
ar
X

iv
:2

01
1.

01
36

0v
2

 [
cs

.R
O

]
 3

0
Se

p
20

21

Equality Constrained Linear Optimal Control With Factor Graphs

Shuo Yang1, Gerry Chen2, Yetong Zhang2, Howie Choset1, and Frank Dellaert2

Abstract— This paper presents a novel factor graph-based
approach to solve the discrete-time finite-horizon Linear
Quadratic Regulator problem subject to auxiliary linear equal-
ity constraints within and across time steps. We represent such
optimal control problems using constrained factor graphs and
optimize the factor graphs to obtain the optimal trajectory
and the feedback control policies using the variable elimination
algorithm with a modified Gram-Schmidt process. We prove
that our approach has the same order of computational com-
plexity as the state-of-the-art dynamic programming approach.
Furthermore, current dynamic programming approaches can
only handle equality constraints between variables at the same
time step, but ours can handle equality constraints among
any combination of variables at any time step while main-
taining linear complexity with respect to trajectory length.
Our approach can be used to efficiently generate trajectories
and feedback control policies to achieve periodic motion or
repetitive manipulation.

I. INTRODUCTION

The Equality Constrained Linear Quadratic Regulator

(EC-LQR) is an important extension [1], [2] of the Linear

Quadratic Regulator (LQR) [3]. The standard finite-horizon

discrete-time LQR problem contains (1) quadratic costs on

the state trajectory and the control input trajectory and (2)

system dynamics constraints which enforce that the current

state is determined by a linear function of the previous

state and control. In the EC-LQR, auxiliary constraints are

introduced to enforce additional linear equality relationships

on one or more state(s) and/or control(s).

In many important problems auxiliary constraints violate

the Markov assumption, yet such constraints are rarely

considered in existing EC-LQR approaches. We classify

auxiliary constraints in EC-LQR problems into two cat-

egories which we term local constraints and cross-time-

step constraints. A local constraint only contains a state

and/or control from the same time step. Examples of local

constraints include initial and terminal conditions on states,

contact constraints, and states along a predefined curve. In

contrast, a cross-time-step constraint involves multiple states

and controls at different time instances. Such non-Markovian

constraints are pervasive in many robotics applications. For

example, a legged robot’s leg configuration must return to the

same state after a period of time during a periodic gait [4].

In optimal allocation with resource constraints [5], the sum

of control inputs is constrained to be some constant. Our

1 Shuo Yang and Howie Choset are with the Robotics Institute and
Department of Mechanical Engineering, Carnegie Mellon University, Pitts-
burgh. Emails: {shuoyang, choset}@andrew.cmu.edu

2 Gerry Chen, Yetong Zhang, and Frank Dellaert are with the Institute for
Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta.
Emails: {gchen328, yzhang3333, fd27}@gatech.edu

x0 x1 x2

u0 u1

xT
0 Qxx0

x0 xT
1 Qxx1

x1 xT
2 Qxx2

x2

uT
0 Quu0

u0 uT
1 Quu1

u1

x1 = Fx0
x0 +Fu0

u0 x2 = Fx1
x1 +Fu1

u1

Gx0
x0 +Gu0

u0 + gl0 = 0 Gx1
x1 +Gu1

u1 + gl1 = 0 Gx2
x2 + gl2 = 0

S0x0 + S2x2 + s = 0

Quadratic Objective Factor

Linear Constraint Factor

Fig. 1: The factor graph representation of an Equality Constrained Linear
Quadratic Regular (EC-LQR) problem. Circles with letters are states or
controls. Filled squares and circles represent objectives and constraints that
involve the state or controls to which they are connected. The red square
represents a cross-time-step constraint.

goal is to solve for both optimal trajectories and optimal

feedback control policies in EC-LQR problems with local

and cross-time-step constraints in linear time with respect to

the trajectory length, which no existing EC-LQR methods

can achieve.

Reformulating control problems as inference problems

[6]–[9] is a growing alternative to common trajectory op-

timization [10]–[12] and dynamic programming (DP) ap-

proaches for optimal control [1], [2], [13] . While trajectory

optimization focuses on open-loop trajectories rather than

feedback laws, and a method using DP to handle cross-time-

step constraints has yet to be proposed, control as inference

may offer the advantages of both. Factor graphs, in particular,

are a common tool for solving inference problems [14] and

have recently been applied to optimal control [15], [16].

In this paper we propose a novel formulation using factor

graphs [14] to efficiently solve the EC-LQR problem with

both local and cross-time-step constraints in linear time with

respect to trajectory length. We demonstrate how to represent

the EC-LQR problem as a factor graph (shown in Fig. 1),

and apply the variable elimination (VE) algorithm [17] on the

factor graph to solve for the optimal trajectories and optimal

feedback control policies. The flexibility of the factor graph

representation allows cross-time-step constraints with arbi-

trary numbers of variables to be seamlessly handled. As long

as the maximum time index difference of variables involved

in each constraint is bounded, the computational complexity

stays linear with trajectory length. The approach in this paper

matches the computational complexity of standard dynamic

programming techniques [2], but also has the added benefit

of handling cross-time-step constraints.

http://arxiv.org/abs/2011.01360v2

II. RELATED WORK

Trajectory optimization methods typically transcript a

problem into a Quadratic Programming (QP) [18] or Non-

Linear Programming (NLP) [10] problem which can be ef-

ficiently solved to obtain open-loop trajectories of nonlinear

systems. Local controllers can be used to track the open-loop

trajectories generated [12]. Designing local controllers that

obey equality constraints motivates EC-LQR problems.

For EC-LQR problems with just local constraints, DP-

based approaches can generate both the optimal trajectories

and feedback control policies. Solving standard LQR using

DP is well understood in control theory [3]. [12] tackles EC-

LQR with state-only local constraints by projecting system

dynamics onto the constraint manifold. [1] extends the DP

approach by using Karush-Kuhn-Tucker (KKT) conditions

[5] to absorb auxiliary constraints into the cost function, but

its computation time grows with the cube of the trajectory

length for certain auxiliary constraints. [2] solves the EC-

LQR with local constraints in linear complexity by adding a

new auxiliary constraint dubbed “constraint to go” at each

time step during DP steps.

Control as inference, in which a control problem is refor-

mulated and solved as an inference problem, has gained con-

siderable attention [6], [7]. Probabilistic Graphical Models

(PGMs), which are commonly used for inference, have been

applied to optimal control problems [8], [9] because they

describe dependencies among variables while maintaining

sparsity in the graphical representation. Therefore, PGMs

can solve for variable distributions efficiently by exploiting

sparsity [19]. The Markov assumption gives optimal control

problems a “chain” structure when represented as PGMs

allowing linear computational complexity with respect to

trajectory length [7], [8], [16], [20], but PGMs can also

exploit sparsity for more complex (non-chain) structures

which motivates using PGMs for cross-time-step constraints.

Factor graphs, a type of PGM, have been successfully

applied to robot perception and state estimation [14]. Prior

works have demonstrated that the variable elimination (VE)

algorithm [17] on factor graphs can efficiently factorize the

graphs’ equivalent matrix representations in order to infer the

posterior distributions of random variables. This procedure is

called factor graph optimization. Moreover, factor graphs can

encode constraints [21]. Other than estimation, factor graphs

can be used to do motion planning [15], [22]. Standard

LQRs with factor graphs are considered in [8], [16] without

auxiliary constraints.

III. PROBLEM AND METHOD

In this section we first formulate the standard LQR and

EC-LQR problems following the notation used in [2]. Then

we solve a standard LQR problem as a factor graph and

review relevant concepts related to factor graphs. Next, we

solve EC-LQR with local constraints using factor graphs and

compare our algorithm to the one proposed by [2], the most

recent DP-based approach. Finally, we show how our method

handles EC-LQR with cross-time-step constraints.

x0 x1 x2

u0 u1

xT
0 Qxx0

x0 xT
1 Qxx1

x1 xT
2 Qxx2

x2

uT
0 Quu0

u0 uT
1 Quu1

u1

x1 = Fx0
x0 +Fu0

u0 x2 = Fx1
x1 +Fu1

u1

Quadratic Objective Factor

Linear Constraint Factor

Fig. 2: Factor graph of a standard LQR problem with trajectory length
T = 2.

A. Problem Formulation

For a robotic system with state xt ∈ R
n and control input

ut ∈R
m, we define a state trajectory as x= [x0,x1, . . . ,xT] and

control input trajectory as u = [u0,u1, . . . ,uT−1] where T is

the trajectory length. The optimal control input trajectory u∗

and its corresponding state trajectory x∗ are the solution to

the constrained linear least squares problem:

min
u

xT
T QxxT

xT +
T−1

∑
t=0

(xT
t Qxxt xt + uT

t Quut ut) (1a)

s.t. xt+1 = Fxt xt +Fut ut (1b)

Gxt xt +Gut ut + glt = 0, t ∈ C (1c)

GxT
xT + glT = 0 (1d)

∑
i∈Ckx

Sxkixi + ∑
j∈Cku

Suk ju j + sk = 0 (1e)

where QxxT
, Qxxt , and Quut are positive definite matrices

defining the cost function; Fxt and Fut define the system

dynamics at time t; constraints (1c) and (1d) are local

auxiliary constraints; and constraint (1e) is a new formulation

for cross-time-step constraints. In (1c) and (1d), Gxt ∈R
lt×n,

Gut ∈ R
lt×m, and glt ∈ R

lt form local constraints with con-

straint dimension lt ; C is the set of time steps where a local

constraint, such as initial state constraint, applies; and GxT

and glT form a local constraint with dimension lT on the

final step. In the cross-time-step constraint (1e), Sxki ∈R
ct×n,

Suk j ∈R
ct×m, and sk ∈R

ct form constraints on a set of states

xi and controls u j where k is the index of the cross-time-step

constraint. In this paper we focus on representing quadratic

cost in the factor graph, but linear terms in the cost function

can be incorporated too as shown in the next section.

B. Standard LQR as a Factor Graph

We first demonstrate how to represent standard LQR,

Problem 1 with only constraint (1b), as the factor graph

shown in Fig. 2 and subsequently obtain the optimal tra-

jectory and optimal feedback control policy using VE.

Factor graphs can be interpreted as describing either a joint

probability distribution with conditional independencies or,

as we focus on in this paper, an equivalent least-squares prob-

lem derived from minimizing the negative log-likelihood. A

factor graph is a bipartite graph consisting of variables and

factors connected by edges, where a factor can be viewed

either as a joint probability density or least squares objective

over the variables it is connected to.

x0 x1 x2

u0 u1

→

x0 x1 x2

u0 u1

x∗2(x1,u1) = argmin
x2

xT
2 QxxT

x2

s.t. x2 = Fx1
x1 +Fu1

u1

→
x∗2(u1,x1) = Fx1

x1 +Fu1
u1

φ∗x2
(u1,x1) = x∗T2 QxxT

x∗2

Wx2
x2 u1 x1

[

I

∞

][

Q
1/2
xxT

0 0 0
I −Fu1

−Fx1
0

]

→

W ′x2
x2 u1 x1

[

∞
I

]

[

I −Fu1
−Fx1

0

0 Q
1
2
xxT

Fu1
Q

1
2
xxT

Fx1
0

]

(a) Eliminate x2

x0 x1 x2

u0 u1

→

x0 x1 x2

u0 u1

u∗1(x1) = argmin
u1

φ∗x2
(x1,u1)

+uT
1 Quu1

u1

→

u∗1(x1) =−K1x1

φ∗u1
(x1) =(K1x1)

T Quu1
(K1x1)

+φ∗x2
(x1,−K1x1)

Wu1
u1 x1

[

I

I

]





Q
1
2
xxT

Fu1
Q

1
2
xxT

Fx1
0

Q
1
2
uu1

0 0



→

W ′u1
u1 x1

[

R1

I

][

I K1 0
E1 0

]

(b) Eliminate u1

Fig. 3: Two variable eliminations for the LQR problem. Each sub-figure consists of three rows showing three equivalent representations: the factor
graph (top), constrained optimization (middle), and modified Gram-Schmidt process on [Ai|bi] (bottom). The arrows in the factor graphs show variable
dependencies. The thin horizontal arrows separate cases before and after elimination. Terms and symbols in the same color correspond to the color-coded
variable elimination steps in Section III-B. Note that the matrix factorization representation consists of the weight vector, Wi, next to the sub-matrix [Ai|bi].

x0 x1 x2

u0 u1

→

x0 x1 x2

u0 u1

x∗2(x1,u1) = argmin
x2

xT
2 QxxT

x2

s.t. Gx2
x2−gl2 = 0

x2−Fu1
u1−Fx1

x1 = 0

→

x∗2(u1,x1) = Fx1
x1 +Fu1

u1

φ∗x2
(u1,x1) = ||Fx1

x1 +Fu1
u1||

2
QxxT

ψ∗x2
(u1,x1) = Gx2

Fu1
u1 +Gx2

Fx1
x1−gl2 = 0

Wx2
x2 u1 x1





I
∞
∞









Q
1
2
xxT

0
Gx2

gl2
I −Fu1

−Fx1
0



→

W ′x2
x2 u1 x1





∞
I

∞









I −Fu1
−Fx1

0

0 Q
1
2
xxT

Fu1
Q

1
2
xxT

Fx1
0

0 Gx2
Fu1

Gx2
Fx1

gl2





(a) Eliminate x2

x0 x1 x2

u0 u1

→

x0 x1 x2

u0 u1

u∗1(x1) = argmin
u1

φ∗x2
(x1,u1)+uT

1 Ru1

s.t. Gx2
Fu1

u1−Gx2
Fx1

x1−gl2 = 0

Gu1
u1−Gx1

x1−gl1 = 0

→

u∗1(x1) =−K1x1 + k1

φ∗u1
(x1) = ||P

1
2

1 x1− p1||
2

ψ∗u1
(x1) = H1x1−h1 = 0

Wu1
u1 x1







I

∞
I
∞

















Q
1
2
xxT

Fu1
Q

1
2
xxT

Fx1
0

Gx2
Fu1

Gx2
Fx1

gl2

Q
1
2
uu1

0
Gu1

Gx1
gl1











→

W ′u1
u1 x1





R1

∞
I









I K1 k1

0 H1 h1

0 P
1
2

1 p1





(b) Eliminate u1

Fig. 4: Two elimination steps for EC-LQR with local constraints. This figure has the same layout as Figure 3.

We begin by showing how the probabilistic view of factor

graphs is equivalent to a least squares minimization [14]. We

construct factor graph to describe a joint probability distri-

bution of the variables X = [x;u]. For Gaussian distributions,

the probability distribution for a single objective or constraint

factor φk can be written in matrix form as

φk(Xk) ∝ exp
{

− 1
2
‖AkXk− bk‖

2
Σk

}

where exp is the exponential function and Xk contains the

variables connected to the factor. Ak and bk are a matrix and

a vector with problem-specific values, Σk is the covariance of

the probability distribution, and || · ||2Σ := (·)T Σ−1(·) denotes

the square of the Mahalanobis norm. Ak, bk, and Σk together

define the probability density of the factor.

The product of all factors is the posterior distribution of X

whose MAP estimate solves the least squares problem [14]:

XMAP = argmax
X

φ(X) = argmin
X

− log(∏
k

φk(Xk))

= argmin
X

∑
k

‖AkXk− bk‖
2
Σk

= argmin
X

‖AX− b‖2
Σ (2)

where A and Σ contain Ak and Σk on the block diagonal

respectively and b stacks all bk vertically. In this formulation,

each factor φk corresponds to a block row in [A|b]. Defining

the weight matrix W := Σ−1, XMAP minimizes a weighted

least squares expression (AX− b)TW (AX− b).

The objective factors in Fig. 2 are φob jx(xt) ∝

exp{− 1
2
‖Q

1/2
xxt xt‖

2} and φob ju(ut) ∝ exp{− 1
2
‖Q

1/2
uut ut‖

2},
while the constraint factors are φdyn(xt+1,xt ,ut) ∝
exp{− 1

2
‖xt+1 − Fxt xt − Fut ut‖

2
Σc
} where the covariance

Σc = 0 creates infinite terms in W . When factor graphs have

factors with zero covariance, the least squares problem turns

into a constrained least squares problem which we can solve

using e.g. modified Gram-Schmidt [23]. If linear terms are

desired in the cost function in (1a) (e.g. track a non-zero

setpoint), we can always express the objective factor in a

Gaussian form as φob jx(xt) ∝ exp{− 1
2
‖Q

1/2
xxt (xt − xre f)‖

2},
where xre f is some tracking target.

The VE algorithm is a method to solve (2) while exploiting

the sparsity of A by solving for one variable at a time. For

a variable θi ∈ X , we can identify its separator Si: the set

of other variables sharing factors with θi. Then we extract

sub-matrices Ai, Wi, and sub-vector bi from the rows of A,

W , and b such that [Ai|bi] contains all factors connected to

θi. We collect the rows in [Ai|bi] with finite weights to define

objective factor φi(θi,Si) and rows with infinite weights

to define constraint factor ψi(θi,Si). Then we “eliminate”

variable θi following 3 steps1:

Step 1. Identify all the factors adjacent to θi to get [Ai|bi].
Split [Ai|bi] into φi(θi,Si) and ψi(θi,Si).

Step 2. Solve the (constrained) least squares problem:

θ ∗i (Si) = argmin
θi

φi(θi,Si) s.t. ψi(θi,Si) = 0

using modified Gram-Schmidt or other constrained

optimization methods [5, Ch.10]. θ ∗i (Si) denotes that

θ ∗i is a function of the variables in Si.

Step 3. Substitute θi← θ ∗i by replacing the factors φi(θi,Si)
and ψi(θi,Si) with φ∗i (Si) := φi(θ

∗
i ,Si) and ψ∗i (Si) :=

ψi(θ
∗
i ,Si), respectively, in [A|b].

We follow an elimination order [19] to eliminate one

variable θi ∈ X at a time. After all variables are eliminated,

the factor matrix A is effectively converted into an upper-

triangular matrix R allowing X to be solved by matrix

back-substitution. Therefore, one interpretation of the VE

algorithm is performing sparse QR factorization on A [14].

To apply VE to the LQR factor graph in Fig. 2, we

choose the ordering xN ,uN−1,xN−1, . . . ,x0 and execute Steps

1-3 to eliminate each variable. This order is chosen to

generate feedback policies where the controls are functions

of the present states. When eliminating a state xi for the

special case of LQR, the constrained least-squares problem in

Step 2 is trivially solved as x∗i (ui−1,xi−1) = Fuui−1 +Fxxi−1.

Additionally, ψ∗xi
will be empty since ψxi

(x∗i ,ui−1,xi−1) is

satisfied for any choice of ui−1 and xi−1. Fig. 3a shows the

factor graphs, corresponding optimization problems, and sub-

matrices [Wi][Ai|bi] before and after eliminating x2.

The optimal feedback control policy emerges when elim-

inating a control ui. The combined constraint factor ψui

is empty (since ψ∗xi+1
is empty), so Step 2 reduces to an

unconstrained minimization problem. To solve it using QR

factorization, split the objective ||Ai[u;x]||22 = ||Riu+Tix||
2
2+

||Eix||
2
2 using the QR factorization Ai = Q

[

Ri Ti

0 Ei

]

noting that

Q is orthogonal and thus doesn’t change the norm. Then,

u∗i (xi) = −Kixi where Ki := R−1
i Ti efficiently optimizes the

first term and φ∗ui
(xi) = ||Eix||

2
2 is the new factor on x. The

elimination is shown in Fig. 3b.

Furthermore, the cost to go (or “value function” [24]),

which commonly appears in DP-based LQR literature, is

visually evident in the (right) factor graph from Fig. 3b as

the sum of the two unary factors on x1:

cost to go1(x1) = xT
1 Qx1 + xT

1 E2
1 x1.

Continuing to eliminate the rest of the variables reveals the

1In the probabilistic form, steps 2 and 3 would come from factoring
φi(θi,Si)ψi(θi,Si) ∝ p(θi|Si)p(Si). For Gaussian distributions, θ ∗i (Si) =
E[p(θi|Si)] and φ∗i (Si)ψ

∗
i (Si) = p(Si).

general formula of the cost to go after applying block-QR

elimination to solve for Ki and Ei:

cost to goi(xi) = xT
i (Qxxt +FT

xt
Vi+1Fxt −KT

i FT
ui

Vi+1Fxt)xi

where Vi+1 comes from φ∗ui
(xi)+ xT

i Qxxt xi = xT
i Vixi.

C. EC-LQR with Local Constraints

The factor graph representation of EC-LQR with only

local constraints (1c) and (1d) in Problem 1 is the same

as the factor graph in Figure 1 but without the red square

marked “cross-time-step constraint”. We still use the same

elimination order: x2,u1,x1,u0,x0 to execute VE.

1) Eliminating a state: The process for eliminating a state

involves one more constraint when generating ψ∗xi
(Sxi

), but

solving for xi remains the same as in standard LQR case.

Figure 4a shows the process of eliminating x2.

2) Eliminating a control: The process for eliminating a

control is a constrained minimization with some constraints

on ui derived from ψ∗xi+1
(ui,xi) and/or Gxi

xi+Gui
ui+gli = 0.

The elimination procedure is shown in Figure 4b. From the

result of eliminating u1 as shown on the right in Figure 4b,

we observe that

• the optimal control policy u∗1(x1) =−K1x1+k1 falls out,

• φ∗u1
(x1) = ||P

1/2
1 x1 − p1||

2 corresponds to the

cost to go(x1) = xT
1 V1x1 − v1x1 from [2] where

V1 = P1 +Qxx1
and v1 = 2pT

1 P1, and

• ψ∗u1
= H1x1 − h1 = 0 corresponds to the

constraint to go(x1) = H1x1− h1 = 0 from [2]

We continue with VE to eliminate the remaining variables

similarly. After each ui is eliminated, we can obtain an

optimal control policy, constraint to go, and cost to go –

all of which being functions of xi. When the problem is

linear and all matrices are invertible or full column rank, the

optimal solution is unique. We will demonstrate our method

finding the unique optimal solution in Section IV.

D. Computational Complexity Analysis

Because Step 1 collects only the factors connected to the

variable we seek to eliminate, VE is very efficient and the

complexity of eliminating a single variable is independent

of the trajectory length. When eliminating one variable, we

factorize a matrix, Ai, whose rows consist of all the factors

connected to the variable and whose columns correspond to

the variable and its separator. Thus, the maximum dimension

of Ai in EC-LQR problem with just local constraints is

3n×(2n+m) when eliminating a state or (2n+m)×(n+m)
when eliminating a control. In the worst case, the QR

factorization on this matrix has complexity O(2(3n)(2n+
m)2) = O(24n3 + 24n2m+ 6nm2) when eliminating a state

or O(2(2n+m)2(n+m)) = O(8n3 + 16n2m+ 10nm2 + 2m3)
when eliminating a control. To obtain the solution from the

sparse QR factorization result of A, we apply back substitu-

tion whose computation complexity is O(n2 +m2), so the

overall computation complexity of solving the trajectory with

length T is O(T · (κ1n3+κ2n2m+κ3nm2 +κ4m3)), which is

the same as the state of the art DP approach [2].

x0 x1 x2 x3 x4 x5 x6 x7

u0 u1 u2 u3 u4 u5 u6

(a) Factor graph

x1x0

u0

x2

u1

x3

u2

x4

u3

x5

u4

x6

u5

x7

u6

(b) The Bayes Net after Variable Elimination

Fig. 5: Example cross-time-step constraint in a factor graph. The bottom
figure is a Bayes net showing variable dependencies after VE.

E. EC-LQR with Cross-time-step Constraints

The factor graph’s ability to add factors on any set of

variables allows us to add more general auxiliary constraints

and objectives than [2], such as cross-time-step constraints.

Note that cross-time-step objectives could also be handled the

same way if desired. The VE algorithm for solving EC-LQR

with cross-time-step constraints (or even objectives) remains

exactly the same as in Section III-C. For example, in Fig. 5,

the cross-time-step constraint is Sxnc+p+Sxnc + s = 0. When

eliminating xnc+p, its separator will contain xnc+p−1, unc+p−1

and xnc . After elimination of xnc+p, the new constraint to go

factor will be connected to not only xnc+p−1 and unc+p−1, but

also xnc . Subsequent elimination steps will generate similar

factors. As a result, after all variables are eliminated, the

final feedback controllers for control inputs between xnc+p

and xnc are functions of two states instead of just the current

state. Fig. 5b illustrates the result in the form of a Bayes Net

[14] where arrows represent the variable dependencies.

We further show our method maintains linear complexity

with the length of the trajectory. Notice in Fig. 5b that each

cross-time-step constraint spanning from time step ta to tb
adds additional dependencies of variables xk, uk (ta < k≤ tb)

on variables associated with the cross-time-step constraint.

Therefore, as long as the maximum number of variables

associated with a cross-time-step constraint is bounded by

d, and the maximum number of cross-time-step constraints

spanning over any time step is bounded by q, the number of

variables involved in any elimination step (which contribute

to the κ constants) is bounded by 3+(d− 1)× q thereby

bounding the complexity of each elimination operation.

IV. EXPERIMENTS

We run simulation experiments to demonstrate the capa-

bility of the proposed method2. We implement our method

using the Georgia Tech Smoothing And Mapping (GTSAM)

toolbox [25]. We compare our approach with three baseline

methods. Baseline method 1 is [1], Baseline method 2 is

[2], and Baseline method 3 is using Matlab’s quadprog

quadratic programming solver (which does not produce an

2Source code is available on Github

0 50 100
Trajectory Steps

0

1

2

3

S
ta

te
 V

a
lu

e

Baseline Method 1

final cost = 11.01

constraint violation = 1.88e-06

x(1)

x(2)

x(3)

0 50 100
Trajectory Steps

0

1

2

3

S
ta

te
 V

a
lu

e

Baseline Method 2

final cost = 11.01

constraint violation = 1.88e-06

x(1)

x(2)

x(3)

0 50 100
Trajectory Steps

0

1

2

3

S
ta

te
 V

a
lu

e

Proposed Method

final cost = 11.01

constraint violation = 1.88e-06

x(1)

x(2)

x(3)

Fig. 6: Optimal trajectory, cost, and constraint violation comparison of
three methods for Problem 3. For each method we plot the three dimensions
of the state x. All methods produce the same result.

0 20 40 60 80 100

Trajectory Steps

-400

-300

-200

-100

0

E
le

m
e
n
t
V

a
lu

e

Baseline Method 2
Elements in optimal controller K and k

0 20 40 60 80 100

Trajectory Steps

-400

-300

-200

-100

0

E
le

m
e
n
t
V

a
lu

e

Proposed method
Elements in optimal controller K and k

Fig. 7: The plots of feedback control gain matrices from Baseline Method
2 and ours (we omit Baseline 1 because its result is identical to Baseline
2). Each curve represents one element in Kt or kt .

optimal control policy). We first present comparison experi-

ments for EC-LQR on random systems. We then show our

approach handling cross-time-step constraints on an example

system motivated by a single leg hopping robot.

A. Cost, Constraint Violation & Controller Comparison

The first experiment is to find the optimal trajectory for

a simple system with xi ∈ R
3 and ui ∈ R

3 that is subject to

state constraints. The EC-LQR problem is given by:

min
u

(xT−xN)
T QxxT

(xT − xN)+
T−1

∑
t=0

(xT
t Qxxt xt + uT

t Quut ut)

s.t. xt+1 = Fxxt +Fuut , x0 = [0 0 0]T ,

xN = [3 2 1]T , xT/2 = [1 2 3]T (3a)

where dt = 0.01, Fx = I3×3+ I3×3 ·dt, Fu = I3×3 ·dt, T = 100,

Qxxt = 0.01 · I3×3, Quut = 0.001 · I3×3, and QxxT
= 500 · I3×3.

In this case C = {0,T/2}.
Fig. 6 compares the optimal state trajectories using three

methods. Baseline 3 is omitted for space reasons, but all

three baselines and our method arrive at the exact same

solution, with 0 constraint violation and identical total cost,

as expected since the optimal solution is unique.

To show our method can also handle state and control local

constraints, we replace the last state-only constraint (3a) to

be a constraint that contains both the state and the control as

xN/2+uN/2+[1 2 3]T = 0. We solve this problem to get the

optimal controllers ut = −Ktxt + kt . Kt and kt are identical

among Baseline 1, Baseline 2 and ours. Fig. 7 omits Baseline

1 for space reasons. Baseline 3 does not produce a controller.

B. Run Time Comparison

We focus on comparing our method and Baseline 2 since

Baseline 2 is the only baseline that has linear complexity and

generates a feedback policy. Both methods are implemented

https://github.com/paulyang1990/equality-constraint-LQR-compare

in C++ and tested on a computer with an Intel i7-8809G

3.10GHz CPU. We generate random problems with given

sizes and compare average run times over 10 trials. With

lt = m− 1 dimensional local constraints at every time step,

we first fix n = m = 3 and vary trajectory length T :
T 100 200 300 400 500 600

[2] (ms) 0.88 1.06 1.67 2.01 2.35 2.81

Ours (ms) 2.32 3.17 4.30 4.68 5.86 6.86

then we fix T = 100 and increase n and m together:

n,m 10 20 30 40 50 60

[2] (ms) 3.74 14.5 44.1 83.5 152.3 247.7

Ours (ms) 3.81 11.8 27.1 51.2 99.0 170.2

The experiments show that for both methods, run time

grows linearly with increasing trajectory length as expected.

Our method performs better for larger state and control

dimensions. We believe this behavior is attributable to QR

factorization being faster than SVD (used in Baseline 2),

which overcomes the graph overhead for large m.

C. Cross-time-step Constraints

To illustrate an example of how cross-time-step constraints

can be used to generate useful trajectories, we use a double

integrator system (xi = [position;velocity],u = acceleration)

with periodic “step placements”. Consider the x-coordinate

of a hopping robot’s foot which initially starts in contact with

the ground and makes contact with the ground again every

20 time steps. Each contact, it must advance forward by 0.6

units and match the ground velocity (which may be non-zero

e.g. on a moving walkway). The problem is given by:

min
u

xT
T QxxT

xT +
T−1

∑
t=0

(xT
t Qxxt xn + uT

t Quut ut) (4a)

s.t. xt+1 =

[

1 dt

0 1

]

xt +

[

0

dt

]

ut , x0 = [0 0]T , (4b)

xnc+20− xnc =
[

0.6 0
]T

, nc= 0,20,40,60,80 (4c)

The cross-time-step constraints (4c) enforce that contacts

must occur at a fixed position relative to and with the same

velocities as the previous contacts p = 20 time steps prior.

These create constraint factors between two state variables

p = 20 time steps apart, as in Fig. 5 (p = 3 in Fig. 5).

Fig. 8 shows the solutions to Problem 4 using Baseline 2

[2], Baseline 3 (QP), and our method, as well as the results

when using the same controllers with a perturbed initial state

x0 = [0 1.8]T (i.e. walking on a moving walkway with

velocity 1.8). We omit Baseline 1 from the Figure for space

reasons since it performs identically to Baseline 2. We apply

some modifications to allow for comparison since Baselines

1 and 2 cannot natively handle cross-time-step constraints

and Baseline 3 cannot generate an optimal policy, but even

so, the adjusted baselines do not generate optimal trajectories

from perturbed initial state, as shown in Fig. 8 (bottom).

For Baseline 2, we convert the cross-time-step constraints

to same-time-step constraints xnc = [0.03nc 0]T for nc =
0,20, . . . resulting in incorrect constraints after perturbing

the initial state. An alternative would be to introduce 10

additional state dimensions (two for each cross-time-step

-1 0 1 2 3 4
Position

0

2

4

6

V
el

oc
ity

Baseline Method 3
Optimal trajectory

cost: 284.45 - constr: 1.84e-29

-1 0 1 2 3 4
Position

0

2

4

6

V
el

oc
ity

Baseline Method 2
Optimal trajectory

cost: 284.45 - constr: 6.16e-32

-1 0 1 2 3 4
Position

0

2

4

6

V
el

oc
ity

Proposed Method
Optimal trajectory

cost: 284.45 - constr: 1.05e-26

-1 0 1 2 3 4
Position

0

2

4

6

V
el

oc
ity

w/ Perturbed initial state
cost: 303.08 - constr: 3.89e+00

-1 0 1 2 3 4
Position

0

2

4

6

V
el

oc
ity

w/ Perturbed initial state
cost: 257.16 - constr: 6.48e+00

-1 0 1 2 3 4
Position

0

2

4

6

V
el

oc
ity

w/ Perturbed initial state
cost: 55.55 - constr: 9.24e-31

Fig. 8: The state trajectories solving Problem 4 using Baseline method
2 (left), Baseline method 3 (middle), and our proposed method (right)
with control sequence/policies applied to the original problem (top) and
after perturbing the initial state (bottom). All methods generate the same
trajectory to the initial problem, but only ours gives a policy which generates
the optimal trajectory for the perturbed problem. “Cost” and “Constr” denote
the total objective cost and constraint violation, respectively.

constraint) analagous to Lagrange multipliers, but we argue

that such an approach is not sustainable for online operation

and many cross-time-step constraints. For Baseline 3, we re-

use the control sequence from Problem 4 for the perturbed

case. Our method’s control law produces a state trajectory

that is optimal and without constraint violation even with a

perturbed initial state an shown in Fig. 8 (bottom right).

V. FUTURE WORK

Just as LQR is a building block for Differential Dy-

namic Programming (DDP) [13], [26], linear factor graphs

could also be a building block for more general nonlinear

optimal control problems. In this direction, the following

practical developments should be investigated: incorporating

inequality constraints e.g. using barrier or penalty functions

[27]; extending to nonlinear systems using nonlinear factor

graphs [14]; addressing over-constrained “constraints” in

VE via prioritization of constraints; leveraging incremental

solving using Bayes Trees [28] to do efficient replanning;

and combining estimation and optimal control into the same

factor graph to better close the perception-control loop.

VI. CONCLUSIONS

In this paper, we proposed solving equality constrained

linear quadratic regular problems using factor graphs. We

showed that factor graphs can represent linear quadratic opti-

mal control problems with auxiliary constraints by capturing

the relationships amongst variables in the form of factors.

Variable elimination, an algorithm that exploits matrix spar-

sity to optimize factor graphs, is used to efficiently solve

for the optimal trajectory and feedback control policy. We

demonstrated that our approach can handle more general

constraints than traditional DP approaches while also match-

ing or exceeding state-of-the-art performance with traditional

constraints. We believe our method has great potential to be

used in a number of complex robotics systems which require

solving more general constrained optimal control problems.

REFERENCES

[1] A. Sideris and L. A. Rodriguez, “A Riccati approach for constrained
linear quadratic optimal control,” International Journal of Control,
vol. 84, no. 2, pp. 370–380, 2011.

[2] F. Laine and C. Tomlin, “Efficient computation of feedback control
for equality-constrained LQR,” in 2019 International Conference on

Robotics and Automation (ICRA). IEEE, 2019, pp. 6748–6754.

[3] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” 1960.

[4] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,
“Real-time motion planning of legged robots: A model predictive
control approach,” in 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids). IEEE, 2017, pp. 577–584.

[5] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[6] S. Levine, “Reinforcement learning and control as probabilistic infer-
ence: Tutorial and review,” arXiv preprint arXiv:1805.00909, 2018.

[7] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in Proceedings of the 26th annual international conference on

machine learning, 2009, pp. 1049–1056.

[8] J. Watson, H. Abdulsamad, and J. Peters, “Stochastic optimal control
as approximate input inference,” in Conference on Robot Learning,
2020, pp. 697–716.

[9] H. J. Kappen, V. Gómez, and M. Opper, “Optimal control as a
graphical model inference problem,” 2009.

[10] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904,
2017.

[11] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in 2014 IEEE-RAS
International Conference on Humanoid Robots. IEEE, 2014, pp.
295–302.

[12] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabiliza-
tion of trajectories for constrained dynamical systems,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 1366–1373.

[13] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.”

[14] F. Dellaert, M. Kaess et al., “Factor graphs for robot perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139,
2017.

[15] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion planning
as probabilistic inference using gaussian processes and factor graphs.”
in Robotics: Science and Systems, vol. 12, 2016, p. 4.

[16] G. Chen and Y. Zhang, “LQR control using factor graphs,”
https://gtsam.org/2019/11/07/lqr-control.html, accessed: 2020-09-13.

[17] J. R. Blair and B. Peyton, “An introduction to chordal graphs
and clique trees,” in Graph theory and sparse matrix computation.
Springer, 1993, pp. 1–29.

[18] A. Barclay, P. E. Gill, and J. B. Rosen, “SQP methods and their
application to numerical optimal control,” in Variational calculus,
optimal control and applications. Springer, 1998, pp. 207–222.

[19] D. Koller and N. Friedman, Probabilistic graphical models: principles

and techniques. MIT press, 2009.

[20] K. J. Astrom, Introduction to stochastic control theory. Elsevier,
1971.

[21] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully dis-
tributed slam using constrained factor graphs,” in 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE,
2010, pp. 3025–3030.

[22] D.-N. Ta, M. Kobilarov, and F. Dellaert, “A factor graph approach to
estimation and model predictive control on unmanned aerial vehicles,”
in 2014 International Conference on Unmanned Aircraft Systems
(ICUAS). IEEE, 2014, pp. 181–188.

[23] M. Gulliksson, “On the modified Gram-Schmidt algorithm for
weighted and constrained linear least squares problems,” BIT Numer-

ical Mathematics, vol. 35, no. 4, pp. 453–468, 1995.

[24] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995, vol. 1, no. 2.

[25] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[26] D. Q. Mayne, “Differential dynamic programming–a unified approach
to the optimization of dynamic systems,” in Control and Dynamic

Systems. Elsevier, 1973, vol. 10, pp. 179–254.

[27] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc
for torque-controlled legged robots,” arXiv preprint arXiv:1905.06144,
2019.

[28] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” The International Journal of Robotics Research, vol. 31,
no. 2, pp. 216–235, 2012.

https://gtsam.org/2019/11/07/lqr-control.html

	I Introduction
	II Related Work
	III Problem And Method
	III-A Problem Formulation
	III-B Standard LQR as a Factor Graph
	III-C EC-LQR with Local Constraints
	III-C.1 Eliminating a state
	III-C.2 Eliminating a control

	III-D Computational Complexity Analysis
	III-E EC-LQR with Cross-time-step Constraints

	IV Experiments
	IV-A Cost, Constraint Violation & Controller Comparison
	IV-B Run Time Comparison
	IV-C Cross-time-step Constraints

	V Future Work
	VI Conclusions
	References

