. If an unsafe cell is found, our algorithm can
return this result without completing the full reachability com-
putation, thus giving an anytime property that accelerates safety
verification. In addition, our method requires less memory
during execution compared to existing methods where memory
can be a limiting factor. We demonstrate our algorithm on
safety verification of the ACAS Xu aircraft advisory system. We
find unsafe actions many times faster than the fastest existing
method and certify no unsafe actions exist in about twice the
time of the existing method. We also compute forward and
backward reachable sets for a learned model of pendulum
dynamics over a 50 time step horizon in 87s on a laptop
computer. Algorithm source code: https://github.com/
StanfordMSL/Neural-Network-Reach.

I. INTRODUCTION

In this paper we present the Reachable Polyhedral March-
ing (RPM) algorithm for computing forward and backward
reachable sets of deep neural networks with rectified linear
unit (ReLU) activation. This is a critical building block
to proving safety properties for autonomous systems with
learned perception, dynamics, or control components in the
loop. Specifically, given a set of input values, RPM will
compute the set of all output values that can be obtained
under the ReLU network (the forward reachable set, or
image, of the input set). Similarly, given a set of output
values, RPM will compute the set of all input values that
can lead to those output values under the ReLU network (the
backward reachable set, or preimage, of the output values).
When the ReLU network is part of a dynamical process,
as is common in robots with deep learned perception or
control components, RPM can compute such reachable sets
for multiple time steps into the future or the past without
explicitly iterating over each time step. Figure 1 shows the
incremental nature of how RPM enumerates input space
polyhedra over which the ReLU network is affine.
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Fig. 1: Snapshots of how RPM incrementally enumerates
the 2D input space polyhedra for which a random ReLU
network is affine, resulting in the explicit piecewise-affine
representation. Polyhedron color is random.

All existing algorithms that compute exact reachable sets
iterate through the network layer-by-layer [1], [2], [3], which
may become intractable if the network is applied iteratively
in a feedback loop. RPM applies a fundamentally different
approach to avoid layer-by-layer computation. Instead, we
compute the reachable set one polyhedral cell at a time,
where each cell represents a region of the input space over
which the network is affine. Each cell can be computed
quickly through a series of linear programs equal to the
number of neurons in the network, regardless of width or
depth. Our algorithm computes cells until the explored set
of cells fills the desired reachable set. In this way, our method
is geometrically similar to fast marching methods in optimal
control [4], path planning [5], [6], and graphics [7], [8].

We demonstrate RPM in two examples related to the safety
verification of dynamical systems with learned components.
First, we compute forward reachable and backward reachable
sets for a learned dynamical model of a pendulum over 50
time steps in the future and past, respectively. Furthermore,
we compare with a state of the art reachability method [3] in
a safety verification problem involving ACAS Xu, a neural
network policy for aircraft collision avoidance. Our algorithm
finds unsafe inputs for this network many times faster than
[3] and when no unsafe input exists, our algorithm certifies
safety approximately 2 times slower.

The paper is organized as follows. We give related work
in Section II and give background and state the problem
in Section III. Section IV presents our main algorithm,
and explains its derivation. In Section V we describe how
the RPM algorithm can be used to perform forward and
backward reachability over multiple time steps. In Section
VI we present the aforementioned examples of RPM.

II. RELATED WORK

Though the analysis of neural networks is a young field,
a broad literature has emerged to address varied questions
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related to interpretability, verification, and safety. Much work
has been dedicated to characterizing the expressive potential
of ReLU networks by studying how the number of affine
regions scales with network depth and width [9], [10], [11].
Other research includes encoding piecewise-affine (PWA)
functions as ReLU networks [12], [13], learning deep signed
distance functions and extracting level sets [8], and learning
neural network dynamics or controllers that satisfy stability
conditions [14], [15], which may be more broadly grouped
with correct-by-construction training approaches [16], [17].

Spurred on by pioneering methods such as Reluplex
[18], the field of neural network verification has emerged
to address the problem of analyzing properties of neural
networks over continuous input sets. A survey of the neural
network verification literature is given by [19]. Reachability
approaches are subset of this literature and are especially use-
ful for analysis of learned dynamical systems. Reachability
methods can be categorized into overapproximate and exact
methods. Overapproximate methods often compute neuron-
wise bounds either from interval arithmetic or symbolically
[20], [21], [22], [23], [24]. Optimization based approaches
such as (mixed-integer) linear programming are also used
to solve for bounds on a reachable output set in [25],
[26], [27], [28]. Other approaches include modeling the
network as a hybrid system [29], abstracting the domain [30],
and performing layer-by-layer operations on zonotopes [31].
Further, [32] demonstrated how [18], [25], [22], [29] could
be used to perform closed-loop reachability of a dynamical
system given a neural network controller.

Exact reachability methods have also been proposed,
although to a lesser degree [1], [2], [3]. These methods
generally perform the set operations of affine transformation,
intersection/division, and projection layer-by-layer through a
ReLU network. Layer-by-layer approaches have also been
proposed to solve for the explicit PWA representation of a
ReLU network [33], [34]. Exact methods, unlike overapprox-
imate methods, can compute backward reachable sets.

Our RPM algorithm inherits all advantages of exact meth-
ods, but is unique in that it does not iterate layer-by-layer.
This can lead to faster verification decisions when finding
unsafe inputs. Layer-by-layer methods must compute the
entire reachable set, regardless of whether a network violates
a safety property. In contrast, if our algorithm encounters a
cell with an unsafe input, it can return that result immedi-
ately without computing the entire reachable set. Finally, all
intermediate polyhedra and affine map matrices of layer-by-
layer methods must be stored in memory until the algorithm
terminates (since intermediate polyhedra may be split by later
neurons). Conversely, since our method computes the true
PWA function incrementally, once a polyhedron-affine map
pair is computed it can be sent to external memory and only a
binary vector (of the neuron activations) needs to be stored to
continue the algorithm. This is especially useful because the
number of affine regions is hard to estimate before runtime.

III. BACKGROUND AND PROBLEM STATEMENT

An n-layer feedforward neural network implements a func-
tion F(x) : Rk0 →Rkn to give a map from inputs x to outputs
y= F(x). Each layer in F is a function Fi(zi−1) :Rki−1→Rki

where zi ∈ Rki is the hidden layer variable for layer i. We
assume z0 = x and zn = y. The function for layer i is

Fi(zi−1) = zi = σi(ẑi) = σi(Wizi−1 +bi), (1)

where σi is the activation function, ẑi is the preactivation
value, and Wi and bi are the weights and biases for layer
i. We assume σn is an identity map and all hidden layer
activations are the rectified linear unit (ReLU)

σi(ẑi) = [max(0, ẑi,1), ...,max(0, ẑi,ki)]
>. (2)

From the above definition we can augment the weights to
construct an equivalent neural network that has no bias terms.
This equivalent formulation is such that F̃(x̃) : Rk0+1→Rkn

and x̃ = [x1,x2, ...,xn,1]>. We then have

F̃i(z̃i−1) = z̃i = σi(W̃iz̃i−1) (3a)

W̃i =

[
Wi bi

0> 1

]
(3b)

W̃n =
[
Wn bn

]
. (3c)

It is well-known that the function implemented by a
ReLU network is continuous and PWA [9], [10], [11]. We
mathematically characterize PWA functions below.

Definition 1 (Polyhedral Complex): A polyhedral com-
plex C is a finite set of convex polyhedra where every
polyhedron contains its faces and the intersection between
two polyhedra is either a face of both c1 and c2 or empty. We
henceforth refer to convex polyhedra simply as polyhedra.

A PWA function is a function M(x) : Rn→ Rm where

M(x) = Cix+di ∀x ∈ ci ∀ci ∈ C (4)

for Ci ∈Rm×n, di ∈Rm, and ci elements of a polyhedral com-
plex C . Here we consider only continuous PWA functions.
Equation (4) is the explicit PWA representation.

The forward reachability problem is to solve for the image
of a specified input set under the neural network map

Y = {F(x)|x ∈X }. (5)

Likewise, the backward reachability problem is to solve for
the preimage of a specified output set

X = {x|F(x) ∈ Y }. (6)

Our algorithm transforms a ReLU network into an explicit
PWA representation by computing a set of polyhedra (ci)
and associated affine maps (Ci,di). There exist efficient
methods for computing forward and backward reachable sets
of polyhedral sets under PWA maps. Accordingly, we restrict
our focus to these problems.

IV. EXPLICIT PWA REPRESENTATION

First, we seek to construct the explicit PWA representation
of a ReLU network. Our method constructs a PWA function
for a ReLU network by enumerating each polyhedral cell and
its associated affine map. In Sec. IV-A we show how cells
and affine maps are computed from the activation pattern
of a ReLU network. In Sec. IV-B we show how cell repre-
sentations are reduced to a minimal form, which is used in
Sec. IV-C to determine neighboring polyhedra given a current
polyhedron. This leads to a recursive procedure in which we
explore an expanding front of polyhedra, ultimately giving
the explicit PWA representation, as explained in Sec. IV-D.



A. Determining Polyhedral Cells from Activation Patterns
For a given input to a ReLU network, every hidden

neuron has an associated binary neuron activation of zero
or one corresponding to whether the preactivation value was
nonpositive or positive, respectively1. We refer to the vector
of all neuron activations as the activation pattern of the
network for a given input. For neuron j in layer i,

APi j(x) =

{
1 ẑi j > 0
0 ẑi j ≤ 0

(7a)

APi(x) = [APi,1(x), ...,APi,ki(x)]
> (7b)

AP(x) = (AP1(x), ...,APn−1(x)). (7c)

For a network with N hidden neurons there are 2N possible
combinations of neuron activations, however not all are real-
izable by the network. Practically, the number of activation
patterns is better approximated by Nk0 [35].

To construct an explicit PWA representation we first want
to characterize the set of inputs c for which the network
reduces to a single affine map. For a fixed activation pattern
the ReLU network simplifies to the affine map Cx+d where

[
C d

]
= W̃n

n−1

∏
i=1

W̃c
i (8a)

W̃c
i (x) = diag(APi(x))W̃i, (8b)

and diag(·) diagonalizes a vector to a matrix. Equation (8b)
equivalently sets row j of W̃i to zero if APi j = 0.

The activation pattern only changes if some ẑi j switches
from positive to nonpositive (or vice-versa), c is thus given
by a set of linear constraints, one for each neuron in the
network. The constraint for neuron j in layer i is{

a>i jx≥ bi j if APi j = 1
a>i jx≤ bi j if APi j = 0

(9)

where [
ai j −bi j

]
= W̃i[ j, :]

i−1

∏
l=1

W̃l , (10)

and W̃i[ j, :] denotes the jth row of W̃i. Equation (10) is
similar to (8a) but instead simply gives the affine map
parameters for a single neuron output. Strict inequalities are
not present in (9) because the affine map Cx+d holds over
the interior and boundary of the set where the activation
pattern is constant. Since c is an intersection of halfspaces,
the set is a polyhedron. A similar formulation is given in [8]
for finding the surface of an object for graphics rendering.
Note that it is not uncommon for neurons to have the
degenerate linear constraint 0>x≤ 0 which is satisfied for all
x ∈ c, and also for multiple different neurons in the network
to have equivalent constraints (perhaps scaled arbitrarily).
To address these edge cases we introduce Definitions 2, 3, 4
before describing our fast marching method below.

Definition 2 (H-representation): The halfspace represen-
tation (H-representation) of a polyhedron is

PH = {x ∈ Rd |Ax≤ b} (11)

1This choice is arbitrary and some others use the opposite convention.

where A an m× d matrix and b an m-dimensional vector.
Equality constraints may also be included if the set PH is of
lower dimension than the ambient dimension.

Definition 3 (Duplicate Constraints): A constraint a>j x≤
b j is duplicate if there exists a scalar α and a prior constraint
a>i x≤ bi where i< j such that α[a j b j] = [ai bi] where α > 0.

Definition 4 (Redundant & Essential Constraints): A
constraint a>i x≤ bi is redundant if the feasible set does not
change upon its removal or if it is a duplicate constraint.
An essential constraint is one which is not redundant.

We use (9) to construct an H-representation of a cell
c by enumerating all constraints associated with hidden
layer neurons. The resulting ai j vectors and bi j scalars are
collected into (A, b) to give the desired H-representation
from (11). For an arbitrary ReLU network in an arbitrary
activation pattern, we find that the resulting H-representation
often has redundant constraints, which need to be removed
to give a minimal representation of the polyhedron.

B. Finding Essential Constraints
We first normalize all constraints, remove any duplicates,

and consider the resulting H-representation Ax ≤ b. To
determine if the ith constraint is essential or redundant, define
a new set of constraints with the ith constraint removed,

Ã = [a1 ... ai−1 ai+1 ... am]
> (12a)

b̃ = [b1 ... bi−1 bi+1 ... bm]
>, (12b)

and solve the linear program

max
x

a>i x (13a)

subject to Ãx≤ b̃. (13b)

If the optimal objective value is less than or equal to bi,
constraint i is redundant. In the worst case, a single LP
must be solved for each constraint to determine whether
it is essential or redundant. However, heuristics exist to
avoid this worst case complexity. We use the bounding box
heuristic to quickly find a subset of redundant constraints
[36]. Empirically, this results in identifying about 90% of the
redundant constraints. We find that other heuristics beyond
the bounding box method do not improve performance. Our
implementation uses the GLPK open-source LP solver and
the JuMP optimization package [37].

C. Determining Neighboring Activation Patterns
Given a cell c in the input space of a ReLU network, we

are interested in finding the activation pattern corresponding
to a neighboring cell, c′. We can then determine the H-
representation of c′ using the procedure outlined above.
The challenge in finding the activation pattern for c′ is in
determining which individual neuron activations (APi j for
some i j) must be flipped when x transitions from c to c′.

The boundary between c and c′ (c∩ c′) is defined by a
linear constraint of c. We refer to this as the neighbor con-
straint. Intuitively, to generate APc′ one ought to simply flip
the activation of the neuron defining this neighbor constraint
(and all neurons defining duplicate constraints). However,
this intuitive procedure is incomplete because it does not
correctly deal with degenerate constraints 0>x ≤ 0 ∀x ∈ c,



which are common in practice. A degenerate constraint holds
everywhere over c, but it may turn into a non-degenerate
constraint for c′ due to a neuron activation in an earlier layer
being flipped when moving to cell c′. Conversely, a non-
degenerate constraint in c may turn into a degenerate one
when passing to c′. To define a correct procedure for flipping
neuron activations we introduce a taxonomy for classifying
neurons based on their associated linear constraints.

Definition 5 (Type 1, 2, 3 neurons): When identifying a
neighboring cell c′ from a current cell c, neurons whose
linear constraints in c define c∩c′ are called Type 1. neurons
with degenerate linear constraints in c, 0>x≤ 0 ∀x ∈ c, are
called Type 2. All other neurons are Type 3.
Constraints labeled by type are illustrated in Figure 2a.

Though not stated explicitly, the linear constraint param-
eters from (9) are (nonlinear) functions of the input. Given
Definition 5, for inputs x ∈ c∩ c′,

a>i j(x)x = bi j(x) if i j ∈ Type 1 (14a)

a>i j(x)x = bi j(x) if i j ∈ Type 2 (14b){
a>i j(x)x > bi j(x) if i j ∈ Type 3 and APi j = 1
a>i j(x)x < bi j(x) if i j ∈ Type 3 and APi j = 0

. (14c)

The function a>i j(x)x− bi j(x) is continuous because it is
simply the function for computing the preactivation value
ẑi j. From this continuity, we know that the strict inequality
of (14c) holds for all inputs in c′ as well. Therefore, the
activation of a Type 3 neuron is not flipped.

Conversely, inputs in c′ may be either feasible or infeasible
for Type 1 and Type 2 constraints. Figure 2b-c illustrates
the possible feasible and infeasible regions of a Type 1
constraint. Figure 2d-e illustrates the possible feasible and
infeasible regions of a Type 2 constraint. It follows that the
procedure to generate a neighboring activation pattern is to
apply (9) layer-by-layer updating the activation pattern in
place, where Type 1 and Type 2 neuron activations are set to
zero if their new linear constraints are 0>x ≤ 0, otherwise,
they are flipped. This procedure is formally defined in
Algorithm 1. We note that applying this neuron flipping
algorithm to identify a neighboring cell c′ is exceedingly
fast, even for networks with 10,000s of neurons, as we only
require a single logical check at each neuron.

D. Reachable Polyhedral Marching

From (9) and Algorithm 1, we define our main algorithm,
Reachable Polyhedral Marching (RPM) in Algorithm 2 for
explicitly enumerating all polyhedral cells in the input space
of a ReLU network, resulting in the explicit PWA representa-
tion. First, we start with an initial point in the input space and
evaluate the network to find the activation pattern. From this
the H-representation is found using (9). Essential constraints
are then identified as described in Section IV-B. For each
essential constraint we generate a neighboring activation
pattern using Algorithm 1. The process then repeats with
each new neighboring activation pattern being added to a
working set. A neighbor activation pattern only gets added
to the working set if it has not already been visited and it is
not already in the working set. For a given starting cell each
neighbor cell is enumerated, and since each is connected to

Fig. 2: (a) Example c and c′ with Type 1 and Type 3 con-
straints labeled. For (b)-(e), regions in green denote where
the nonlinear constraint is strictly satisfied, regions in blue
denote where the nonlinear constraint function evaluates to
zero, and regions in red denote where the nonlinear constraint
is violated. (b) Type 1 constraint where the neuron activation
must flip when going from c to c′. (c) Type 1 constraint where
the neuron activation is set to zero when going from c to c′.
(d) Type 2 constraint where the neuron activation must flip
when going from c to c′. (e) Type 2 constraint where the
neuron activation remains zero when going from c to c′.

Algorithm 1: Neighboring Activation Pattern
Input: APc, Type 1, Type 2, (W0, . . . ,WN)
Output: APc′

1 APc′ ← APc . Initialize new AP as old AP
2 for i ∈ [1, ...,n−1], j ∈ [1, ...ki] do . For each neuron
3 if i j ∈ Type 1 or i j ∈ Type 2 then
4 ai j, bi j← Equation 10 . APc′

i j hyperplane
5 if [ai j bi j] = 0 then
6 APc′

i j ← 0
7 else
8 APc′

i j ←¬APc′
i j

9 end
10 end
11 end
12 return APc′

another, Algorithm 2 is guaranteed to enumerate every cell
in the input space. Figure 1 shows the result of applying
Algorithm 2 to a randomly initialized ReLU network.



Algorithm 2: Reachable Polyhedral Marching
Input: APc0 , (W0, . . . ,WN)
Output: Explicit PWA representation

1 input cells = /0; visited cells = /0
2 working set = {APc0}
3 while working set 6= /0 do
4 APc← pop element off of working set
5 Cc, dc← Equation 8a . Retrieve affine map
6 Hc

rep← Equation 9 . Retrieve H-representation
7 Hc

rep← remove redundant Hc
rep constraints

8 push (Cc, dc, Hc
rep) onto input cells

9 for ak,bk ∈ Hc
rep do

10 APc′ ← Algorithm 1
11 if APc′ /∈ visited cells∪working set then
12 push APc′ onto working set
13 end
14 end
15 push APc onto visited cells
16 end
17 return input cells

V. REACHABILITY

A. Forward Reachability
The forward reachable set of a PWA function over some

input set is simply the union of forward reachable sets of
each individual polyhedron under its associated affine map.
The image of a polyhedron under an affine map is

Pout = {y|y = Cx+d,Ax≤ b}. (15)

For C invertible, the H-representation of the image is

Pout = {y|AC−1y≤ b+AC−1d}. (16)

In the case the affine map is not invertible, more general
polyhedral projection methods such as block elimination,
Fourier-Motzkin elimination, or parametric linear program-
ming can compute the H-representation of the image [38],
[39]. Our implementation uses the block elimination projec-
tion in the case of a non-invertible affine map [40].

Our RPM algorithm is used to perform forward reachabil-
ity as follows. We first specify a polyhedral input set whose
image through the ReLU network we want to compute. This
is a set over which to perform the RPM algorithm. For each
activation pattern APc we also compute the image of Hc

rep
under the map Ccx+ dc. To do this, an additional line is
introduced between lines 9 and 10 of Algorithm 2

Hc
rep, f orward ← pro ject(Hc

rep,C
c,dc) (17)

where pro ject(·, ·, ·) applies (16) if Cc invertible and block
elimination otherwise.

B. Backward Reachability
The preimage of a polyhedron under an affine map is

Pin = {x|y = Cx+d,Ay≤ b} (18a)
Pin = {x|ACx≤ b−Ad}. (18b)

Like forward reachability, performing backward reachability
only requires a small modification to Algorithm 2. We first

specify a polyhedral output set whose preimage we would
like to compute. For each activation pattern APc, we also
compute the intersection of Hc

rep with the preimage of the
given output set under the map Ccx+dc. Two additional lines
are thus introduced between lines 9 and 10 of Algorithm 2

Pc
in← Equation 18b (19a)

Hc
rep, backward ← Hc

rep∩Pc
in. (19b)

Multiple backward reachable sets can be solved for simul-
taneously at the added cost of repeating (19a) and (19b) for
each output set argument to Algorithm 2.

Finally, we address the issue of finding forward and
backward reachable sets iterated over multiple time steps. For
this, we note that a ReLU network that is applied iteratively
over T timesteps, xt+1 = F(xt) for t = 0, . . . ,T −1, is math-
ematically equivalent to a single ReLU network consisting
of T copies of the original network concatenated end to end,
xT = FT (x0) := F ◦ · · · ◦F(x0). If the original network F(x)
has N neurons and L layers, the equivalent multi-time step
network FT (x) has T N neurons and T L layers. We simply
perform RPM for forward or backward reachability on the
equivalent multi-time step network FT (x).

VI. EXAMPLES

All examples are run on a 2013 Dell Latitude E6430s
laptop with Intel Core i7 3GHz processor and 16GB of RAM.
The cell coloring in plots is random.

A. Damped Pendulum Example
The forward and backward reachability algorithms can be

applied to discrete-time dynamical systems represented as
ReLU networks. In this example we analyze a ReLU network
that approximates the discrete-time dynamics of a damped
pendulum. The function learned by the network is

xxxt+1 = fnn(xxxt) (20)

where xxx = [θ , θ̇ ]>. The time-step used is 0.1 seconds. The
learned dynamics function fnn is a ReLU network with a
single hidden layer of 12 neurons. An example trajectory of
the learned system is shown in Figure 3. We can compose
multiple copies of fnn together to get a neural network which
outputs an arbitrary future state. For instance, composing the
network with itself 50 times results in a final network with
600 neurons and output xxxt+50.

Fig. 3: 50 time-step trajectory from xxx0 = [30,0]>

Figure 3 suggests that states of the learned system tend
toward the origin. We can use the forward reachability
algorithm to determine where all states within some set of
initial conditions lead to over some time interval. In Figure



(a) Input cells. (b) Output cells.

Fig. 4: (a) Input cells of the 50 time-step pendulum network. (b) image of input cells under the neural network map.

Fig. 5: Set of initial states that lead to a neighborhood around
the origin after 50 time steps for the pendulum network.

4a we show the result of applying the cell enumeration
algorithm and the forward reachability algorithm to the 50
time step system for initial conditions −90◦ ≤ θ ≤ 90◦
and −90◦/s ≤ θ̇ ≤ 90◦/s. The resulting number of regions
is 2781 and the forward reachability version of the RPM
algorithm took 87s to complete. It is clear from Figure 4a
that all initial conditions are mapped to a subset of the
initial input set, proving that the original input set is forward
invariant over 50 time step increments, and indicating that
trajectories tend to approach the origin over time.

Further, we perform backward reachability to find the set
of inputs that map to a small neighborhood around the origin
after 50 time steps. Figure 5 shows the inputs that map to
the output set −5◦ ≤ θ ≤ 5◦ and −2◦/s≤ θ̇ ≤ 2◦/s after 50
time steps. Interestingly, only initial conditions with positive
angles map to the target set. In the true dynamics, the initial
angles would be symmetric about zero. This analysis can
thus help us identify undesirable modeling artifacts to inform
retraining or control of the model.

B. Aircraft Collision Avoidance Example

The ACAS Xu networks are 45 distinct policy networks
designed to issue advisory warnings to avoid mid-air colli-
sions for unmanned aircarft. Each network has five inputs,
five outputs (advisories), and 300 neurons. Inputs are relative
distance, angles, and speeds. See [41] for more details.

The appendix of [18] lists ten safety properties the net-
works should satisfy. Here we consider Property 3. This
property is satisfied if the network never outputs a “Clear

TABLE I: ACAS Xu Property 3 Verification Results

Network Result Time (s)
RPM

Time (s)
Face Lattice

Time (s)
Reluplex

Time (s)
Marabou

N1,7 Unsafe 0.01 6.66 2.15 0.70
N1,8 Unsafe 0.01 5.45 4.32 1.49
N3,8 Safe 19.72 9.35 231.28 40.13
N5,6 Safe 31.92 17.28 366.39 54.07

of Conflict” advisory when the intruder is directly ahead
and moving towards the ownship. We use the backward
reachability algorithm to verify whether Property 3 is sat-
isfied. A nonempty backward reachable set implies that
some allowable inputs will map to unsafe outputs and the
safety property is not satisfied. Table I shows the results of
verifying Property 3 for four of the networks. A comparison
is given against the fastest existing exact reachability method
based on the face lattice representation [3] as well as the
Reluplex and Marabou verification algorithms [18], [42].
Each algorithm was run on a single core. We note that a
parallelized algorithm is also provided for the face lattice
approach [3], and our RPM algorithm is also amenable to a
parallelized implementation to be explored in future work.

The results in Table I show the advantage of our proposed
method when verifying network properties that are found to
not hold. Our RPM algorithm is anytime, in the sense that
once an unsafe input polyhedron is found, the algorithm can
terminate without completing the full reachability compu-
tation. This is in contrast to all existing exact reachability
methods that proceed layer-by-layer through the network.
They must solve the entire backward reachability problem
to conclude any verification result, whether safe or unsafe.

VII. CONCLUSION

We proposed the Reachable Polyhedral Marching (RPM)
algorithm to efficiently construct the exact PWA representa-
tion of a ReLU network. RPM computes an explicit PWA
function representation for a given ReLU network. This
PWA function can then be used to quickly find forward and
backward reachable sets over multiple time steps. Solving for
multiple backward reachable sets can be done simultaneously
at little added cost. RPM is shown to be especially fast
when searching for the existence of unsafe inputs during
verification. In the future, we will investigate parallel imple-
mentations of RPM to further improve computational speed.
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