University

of Glasgow

Lu, W., Zhao, D., Premebida, C., Chen, W.-H. and Tian, D. (2021)
Semantic Feature Mining for 3D Object Classification and Segmentation.
In: 2021 International Conference on Robotics and Automation (ICRA
2021), Xi’an, China, 30 May-5 June 2021, pp. 13539-13545. ISBN
9781728190778 (doi:10.1109/ICRA48506.2021.9561986).

This is the author’s final accepted version.

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/250856/

Deposited on: 03 September 2021

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ICRA48506.2021.9561986
http://eprints.gla.ac.uk/250856/
http://eprints.gla.ac.uk/

Semantic Feature Mining for 3D Object Classification and Segmentation

Weihao Lu?, Dezong Zhao!, Cristiano PremebidaZ, Wen-Hua Chen?®, Daxin Tian*

Abstract—Deep learning on 3D point clouds has drawn
much attention, due to its large variety of applications in
intelligent perception for automated and robotic systems. Unlike
structured 2D images, it is challenging to extract features and
implement convolutional networks over these unordered points.
Although a number of previous works achieved high accuracies
for point cloud recognition, they tend to process local point
information in such a way that semantic information is not fully
encoded. In this paper, we propose a deep neural network for 3D
point cloud processing that utilizes effective feature aggregation
methods emphasizing both generalizability and relevance. In
particular, our method uses fixed-radius grouping for pooling
layers and spherical kernel convolution for semantics mining.
To address the issue of gradient degradation and memory
consumption of a deep network, a parallel feature feed-forward
mechanism and bottleneck layers are implemented to reduce the
number of parameters. Experiments show that our algorithm
achieves state-of-the-art results and competitive accuracy in
both classification and part segmentation while maintaining an
efficient architecture.

I. INTRODUCTION

3D point cloud processing has been a popular research
topic, since the use of multi-channel laser scanners became
more spread out. It has a close relation to a wide range of
applications such as augmented reality, autonomous driving
and robotics [1], [2], [3], [4]. Accurate measurements of the
surrounding provided by point clouds facilitate the interac-
tions between intelligent systems and their environments. Al-
though this 3D data format provides extra range information
compared to conventional cameras, the subsequent analysis is
limited by unordered sets of points, see Figure 1. It is chal-
lenging to give accurate inferences of object shapes based
on abstract 3D shape patterns. To solve this issue, sufficient
contextual information needs to be captured thoroughly in
multiple scale regions.

*This work was sponsored in part by the Engineering and Physical
Sciences Research Council of the UK under the EPSRC Innovation Fel-
lowship (EP/S001956/1), in part by the Newton Advanced Fellowship (UK-
China International Cooperation and Exchange Project) jointly supported
by the UK Royal Society (NAF\R1\201213)) and the National Natural
Science Foundation of China (62061130221), and in part by the State Key
Laboratory of Automotive Safety and Energy under Project No. KF2009.

1Weihao Lu and Dezong Zhao are with the School of
Engineering, University of Glasgow, University Avenue, Glasgow
G12 8QQ, UK w.lu.l@research.gla.ac.uk,
dezong.zhaol@glasgow.ac.uk

2Cristiano Premebida is with the
Robotics, University of Coimbra,
cpremebidal@deec.uc.pt

3 Wen-Hua Chen is with the Department of Aeronautical and Automotive
Engineering, Loughborough University, Epinal Way, Loughborough LE11
3TU, UK w.chen@lboro.ac.uk

4Daxin Tian is with the School of Transportation Science and En-
gineering, Beihang University, Haidian District, Beijing 100191, China
dtian@buaa.edu.cn

Institute of Systems and
3030-290 Coimbra Portugal

h‘va

Fig. 1. Visualization of ShapeNet dataset [13]. Points of object parts, which
are useful for robotic grasping, are indicated by different colors. It can still
get ambiguous to infer the correct categories of the parts, especially when
there are no sharp edges of transition.

With the rise of convolutional neural networks (CNN) in
areas of computer vision and robotic perception, remarkable
performances have been seen in extracting dense semantic
information from images and videos [5], [6], [7]. Unlike 3D
point clouds, images are defined in regular grids, i.e., pixels
across different scales. This allows a direct implementation
of convolution operations. Accordingly, much effort has been
devoted to transferring the success of CNN from image
analysis to irregular point cloud processing. These methods
project point clouds onto regular data structures [8], [9],
[10], [11], [12], i.e., multi-view images or volumes, in
order to apply well-developed CNN. This approach has a
high demand of memory, as well as the risk of losing 3D
geometric relations among the points.

Another effective solution was pioneered by PointNet
[1], where point features are directly learned from irregular
points. PointNet [1] shows impressive results on 3D object
recognition and segmentation by applying symmetric func-
tions, eg. max-pooling, after encoding point coordinates with
fully-connected layers. However, information at local scales
might not be perceived properly, as a global pooling oper-
ator is used. To describe the local information, subsequent
research utilizes hierarchical data structures [14], [15]. SO-
Net [16] extracts local features by creating a self-organizing
map. PointNet++ [15] applies PointNet to local subsets
of points. Although capturing semantics at multi-scale, the
captured information might not be optimally processed. This
is because deep neural network tends to fail at retaining
shallow features.

In addition to acquiring multi-scale information, local
feature aggregation also plays an important role in shape

recognition. A typical method is to use multi-layer percep-
trons (MLP) [15], [17], [18]. MLP based methods encode the
semantics of a query point by concatenating point features
and relative positions of surrounding points, followed by
convolution and pooling operations. Kernel based methods
use pre-defined kernel points for convolution [19], [20].
Though many convolution operators have been designed for
feature aggregation, most research only adopts one kind of
operator in shallow networks.

In short, there are two problems to tackle when analyzing
3D point clouds with CNN: 1) by using traditional archi-
tectures the shallow features are not well-preserved by the
end of a deep network, resulting in insufficient semantics;
2) local convolution operators that efficiently run at different
scales in deep networks are required.

To fill these gaps, we propose a new general architecture to
process point clouds directly with a relatively deep network,
which can achieve the state-of-the-art results through effi-
cient training. To alleviate the vanishing-gradient problem,
our network is inspired by the residual network structure [6]
and dense connections [7]. It strengthens shallow features
and emphasizes feature propagation by leveraging shortcuts
across the network layers. Since features are fully exploited
by the end of the network, the number of parameters are
dramatically reduced. Motivated by 2D CNNs on grid-like
data, the convolution operator is designed to search for k-
nearest neighbors around sample points. The neighbors are
then sorted by the relative distance, thus allowing convo-
lution operations on ordered points to efficiently excavate
semantic information at a local scale. On the pooling layers,
an MLP based operator is used with a fixed-radius search
for generalizability.

Our major contributions are as follows:

o A multi-scale local feature aggregation method is pro-
posed. It can effectively encode semantics information
of points ensuring both generalizability and high rel-
evance, as well as maintaining permutation invariance
for irregular points;

o A general deep learning architecture consisting of the
proposed operator is constructed. This deep network
architecture exploits point clouds for rich contextual
information with the help of the feature feed-forward
mechanism and shortcut connections;

o Comprehensive experiments are carried out, which show
that our proposed network can achieve the state-of-the-
art performance on shape recognition and segmentation.

II. RELATED WORK

While early methods use hand-crafted descriptors [21] to
analyze 3D data, the recent growth in the availability of 3D
datasets [22], [23], [24] has boosted the development of deep
learning algorithms on shape recognition and segmentation.
In this section, we briefly review the existing research in deep
learning with 3D point clouds, particularly on the feature
learning for object classification and part segmentation.

A. Projection-based methods

By transforming the irregular point sets into a grid-like
structure, a conventional CNN can be applied to handle 3D
data for further analysis. One of the methods is to project
the 3D points onto 2D planes from multiple perspectives
[25], [9], [8], [26], [27]. A conventional CNN is then applied
on a collection of 2D images. However, it cannot encode
3D information properly due to occlusions, thus raising
difficulties when propagating features for 3D segmentation.

Alternatively, a point cloud is registered in unit volume
grids [10], [28] as the input. Therefore a 3D CNN can
perform natively over the voxelized data. These methods are
limited by the trade-off between the memory usage and voxel
resolution. Subsequent works utilize efficient data structures,
eg. Octrees to reduce the memory consumption [29], [30].
However, the results have reflected the insufficient resolution
for accurate voxel representation.

B. Point-based methods

Besides converting point clouds into regular formats, many
works focus on consuming raw point clouds for learning.
PointNet [1] is a network that pioneers in this direction
by encoding point-wise feature with MLPs, followed by
a symmetric function to maintain the order invariance of
points. Huang et al. [31] improves PointNet by employing
recurrent neural networks. However, all features are captured
at the global scale, making it insensitive to local shapes.
To alleviate this problem, researchers choose to learn local
geometric information by dividing the 3D points into subsets
[32], [14], [33]. Qi et al. [15] proposed PointNet++, which
adopts a hierarchy to capture local geometric information
from neighboring points, and uses PointNet [1] for feature
aggregation.

C. Convolution-based methods

Recent research shows great interests in designing con-
volution operators for capturing semantic information at
multiple scales. RS-CNN [34] takes the relative positions
of a set of points as its input, and learns the weights with
MLPs. ConvPoint [35] uses convolution in both euclidean
and feature spaces, where the mapping is also learned with a
simple MLP. Octree guided CNN [36] performs convolution
with a spherical kernel by assigning surrounding points to
the partitions of spherical neighborhood. Thomas at el. [19]
proposed KPConv, where input points are convolved through
a set of rigid or deformable kernel points with filter weights
on each point. By leveraging the A'-Conv transformation that
is learned through MLP, permutation invariance is achieved
by PointCNN [37]. PointCNN learns transformation matrix
separately, causing slow converge during training. A-CNN
captures local neighborhood geometry by annular convolu-
tions, whose kernel size can be arbitrarily defined. DGCNN
[17] introduces a graph convolution, EdgeConv, over the
weights between a point and its neighbors in feature space,
which are dynamically optimized.

However, these networks encode point features with only
a single type of convolution operator. These operators might

i Semantics Mining Block 512 x 256 128 x 512 32x512

o= 888 S FRE 8 a8 8 c 2T T T T T REREREemEmeens G ey 1x512 1
1 [[Vi \
In A : i i : a3 . ; |
-: Pooling SM Module ! | Pooling SM Module |, . Pooling SM Module ! Global Avg. 1
|g Input| | ! Conv. (L=2) L Conv. (L=4) e Conv. (L=4) 1 Pooling 1
;H 1 1 ! ! 1
- N e NN _._._._. SN _._._. . 1
;':__ _1’-:::::10_2_4xl;53:::ZSE_S_l_Z::_;4__768__::16_;10_;4::I f. __________ | |

X X . L

Ly A B L LT - SLp /(512,512) |
! L1 5 1
I : SM Block SM Block SM Block SM Block - ! ! i
E (L=2) (L=4) (L=6) (L=8) ! ! SLP 1(512,256) *
] : o T T .]
! ‘ p— _| r ___________ | ________________ . | -‘l -!
! 1 } } | .
I Per-Point I -y Ij
i Class Feature Feature Feature Feature Classification Scores
] Scores Propagation Propagation Propagation Propagation | 1 x #Cls.
1
b 2048 x 128 1024 x 256 256 x 384 64 x 512 I
1 1
'\ 2048 x #Cls. ;Segmentation Network

Fig. 2.

Overview of the proposed architecture. The upper part shows the classification branch of the network, which consists of three semantics mining

blocks, followed by a global average pooling layer to summarize the encoded feature. Two single-layer perceptrons (SLP) are used to output class scores.
The lower part shows the network configuration for segmentation. Four semantics mining blocks are used paired with four feature propagation layers for
point up-sampling. Rich semantic information is propagated to all input points, followed by a shared MLP for per-point classification. The numbers indicate
the output feature-map size of each module in the format of N x C, where N is the number of points and C' is the width of feature channels. L refers

to the number of SM layers within the module.

not be optimized or specialized for various receptive fields.
Also the input might be ‘washed-out’ through these operators
in a deep neural network. Instead, our proposed method
constructs multi-level hierarchical network, utilizing two
different operators for multi-scale local feature aggregation.

ITII. SEMANTICS MINING ARCHITECTURE

To construct an efficient deep learning network for 3D
point clouds, we first need a convolution operator that is
able to process points directly. Thus a network architecture
that can preserve the gradient details through multiple layers
needs to be built. To define our problem, we take a set
of points as the input, which can be denoted as P
{pi|i = 1,2,3,...,N}, where N is the number of points
and p; is a 1 x 3 vector of Cartesian coordinates (x,y, 2)
in the metric space. These points are defined on the object
surface. Inputs, like RGB colors and normal vectors, can be
added as input features in a format of vector (r,g,b) and
(ng, ny,n.). For simplicity, we only use point coordinates
for the inference task. In short, we have an N x 3 matrix as
the input representing the point cloud.

For object classification, the proposed network outputs a
1 x k score vector for k categories. For segmentation task,
our network outputs individual labels for each point and thus
an N x k score matrix for each of the k classes. The network
layout is illustrated in Figure 2.

A. Pooling Layer

Point sets usually contain different numbers of points,
causing an issue with convolution that is defined with a fixed
kernel shape. Most of the networks, such as [15], address this
problem by down-sampling and pooling layers. The purpose
of these operations is to obtain a fixed-size input as well

as decreasing the spatial resolution to enlarge the receptive
field. This general idea in [15] is followed by pooling in
our case. To analyze point clouds directly, conventional con-
volutions cannot be used. Here, we perform transformation
and aggregation on a sampled point and its neighbors. The
neighborhood of the sampled point ¢ is defined by €. For a
point p; that lies within the neighborhood €2, the vector
(z,y,z) is transformed to a local coordinate system for
convolutions by a transformation function 7. An MLP is then
applied, followed by a non-linear activation function. The n-
th channel of feature corresponding to a single sampled point
g and neighbors p; is defined by:

F(g)™ = o(((r(p:) = o(w™ - 7(p))) Ypi, (1)

where (denotes the convolution, ¢ is the non-linearity
and w(™ is the shared convolution weights. This operation
achieves permutation invariance by leveraging a symmetrical
pooling function p. A pooling function that summarizes the
feature regardless of the point order makes CNNs feasible
on irregular points.

Specifically, the Pooling Convolution (PC) module picks
a subset of points ¢ through a down-sampling function. The
sampling function, s, is defined as farthest point sampling
(FPS) in this case. Compared to random sampling, iterative
FPS is better at coping with non-uniform data density and
thus a better coverage over the metric space. The receptive
field also has a more balanced distribution over the entire
point cloud.

The neighborhood, €, is formed through a grouping
function g, such that the centroid points can be encoded
with more generalizable features regarding to the local
region. This issue is addressed by utilizing a fixed radius
neighbor search, which finds points within a given radius

Algorithm 1 Pooling Convolution (PC) Module
Input: P, f;,,, Z: the matrix operation of ¢
Output: q, Fq

1: Down-sample from point set: g < s(P)
2: Form neighborhood around ¢: ©, < g(g, P)
3: Transform to local coordinates:
p;=7(pi) =pi — ¢, Vpi € Qq
4: Convolve over transformed feature:
p' ={pjli=1..K}
f(a) = o(Z(concat(fm, p')))
5: Aggregate with symmetric function:
F(q) = p({fe})

corresponding to the query points. Yet it lacks the ability
to adapt to a change in the scale of the entire point cloud.
An adaptive radius mechanism may solve the problem. Each
group is given a limit, K, on the number of neighbors to
ensure the memory consumption during training, as well as
guaranteeing a fixed scale region for a more generalizable
receptive field.

Particularly, the process is summarized in Algorithm 1. A
sampling function and a grouping function are denoted as s
and g. This operator outputs a collection of sampled points
q=1{ql|i=1,..,N'} of size N' x 3 (where N' < N is
number of sampled points), as well as feature F(q) of size
N’ x K x C, with C being the number of feature channels.
With the Pooling Convolution, the number of points is
reduced with an increase in feature dimensionalities.

B. Semantics Mining Layer

To exploit the underlying information, we propose a
Semantics Mining (SM) layer that is able to abstract deep
semantics efficiently from points. Compared to the pooling
layer, although the same input is given, the feature mining
layer emphasizes the depth of convolution. While the pooling
layer keeps the generalizability, this layer focuses on local
regions for distinctive local geometric patterns. Besides, it
also requires to maintain the permutation invariance and
retain the low-level relations (eg. relative positions) between
points. Inspired by spherical convolutions from several ex-
isting works [20], [38], [39], [40], we construct a spherical
convolution operator embedded in the SM layer.

For simplicity, the spherical convolution operator is built
upon PC modules. Compared to PC modules, SM layers
gather neighboring points with a k-nearest neighbor (kNN)
search instead of the fixed-radius approach. This guarantees
the relevance of the gathered points by only picking the
top k-nearest points. The kNN search also has a natural
order from the closest to the farthest, which remedies the
irregularity.

After the low-level features are lifted by an MLP, the
neighborhood is divided into partitions. Computation com-
plexity will be significantly reduced by picking up the repre-
sentative features from each of the partitions. Practically, to
achieve this operation we choose a pooling function over
a stride convolution, since the latter is more costly. The

Input]Nin x G,

Poolini Conv. Nx128 SM Module
SM layer 0 s MLP '
1281y S ‘v I
128 . " 1x1 '
Spherical Conv.
1 —> SMlayer 1 ’ | 2 Conv. ;

Vi] I .
1287 ’ 1 Bottleneck 128 I
25]

—6> SM layer 2 | | 128

1 2 !
~ .
So] 1
128 i—l ~ ! L
384 e -
1 2 3 piiliayeied Semantics
‘—‘ 128 Mining Layer
1 / 2 / 3 / 4 /
(f 1 1
Nx512 | Output
Fig. 3. Illustration of a four-layer semantics mining module. Operational

layers are labeled with description and the features are the boxes with
number (1, 2, 3 and 4). For any point cloud input, the pooling convolution
elevates the dimentionality as well as down-sampling the points before
feeding data to the SM module. Inspired by DenseNet [7] and DensePoint
[33], each SM layer convolves over the concatenated features. This relation
is shown by the colors of the boxes (eg. SM layer 2 convolves over feature
1 and 2 to give output feature 3, where the operation and input feature
boxes are in yellow frames and the output feature box is filled with yellow).
Inspired by [6], the detail of each SM layer is also illustrated on the right
with bottleneck layer and residual shortcut.

shortened feature space parameterized by d = 1,2,..., D is
represented by:

F@™ = p({f()™}), d € Qq, p € Q. (2)

By reducing the spatial resolution, we are able to apply
a more efficient convolution for feature aggregation. The
general formulation is:

F(q)™ = o(C(f(d)™)) = o(w™ -

C. Residual and Dense Connection

). (3)

A conventional CNN architecture tends to fail on retaining
the input features and gradients when it becomes deeper
[7]. Although there are more layers, a layer’s weights are
determined purely by its previous layer. This results in an
inefficient learning process, as the final feature width can
only be increased by the last layer. By leveraging the idea of
dense connections [7], a feed-forward mechanism is able to
stack the learned feature from all of the previous layers and
thus no extra parameters are required to increase the last layer
feature width. Different from DensePoint [33], reference to
the layer inputs are added with the aid of residual shortcuts.
Additionally, the weights can be learned at multiple scales.
By stacking multiple Semantic Mining layers, we introduce
the Semantic Mining (SM) module that utilizes the dense
connection structure [7]. To work with the entire network,
a SM module is paired with a PC modules forming an
independent block to progress into the next scale region, see
Figure 3.

D. Bottleneck Layer

Besides, the design of a shortcut connection [6] is found
effective for our model. The shortcut connection is adopted

TABLE I
PART SEGMENTATION RESULTS ON SHAPENET DATASET [13].

Method class instance| air bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
mloU mloU plane phone bike board
Kd-Net [41] 774 823 80.1 74.6 743 70.3 88.6 73.5 90.2 872 81.0 949 574 867 781 51.8 69.9 80.3
PointNet [1] 80.4 83.7 83.4 78.7 825 749 89.6 73.0 91.5 859 80.8 953 652 930 812 579 728 80.6
KCNet [14] 822 847 82.8 81.5 864 77.6 90.3 76.8 91.0 872 845 955 692 944 816 60.1 752 813
DGCNN [17] 823 85.1 84.2 837 844 77.1 909 785 915 873 829 960 67.8 933 826 59.7 755 82.0
RS-Net [31] 814 849 82.7 86.4 84.1 78.2 90.4 69.3 914 87.0 835 954 660 926 81.8 451 758 82.2
PCNN [11] 81.8 85.1 82.4 80.1 855 79.5 90.8 732 913 86.0 850 957 732 948 833 510 750 818
SO-Net [16] 80.8 84.6 819 835 84.8 78.1 90.8 722 90.1 83.6 823 952 693 942 800 51.6 72.1 82.6
PointNet++ [15] | 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 859 837 956 71.6 941 813 58.7 764 82.6
Ours 82.1 854 83.1 77.5 86.1 78.2 90.5 77.7 91.3 89.0 838 954 67.0 93.1 812 623 755 835
TABLE II

across each SM layer in our network. Noticeably, it becomes

. . . OBJECT CLASSIFICATION RESULTS ON MODELNET40 DATASET [22].
computationally expensive even if the output feature-map

size of each layer is reasonably small. It has been mentioned Method Tnput # Points Acc.(%)
in [6], [7] that a bottleneck layer can be added to the network PointNet [1] Xyz 1k 89.2
to address this issue. A bottleneck layer is introduced to the Kd-Net (depth=15) [41] xyz 32k 1.8
. PointNet++ [15] Xyz 1k 90.7
proposed network through a 1 x 1 convolution to reduce the KCNet [14] xyz 1k 91.0
feature-map size to C/r, where r is the bottleneck ratio. See A-CNN [18] Xyz 1k 92.6
. DGCNN [17] XyZ 1k 92.9
Figure 3 for the layer arrangement. KP-Conv rigid [19] xyz 6.8k 929
PointCNN [37] XyzZ 1k 92.2
IV. EXPERIMENTS ShellNet [20] xyz 1k 93.1
. . . SO-Net [16] xyz 2k 90.9
In. thlS. section, the performapce .of our network with PomntNetr+ [15] vz normal R 9190
classification and part segmentation is evaluated. We con- SO-Net [16] xyz, normal 5k 934
sider the ModelNet40 dataset [22] for object classification Ours (L = (2,4)) Xyz 1k 93.1
: Ours (L = (2,4,4)) Xyz 1k 93.2
and ShapeNe.t [13] for part s.egmentatlon'. The ModelNet40 Ours (I — (4.4.4)) xyz m 92,6
dataset contains 9843 3D objects for training and 2468 for Ours (L = (2,6,6)) Xyz 1k 9.8

testing of 40 categories. The ShapeNet dataset consists of
16881 3D objects of 16 types, with 50 distinctive part classes,
see Figure 1 for examples. Each type of object is partitioned
into 2 to 6 parts. For both datasets, each object is represented
by points generated from the surface of 3D CAD models.

Ground Truth

A. Classification

1) Implementation Details: For classification, the network
is configured as shown in Figure 2. The semantics mining
back-end is composed with three blocks, with the number
of SM layers being L = (2,4,4) (i.e., each block has 2,
4 and 4 Semantics Mining layers respectively). The kernel
numbers of each block are 512, 128 and 32. Listed below is
the summary of the key parameters.

Prediction

Fig. 4.

Visualization of part segmentation results on ShapeNet. The
predicted results are compared with the ground truth labels.

e p = max-pooling

e 0= ReLU

o Number of partitions, D = 2

¢ Bottleneck ratio, r = 2

o PC module feature-map size, N x 128
o SM layer feature-map size, N x 128

2) Results: The results of the state-of-the-art methods
and our network on the ModelNet40 dataset are listed in
Table IV-A.2. Note that xyz denotes the point coordinates
and normal denotes the surface normal vector at that point.

Following a global average pooling layer, a 2-layer MLP We also compare the performance of a 2-block model with

of size (512,512) and (512,256) is used for classification with
Batchnorm and a 0.5 dropout ratio for each layer. At the end
a soft-max classifier outputs a B x 40 prediction matrix,
where B is the batch size. The network takes 1024 points as
its input. It is trained with the ADAM optimizer and a batch
size of 72. The learning rate is set to 0.001 with a decay rate
of 0.7 every 21 epochs.

L = (2,4). It can be seen that the 2-block network achieves
a competitive result with an input of only 1024 points. With
an extra block, our baseline network achieves an accuracy
of 93.2%. This is because the extra block captures deeper
semantics by increasing the size of the receptive field by
lowering the spatial resolution. However, an increase in the
number of SM layer does not benefit the network.

TABLE III
NUMBER OF TRAINABLE PARAMETERS

Method # params. Acc. (%)
PointNet [1] 3.5M 89.2
PointNet++ [15] 1.48M 91.9
3DmFV [42] 45.7TM 91.6
KPConv [19] 14.3M 92.9
DGCNN [17] 1.81M 92.9
PointCNN [37] 0.6M 92.2
3D-GCN [43] 0.89M 92.1
Ours 1.7M 93.2

B. Segmentation

1) Implementation Details: For segmentation, the net-
work is configured as shown in Figure 2. Four blocks are
used for the back-end part, with the number of SM layers
being L = (2,4, 8,8). The kernel numbers of each block are
1024, 256, 64 and 16. Most of the key parameters are kept
the same to the classification model. Besides, four feature
propagation (FP) layers are used. Each FP layer propagates
the semantics to neighboring points and concatenates with
the features encoded by the back-end network. A shared
MLP of size (128,128) is used for segmentation with dropout
rates of 0.5 and 0.2. The final layer, which also concatenates
the one-hot encoding 16 object labels, outputs per point class
prediction for 50 parts of size B x [N x 50. The segmentation
network takes 2048 points as the input and is trained with
a batch size of 20. The learning rate is set to 0.001 with a
decay rate of 0.7 every 12 epochs.

2) Results: Table I shows the results of the performance
of our network on part segmentation on ShapeNet dataset
[13], in which the comparisons with some other methods are
also given. Performances are measured by mean Intersection-
over-Union (IoU). The instance mloU indicates the average
IoU across all individual instances, while per-class mloU is
calculated by averaging the IoU of all instances within a
category. Class mloU is the average over all categories. The
qualitative results are shown in Figure 4.

C. Network Efficiency

The efficiency of our network is evaluated by counting
the trainable parameters in the network. The number of
parameters of a network is an important factor in evaluating
the network complexity and efficiency. Table III shows a
comparison of number of parameters and inference accuracy
of some recent methods. It can be noted that our model
achieves a competitive result while keeping a reasonably
simple network structure.

D. Ablation Study

Using the proposed network as a baseline, we perform
an ablation study on the network components. In Table 1V,
the effectiveness of each component is summarized, namely
Dense Connection (DC), Residual shortcut (Res), Bottleneck
ratio (B/r) and neighbor searching method for the SM
layer. ‘-’ indicates such component is not implemented,
‘X’ indicates the opposite. Seven network configurations

TABLE IV
COMPARISON OF NETWORK CONFIGURATIONS

Config. | DC Res. B/r Neighbor Acc. (%)
A - - - kNN 91.6
B X - - kNN 923
C X X - kNN 92.8
D X X 8 kNN 92.3
E X X 4 kNN 924
F X X 2 fixed-radius 92.5
Base X X 2 kNN 93.2

are compared. Network A uses the spherical convolution
with a classic CNN structure. Network B embeds the SM
modules to a DenseNet [7] inspired structure. Network C
adds the residual shortcut to network B. The bottleneck layer
is introduced to Network D, E and F, with a bottleneck ratio
of 8 , 4 and 2 respectively. Network F finds neighboring
points through a fixed radius search for the SM layers.

It is noticeable that the dense connection structure gives
a 0.7% boost to the accuracy compared to Network A.
The residual shortcut across each SM layer contributes
extra 0.5%. The effectiveness of the bottleneck layer largely
depends on the bottleneck ratio. Although narrowing the
feature map width, a bottleneck layer with bottleneck ratio
2 results in a lighter network as well as an increase of
0.4% in accuracy (Network C: 92.8%; Baseline: 93.2%). It
should be noted that shortening the feature-map is not always
beneficial. Information might be insufficient if the bottleneck
ratio is too high (network D and E). As mentioned in Section
III-B, a fixed-radius neighbor search might not be specific
enough for semantics mining. Evidence can be seen from the
0.7% drop of network F compared to the baseline network.
More importantly, kNN generates sorted neighbors, which
makes the subsequent convolution more effective.

V. CONCLUSIONS

In this paper, a deep learning architecture for direct point
cloud analysis is introduced. Our network deepens the cur-
rent shallow networks by adopting the dense connection and
residual structure, alleviating the vanish gradient problem
and facilitating the feature propagation. Additionally, the
pooling layers utilize a light-weight MLP for encoding low-
level relations, while the semantics mining layers efficiently
aggregate high-dimensional features through convolutions
on the ordered spherical partitions of the neighborhood to
further reduce the number of parameters. This architecture
shows its effectiveness on the ModelNet40 and ShapeNet
datasets by achieving promising results on object recognition
and part segmentation.

To extend this work, one direction is to impose a more
general encoder for the inference on real-world data. This
may involve dealing with occlusions and translation invari-
ance of objects. Another direction is to apply this work to
the subsequent tasks such as 3D point cloud retrieval and
object detection in the autonomous driving context.

REFERENCES

[1] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings

[3

=

[4]

[5

=

[6]

[7

—

[8

[t}

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

of the IEEE conference on computer vision and pattern recognition,
pp. 652-660, 2017.

V. A. Sindagi, Y. Zhou, and O. Tuzel, “Mvx-net: Multimodal voxelnet
for 3d object detection,” in 2019 International Conference on Robotics
and Automation (ICRA), pp. 7276-7282, IEEE, 2019.

J. Razlaw, J. Quenzel, and S. Behnke, “Detection and tracking of
small objects in sparse 3d laser range data,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 2967-2973,
IEEE, 2019.

T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4758-4765, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition, pp. 248-255,
Teee, 2009.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770-778, 2016.

G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” arXiv preprint arXiv:1608.06993,
vol. 1608, 2018.

Y. Feng, Z. Zhang, X. Zhao, R. Ji, and Y. Gao, “Gvcnn: Group-
view convolutional neural networks for 3d shape recognition,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 264-272, 2018.

H. Guo, J. Wang, Y. Gao, J. Li, and H. Lu, “Multi-view 3d object
retrieval with deep embedding network,” IEEE Transactions on Image
Processing, vol. 25, pp. 5526-5537, 2016.

C. R. Qi, H. Su, M. NieBner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on 3d data,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5648-5656, 2016.

M. Atzmon, H. Maron, and Y. Lipman, “Point convolutional neural
networks by extension operators,” arXiv preprint arXiv:1803.10091,
2018.

S. M. Ahmed, P. Liang, and C. M. Chew, “Epn: Edge-aware pointnet
for object recognition from multi-view 2.5d point clouds,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3445-3450, 2019.

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al,
“Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

Y. Shen, C. Feng, Y. Yang, and D. Tian, “Mining point cloud local
structures by kernel correlation and graph pooling,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 4548-4557, 2018.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” in Advances
in neural information processing systems, pp. 5099-5108, 2017.

J. Li, B. M. Chen, and G. Hee Lee, “So-net: Self-organizing network
for point cloud analysis,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 9397-9406, 2018.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” Acm
Transactions On Graphics (tog), vol. 38, no. 5, pp. 1-12, 2019.

A. Komarichev, Z. Zhong, and J. Hua, “A-cnn: Annularly convolu-
tional neural networks on point clouds,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7421—
7430, 2019.

H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette,
and L. J. Guibas, “Kpconv: Flexible and deformable convolution for
point clouds,” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 6411-6420, 2019.

Z. Zhang, B.-S. Hua, and S.-K. Yeung, “Shellnet: Efficient point
cloud convolutional neural networks using concentric shells statistics,”
in Proceedings of the IEEE International Conference on Computer
Vision, pp. 1607-1616, 2019.

M. Jiang, Y. Wu, T. Zhao, Z. Zhao, and C. Lu, “Pointsift: A sift-like
network module for 3d point cloud semantic segmentation,” arXiv
preprint arXiv:1807.00652, 2018.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” in

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1912-1920, 2015.

I. Armeni, S. Sax, A. R. Zamir, and S. Savarese, “Joint 2d-
3d-semantic data for indoor scene understanding,” arXiv preprint
arXiv:1702.01105, 2017.

T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler,
and M. Pollefeys, “Semantic3d. net: A new large-scale point cloud
classification benchmark,” vol. IV-1-W1, pp. 91-98, 2017.

H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller, “Multi-
view convolutional neural networks for 3d shape recognition,” in Proc.
ICCV, 2015.

Z. Han, M. Shang, Z. Liu, C. Vong, Y. Liu, M. Zwicker, J. Han, and
C. L. P. Chen, “Seqviews2seqlabels: Learning 3d global features via
aggregating sequential views by rnn with attention,” /EEE Transac-
tions on Image Processing, vol. 28, no. 2, pp. 658-672, 2019.

H. Huang, E. Kalogerakis, S. Chaudhuri, D. Ceylan, V. G. Kim, and
E. Yumer, “Learning local shape descriptors from part correspondences
with multiview convolutional networks,” ACM Transactions on Graph-
ics (TOG), vol. 37, no. 1, pp. 1-14, 2017.

J. Xie, G. Dai, F. Zhu, E. K. Wong, and Y. Fang, “Deepshape: Deep-
learned shape descriptor for 3d shape retrieval,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 7, pp. 1335—
1345, 2017.

G. Riegler, A. Osman Ulusoy, and A. Geiger, “Octnet: Learning deep
3d representations at high resolutions,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3577—
3586, 2017.

M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Octree generating
networks: Efficient convolutional architectures for high-resolution 3d
outputs,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 2088-2096, 2017.

Q. Huang, W. Wang, and U. Neumann, “Recurrent slice networks
for 3d segmentation of point clouds,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2626—
2635, 2018.

B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise convolutional
neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 984-993, 2018.

Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang, and C. Pan, “Densepoint:
Learning densely contextual representation for efficient point cloud
processing,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 5239-5248, 2019.

Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional
neural network for point cloud analysis,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8895—
8904, 2019.

A. Boulch, “Convpoint: Continuous convolutions for point cloud
processing,” Computers & Graphics, 2020.

H. Lei, N. Akhtar, and A. Mian, “Octree guided cnn with spherical
kernels for 3d point clouds,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 9631-9640, 2019.

Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Con-
volution on x-transformed points,” in Advances in Neural Information
Processing Systems 31, pp. 820-830, 2018.

H. Lei, N. Akhtar, and A. Mian, “Spherical convolutional neural
network for 3d point clouds,” arXiv preprint arXiv:1805.07872, 2018.
H. Lei, N. Akhtar, and A. Mian, “Spherical kernel for efficient
graph convolution on 3d point clouds,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis,
“Learning so (3) equivariant representations with spherical cnns,” in
Proceedings of the European Conference on Computer Vision (ECCV),
pp. 52-68, 2018.

R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks
for the recognition of 3d point cloud models,” in Proceedings of the
IEEE International Conference on Computer Vision, pp. 863-872,
2017.

Y. Ben-Shabat, M. Lindenbaum, and A. Fischer, “3dmfv: Three-
dimensional point cloud classification in real-time using convolutional
neural networks,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 3145-3152, 2018.

Z. H. Lin, S. Y. Huang, and Y. C. F. Wang, “Convolution in the cloud:
Learning deformable kernels in 3d graph convolution networks for
point cloud analysis,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1797-1806, 2020.

