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Online Informative Path Planning for Active Information
Gathering of a 3D Surface

Hai Zhu1, Jen Jen Chung2, Nicholas R.J. Lawrance2, Roland Siegwart2, and Javier Alonso-Mora1

Abstract— This paper presents an online informative path
planning approach for active information gathering on three-
dimensional surfaces using aerial robots. Most existing works
on surface inspection focus on planning a path offline that can
provide full coverage of the surface, which inherently assumes
the surface information is uniformly distributed hence ignoring
potential spatial correlations of the information field. In this
paper, we utilize manifold Gaussian processes (mGPs) with
geodesic kernel functions for mapping surface information fields
and plan informative paths online in a receding horizon manner.
Our approach actively plans information-gathering paths based
on recent observations that respect dynamic constraints of the
vehicle and a total flight time budget. We provide planning
results for simulated temperature modeling for simple and
complex 3D surface geometries (a cylinder and an aircraft
model). We demonstrate that our informative planning method
outperforms traditional approaches such as 3D coverage plan-
ning and random exploration, both in reconstruction error and
information-theoretic metrics. We also show that by taking
spatial correlations of the information field into planning using
mGPs, the information gathering efficiency is significantly
improved.

I. INTRODUCTION

Deploying Unmanned Aerial Vehicles (UAVs) for struc-
tural inspection has become popular in recent years thanks
for their low costs, high maneuverability, and the ability
to operate in hard-to-access environments. Typical examples
include those of wind turbine inspection [1], bridge surface
reconstruction [2] and damage evaluation [3], aircraft exterior
screw detection [4], and pipeline thermal diagnostics [5].
In these applications, a 3D model with known or partially
known geometry of the structure to be inspected is given a
priori, which is generally represented by a mesh. Then the
UAVs are employed to gather information (e.g. cracks, tem-
peratures) on the surface by carrying task-specific sensors,
such as RGB cameras, thermal cameras, and laser scanners
for different inspection missions.

Driven by these practical applications, facilitating UAV
path planning for autonomous inspection has drawn signif-
icant research efforts [6], [7]. While most existing works
focus on planning a global path that can provide full coverage
of the surface, two main disadvantages are observed: a)
the method inherently assumes that the surface information
is uniformly distributed, hence ignoring potential spatial
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correlations of the information field (e.g. temperature distri-
bution); b) the path is planned offline, so it cannot actively
integrate measurements obtained during execution into the
planning to improve the performance.

To overcome the two issues, in this paper we propose
an online informative path planning approach that can en-
hance data acquisition efficiency by taking account of spatial
correlations of the information field, and planning the path
online in a receding horizon manner. The approach builds
upon previous works [8], [9] in which an informative path
planning framework is presented for 2D terrain mapping and
environmental monitoring. We adopt the similar framework
and adapt it for 3D surface active information gathering.
In particular, we use manifold Gaussian processes (mGPs)
with geodesic kernel functions to map the surface informa-
tion fields which encode their spatial correlations. For data
measurement and map update, a probabilistic sensor (cam-
era) model with limited field-of-view (FoV) is considered.
Based on the map, a continuous trajectory is optimized by
maximizing an information acquisition metric in a receding
horizon fashion. The planned trajectory is collision-free and
respects the UAV dynamics.

The main contributions of this work are:
• An online informative path planning approach for active

information gathering on three-dimensional surfaces.
• The use of manifold Gaussian processes with geodesic

kernel functions for mapping surface information fields.
We show that our online planning approach can generate

more informative paths than the coverage planner. Moreover,
by taking account of spatial correlations of the information
field using manifold Gaussian processes, the information
gathering efficiency is significantly improved.

II. RELATED WORK

In path planning for inspection of a given surface mani-
fold, most existing works formulate it as an offline coverage
planning problem which tries to find a path that can provide
full coverage of the surface [10]. Early works including
[11], [12] divide non-planar surfaces into regions using exact
cellular decompositions that are then covered in a spiral
sweeping pattern. Alternatively, [13] presents a two-step
process for inspection path planning which first constructs
a set of viewpoints and then finds a short path connecting
them by solving a traveling salesman problem (TSP). A
similar approach is developed in [6] in which the two steps
are iteratively performed to improve the resulting path. By
employing an iterative strategy with re-meshing techniques,
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[14] proposes a path planning framework that provides uni-
form coverage of 3D structures. Besides those optimization-
based approaches, several sampling-based coverage planning
methods [15], [16], [7] are presented by exploring the
configuration space with a random tree. In contrast to these
offline path planning works, there are also several online
planning approaches for surface inspection. [17] adapts the
next-best-view (NBV) planner [18] to automated surface
acquisition by enforcing the surface portions scanning and
overlap constraints. Recently [19] presents a receding hori-
zon NBV planner for inspection of a given surface manifold.
Alternatively, [20] proposes an incremental path planning
algorithm using surface frontiers to guide the observation
of a surface.

While the aforementioned path planning approaches can
generate offline coverage paths or online NBV paths, they
all inherently assume that the information on the surface is
uniformly distributed, hence ignoring potential spatial corre-
lations of the information field. To model such information
spatial correlations, Gaussian processes (GPs) [21] have been
used as a popular mapping method and successfully applied
in terrain mapping [9], target search [22] and environmental
monitoring [8]. However, the normal GP formulation is lim-
ited to 2D terrains or 3D Euclidean space. To facilitate map-
ping 3D surfaces, Gaussian process implicit surfaces (GPISs)
[23] have been used for surface reconstruction [24], [25],
[26], object shape estimation [27], and pipeline thickness
mapping [28]. The key idea is to represent the surface using
a function that specifies whether a point in space is on the
surface, outside the surface, or inside the surface. However,
GPISs are limited to modelling surface geometry and cannot
be directly applied to general surface information fields (e.g.
temperature distribution over a surface). Recently, manifold
Gaussian processes (mGPs) [29] have been developed to map
information fields to complex domains and surfaces with heat
kernels [30], generalized Matérn kernels [31], and geodesic
Gaussian kernels [32], [33]. In this paper we use manifold
Gaussian processes with geodesic kernel functions to map the
surface information fields and plan informative paths based
on the map.

III. PROBLEM STATEMENT

Given a 3D surface model with known geometry described
by a mesh that can be obtained from CAD software or
previous mapping missions, our goal is to plan a continuous
dynamically-feasible trajectory for a UAV that maximizes
its information gathering about the surface within a flight
time budget. Formally, an informative path planning (IPP)
problem is formulated as follows,

T ∗ =argmax
T ∈T

I(MEASURE(T ))
TIME(T )

(1a)

s.t. TIME(T ) ≤ B, (1b)
COLLISION(T ) = ∅, (1c)

where T ∗ is the planned optimal trajectory, T indicates the
set of all continuous feasible trajectories, and B denotes

the specified flight time budget. The function MEASURE(·)
obtains a finite sequence of measurements along the trajec-
tory and I(·) quantifies the gathered information from those
measurements. The function TIME(·) and COLLISION(·)
return total flight duration and collision sections of the
trajectory, respectively. Hence, by enforcing constraints Eq.
(1b) and (1c), the planned trajectory should respect the time
budget and be collision-free in the environment.

IV. METHOD

In this section we present our surface mapping and infor-
mative path planning approach. The approach builds upon the
previous work in [9] for 2D terrain mapping. We adapt it to
3D surface active information gathering by using manifold
Gaussian processes (mGPs) for information field mapping
and planning 3D collision-free viewpoint trajectories based
on the map.

A. Method Overview

Fig. 1 depicts an overview of the proposed approach.
Given a mesh model of the 3D surface to be inspected,
we first initialize an information map, including mean and
covariance data, using a manifold Gaussian process. Based
on the map, informative path planning is performed to
generate a local continuous trajectory which is then executed
by the UAV to take measurements and update the map
through data fusion. The informative path planning module
includes two stages: a) finding a finite sequence of view-
points from a predefined library via discrete search, followed
by b) optimizing a continuous trajectory that maximizes
information acquisition using the discrete search result as an
initial guess. Finally, the path planning, measurement taking,
and map update are run online in a closed-loop manner until
the UAV’s flight time exceeds the specified budget. In the
following, we will describe each module of the approach in
detail.

B. Surface Information Mapping

The information field on the surface is assumed to be a
continuous function defined on a Riemannian manifold f :
X → R. Let x ∈ X ⊂ R3 be some location on the surface.
We use an mGP to map the information field f ∼ GP(µ, k)
with mean function µ(x) and covariance function (kernel)
k(x, x′), which encodes the correlation of field values at the
two locations x and x′. In this paper, we use the geodesic
Matérn 3/2 kernel function to model such spatial correlations
on a surface manifold [32], [33]:

k(x, x′) = σ2
f

(
1 +

√
3dg(x, x

′)

l

)
exp

(
−
√
3dg(x, x

′)

l

)
,

(2)
where dg(x, x′) is the geodesic distance between x and x′

on X .
We assume the surface is discretized and represented by a

mesh with n triangle facets, which can be obtained from
CAD software. The field value of each facet is assumed
to be the value of the triangle’s center. Given a set of
noisy measurements y = [y1, . . . , ym]T at locations X ∗ =
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mGP initialization Discrete search Continuous optimization Execution &

Informative Path Planning

measurement

Bayesian data fusion

mean m cov. P

End if budget 
exceeded

3D mesh model

Fig. 1: Overview of the proposed informative path planning approach for active information gathering on a 3D surface.

[x1, . . . , xm]m, a posterior distribution of the field can be
calculated using GP regression [21]:

µ = µ(X ∗) +KX∗X [KX + σ2In]
−1(y − µ(X )),

P = KX∗ −KX∗X [KX + σ2In]
−1KX∗X ,

(3)

where KX∗X = k(x, x′)|x
′∈X

x∈X∗ , KX∗ = k(x, x′)|x
′∈X∗

x∈X∗ and
KX = k(x, x′)|x

′∈X
x∈X , σ2 is a noise variance hyperparameter.

We assume the UAV has a constant sensor measurement
frequency. When new measurement data is taken by the UAV,
we need to fuse it into the mGP field map. However, the
regression in Eq. (3) is very computationally expensive [21],
particularly for large fields, which hinders its use in real-
time applications. Hence, in this paper we utilize a Bayesian
fusion technique [34], [9] to perform sequential map updates
as follows:

µ+ = µ− + P−HT (HP−HT +R)−1(y −Hµ−), (4)

P+ = P− − P−HT (HP−HT +R)−1HP−, (5)

where the superscripts − and + indicate variables before
and after data fusion, respectively; H ∈ Rm×n is the
observation matrix which intrinsically selects part of the
locations x1, . . . , xm from all n triangle facets that are
observed through y; R ∈ Rm×m is the observation noise
matrix.

C. Sensor Model

We consider the UAV carries a camera with fixed orienta-
tion relative to the platform and a limited FoV. For a triangle
facet on the surface to be considered visible by the camera,
it must satisfy the following conditions: i) its center is in
the camera’s FoV; ii) its center’s distance to the camera d
is within a valid range d ∈ [dmin, dmax]; iii) its incidence
angle with respect to the camera α should be smaller than a
maximal valid angle α ≤ αmax; and iv) it is not occluded by
other parts of the surface. Fig. 2(a)-(c) show an illustrative
example of a camera inspecting the surface of a cylinder
storage tank.

In addition to the geometry model, we also consider a
range-dependent Gaussian sensor noise model as in [9].

(a) (b) (c)

Fig. 2: Sensor model of the camera with a limited FoV and a
constant measurement frequency. (a) Illustration of the range
d and incidence angle α of a triangle facet with respect
to the camera. (b) An example of triangle facets that are
visible to the camera. (c) An example of a path segment
along which measurements are taken by the camera (path
control waypoints as black crosses, measurement viewpoints
as filled circles, UAV orientation as the light pink arrow, and
visible triangle facets in blue).

Typically, when the camera is closer to the observation
location, its measurement uncertainty is smaller, for example
the thermal camera [35]. Formally, the measurement noise
variance σ2

i of the camera with respect to the observation
location xi is modeled as:

σ2
i = a(1− e−bdi), (6)

where di is the distance between the triangle facet center and
the camera, a and b are positive constant parameters.

D. Online Path Planning

We now present our path planning method based on the
mGP surface map and the probabilistic sensor model. The
method builds upon the framework developed in [8], [9] for
2D terrain mapping. We extend it to 3D surface inspection
by further planning yaw trajectories of the UAV and enabling
collision avoidance.

1) Trajectory parametrization: We represent the contin-
uous trajectory T of the UAV in a polynomial form pa-
rameterized by a sequence of N control waypoints C =
{c1, . . . , cN} to be visited. Each control waypoint includes
a position p and yaw angle ψ according to the differential
flatness property of UAVs [36]. The polynomial trajectory
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Algorithm 1 Sequential Greedy Waypoint Search

Input: Current surface map M, current viewpoint c1,
number of waypoints N , viewpoints library L

Ouput: A sequence of waypoints C = {c1, . . . , cN}
1: M′ ←M
2: C ← ∅; cprev ← c1
3: while |C| ≤ N do
4: c∗ = argmaxc∈L

I(c)
TIME(cprev,c)

5: C = C ∪ c∗

6: cprev ← c∗

7: M′ ← UPDATE COVARIANCE(M′, c∗)

connects these control points using N − 1 k-order spline
segments for minimum-snap dynamics given a reference
speed and acceleration as shown in [37]. Measurements are
then taken by the UAV along the trajectory with a constant
frequency, as illustrated in Fig. 2(c).

2) Discrete waypoint search: As depicted in Fig. 1, in
each planning stage, to obtain the optimal control waypoints,
we first perform a sequential greedy search in a predefined
viewpoints library L. The algorithm is shown in Alg. 1.
Given the current viewpoint cprev, the next best viewpoint
c∗ is chosen from the library L such that it has the high-
est information gathering efficiency (Line 4) in which the
information gain is defined as [9],

I(c) = Tr(P−)− Tr(P+), (7)

where Tr(·) is the trace of a matrix, P− and P+ denote the
surface map covariance before and after taking a measure-
ment at c. Note that updating the map covariance (Line 7)
to compute P+ does not need the real measurement data.
Instead, only the measurement viewpoint of the UAV is
needed, as shown in Eq. (5). This enables us to simulate the
map covariance evolution during the planning stage before
real trajectory execution.

3) Continuous optimization: Using the sequential greedy
search result as an initial guess, we further perform a
continuous optimization to obtain the optimal solution. The
decision variables of the optimization problem are the control
waypoints C. We compute the objective function by first
connecting these waypoints using a polynomial trajectory
along which measurement viewpoints are found and used
to update the map covariance. Then the objective to be
maximized is defined as the time-averaged information gain:

Uinfo =
I(MEASURE(T ))

TIME(T )
, (8)

where the gain function I(·) is the same as in Eq. (7) defined
as the map covariance uncertainty reduction.

4) Collision avoidance: The planned trajectory must be
collision-free with the structure to be inspected. To achieve
that, we first build a 3D Euclidean Signed Distance Field
(ESDF) based on the given surface mesh, which returns the
Euclidean distance at each point in the space to its nearest
obstacle. Using the ESDF, during the greedy waypoint search
stage, we add a constraint that the next viewpoint c∗ must
be in line of sight (LoS) with the current one cprev, which

can provide preliminary collision avoidance for the following
continuous optimization. The LoS detection is achieved by
sampling positions from the line segment connecting the
two viewpoints and checking if any sampled position is
in collision with the mesh according to its ESDF value.
Besides, on the continuous optimization stage, we add one
more objective to penalize collisions:

Ucoll = wcoll

∑
p∈T

g(p), (9)

where p are sampled positions from the polynomial trajec-
tory, wcoll is the weight coefficient and,

g(p) =

{
0, if ESDF(p) ≥ r,
−1, otherwise,

(10)

in which r is the radius of the UAV. Hence, the final objective
function to be maximized is,

U = Uinfo + Ucoll. (11)

E. Discussion

1) Yaw optimization: In Section IV-D, the yaw angles in
the control waypoints are optimized as one of the decision
variables together with positions. In practice this would
require a larger number of iterations to find the optimal
solution, especially for a complex surface. An alternative
way to handle the issue is to pre-compute a “best yaw
angle library” which returns the yaw angle at each point
in the space that can see as many triangle facets of the
surface as possible. Then during the path planning stage, only
positions of the control waypoints are optimized while the
corresponding yaw angles are found from the pre-computed
library. Although such yaw angles are sub-optimal, the
resulting performance does not deteriorate much while the
computation efficiency is substantially improved.

2) Occlusion checking: Visibility checking for all triangle
facets is performed during planning to construct the obser-
vation matrix H given a camera viewpoint. As described in
Section IV-C, a triangle facet determined to be visible by
the camera must satisfy four conditions, for which occlusion
checking is performed by determining if the triangle center
is in LoS of the camera. This can be achieved using the
same sampling technique as described in Section IV-D.4
for collision avoidance. However, practically such occlusion
checking may be very time-consuming and it is within
the optimization iterations thus leading to a very heavy
computation burden. In this paper we assume the surface
to be inspected is convex. Hence, occlusion checking can be
ignored [38].

V. RESULTS

In this section we validate the proposed online informative
path planing method in simulation by comparing it to the
coverage path planner. We evaluate the effects of taking
information spatial correlations into account when mapping
and planning. We also present a complex surface inspection
case in which the surface temperature of a Boeing-747
airplane is mapped by a UAV.
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Fig. 3: Comparisons of the proposed informative path planner
(IPP) to the coverage path planner and a random inspection
strategy. The solid lines depict means of 30 trials for each
method and the thin shaded regions indicate 95% confidence
bounds. (a) Trace of the map covariance. (b) Root mean
squared error (RMSE) of the inspection results with respect
to the ground truth.

(a) (b) (c)

Fig. 4: Simulation results of our proposed IPP method for
the cylinder storage tank inspection task. (a) A ground-truth
temperature distribution simulated in SolidWorks 2019. (b)
The inspection trajectory. (c) The inspection mapping results.
Note that the color bars used in (a) and (c) are not the same
due to different software settings.

A. Comparisons to Coverage Planner

We first evaluate our proposed method on inspecting the
surface of a chemical storage tank. The tank is in a cylinder
shape with radius 6 m, height 20 m, thickness 0.2 m and it
has a top dome with height 1.2 m. We create a 3D model
of the tank with material alloy steel in SolidWorks 2019 and
simulate temperature distributions on its surface as ground
truth using the Thermal Simulation Tool by adding different
heat sources. A mesh of the tank surface is generated by
Delaunay triangulation using the open-source Gmsh software
[39], which results in 1097 nodes and 2190 triangle facets.
The UAV has a maximum speed of 4 m/s, acceleration of 3
m/s2, yaw rate of 90°/s, radius of 0.6 m, and measurement
frequency of 0.2 Hz. A front camera is mounted to the UAV
with a fixed pitch angle of 15°, FoV of (60, 60)°, valid sensor
range of [2, 8] m, maximal valid sensor incidence angle of
70°. The parameters of the range-dependent sensor noise
model are a = 0.05 and b = 0.2. During simulation, Gaus-
sian measurement noise is simulated for data fusion based
on the noise model. For polynomial trajectory generation of
the UAV, the number of control waypoints is N = 4 and
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Fig. 5: Comparison results of different map covariance
initialization methods: manifold Gaussian process (mGP),
identity matrix, and random semi-positive definite matrix
(SPD).

the polynomial order is k = 12. The total time budget for
the mission is B = 120s. The global optimization algorithm
CMA-ES [40] is used in the continuous optimization stage.

We compare our proposed approach to: a) a coverage path
planner; and b) a random inspection strategy. The coverage
planner is implemented by computing a set of viewpoints that
provides full coverage of the surface offline and then con-
necting them with a polynomial trajectory executed online in
a spiral sweeping pattern. In addition, a random inspection
strategy is also implemented in which the UAV randomly
chooses N viewpoints from the library and generates a
polynomial trajectory accordingly to take measurements. 30
trials are run for each method.

Fig. 3 shows the comparison results, in which we quantify
the trace of the map covariance Tr(P ) and the root mean
squared error (RMSE) of the inspection results with respect
to the ground truth. It can been from the figure that our
presented IPP method outperforms the coverage path planner
and the random inspection strategy in both reducing the
map uncertainty Tr(P ) and inspection error RMSE. More
precisely, the coverage path reduces the map uncertainty and
error in a uniform manner while our planned informative
path achieves much faster uncertainty and error reduction,
particularly during the early stage of the inspection mission.
This indicates that the planned informative path is more
efficient in gathering information than the coverage path.
Another interesting observation is that the random inspec-
tion strategy can achieve a reasonable performance at the
beginning since most regions are not mapped. However, with
time, its performance becomes worse since it may fly back
to those observed regions while still leaving many other
regions unobserved. Fig. 4 shows the inspection path and
mapping results of one example trial using our proposed IPP
method. As shown in the figure, the UAV successfully maps
the surface temperature of the cylinder storage tank within
the given flight time budget.

B. Spatial Correlations Evaluation

We then evaluate the effects of taking spatial correlations
of the information field into path planning. The same simula-
tion scenario and setup as described in Section V-A are used.
We validate using mGPs to initialize the map covariance,
which encodes spatial correlations. We also consider another
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(a) Ground truth map (top) and
inspection trajectory (bottom).

(b) Map initial mean (top) and
variance (bottom) at 0 s.

(c) Map mean (top) and variance
(bottom) at 120 s.

(d) Map final mean (top) and
variance (bottom) at 240 s.

Fig. 6: Simulation results of the airplane inspection task using our proposed IPP method.

0 50 100 150 200
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

T
ra

ce
(P

)

(a)

0 50 100 150 200
Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M

S
E

(b)

Fig. 7: Map covariance uncertainty reduction and mapping
error evolution of the airplane surface inspection task.

two covariance initialization methods: a) an identity matrix,
which indicates that the surface information on different
regions are not correlated with each other; and b) a random
semi-positive definite matrix (SPD) indicating the surface
information has random spatial correlations. Then the same
informative path planning and map update approaches are
performed based on the three different map initialization
methods. In implementation, the identity matrix and the
random SPD are scaled to have the same covariance trace as
the mGP method. For each method, 30 trials have been run.

The evaluation results are shown in Fig. 5. It can be
seen from the figure that by taking spatial correlations
into path planning using our mGP mapping approach, the
information gathering efficiency is significantly improved
compared to not accounting for correlations (identity matrix)
or assuming purely random correlations (random SPD). An
interesting result is also observed in that the performance of
considering no or purely random correlations are almost the
same, indicating both mapping techniques lead to inefficient
inspection of the surface.

C. Complex Surface Inspection

Finally we present a more complex inspection case in
which a UAV is required to map the surface temperature of
a Boeing-747 airplane model. Similarly, we create a coarse
3D model of the airplane in SolidWorks and simulate a

temperature distribution on its surface as the ground truth.
A mesh of the surface is generated using Gmsh which has
1814 nodes and 3616 triangle facets. The total time budget
for the mission is B = 240 s.

The simulation results are shown in Fig. 6, in which the
inspection trajectory of the UAV and the surface map mean
and variance during inspection are illustrated. As shown in
Fig. 6a, the UAV starts from the head of the airplane flying
towards the tail to inspect the main body and then flies
back to perform inspection around the two wings. It can
be seen from Fig. 6b-6d that the UAV continuously reduces
the surface map covariance uncertainty and mapping error,
which is also illustrated in Fig. 7.

VI. CONCLUSION AND FUTURE WORK

This paper presented an approach for active informative
path planning (IPP) on 3D surfaces with a UAV. Our method
applies a manifold Gaussian process with a geodesic kernel
function to map surface information fields that captures
spatial correlations of information over complex surface
geometries. This model is integrated into a informative path
planner that maximizes information gain within a planning
budget while also respecting platform dynamic constraints
and avoiding collisions. In a simulated temperature mapping
scenario for a cylindrical storage tank, we showed that the
proposed IPP approach could achieve faster map uncertainty
and error reduction than the coverage path planner and a
random inspection strategy. It was also shown that taking
spatial correlations into planning using mGP for mapping
could significantly improve the information gathering effi-
ciency. Finally we validated the approach in a simulated
airplane surface temperature inspection mission.

Since the method is local, the online informative path
planning may be trapped at some local minima. This might
be resolved by combining the method with a global path
planner. Future work shall also investigate inspecting dy-
namic changing information fields and multi-robot informa-
tion gathering to further improve data acquisition efficiency.
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[8] G. Hitz, E. Galceran, M.-È. Garneau, F. Pomerleau, and R. Siegwart,
“Adaptive continuous-space informative path planning for online en-
vironmental monitoring,” Journal of Field Robotics, vol. 34, no. 8, pp.
1427–1449, 2017.
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