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Abstract— A technological revolution is occurring in the field of
robotics with the data-driven deep learning technology. However,
building datasets for each local robot is laborious. Meanwhile,
data islands between local robots make data unable to be
utilized collaboratively. To address this issue, the work presents
Peer-Assisted Robotic Learning (PARL) in robotics, which is
inspired by the peer-assisted learning in cognitive psychology
and pedagogy. PARL implements data collaboration with the
framework of cloud robotic systems. Both data and models are
shared by robots to the cloud after semantic computing and
training locally. The cloud converges the data and performs
augmentation, integration, and transferring. Finally, fine tune this
larger shared dataset in the cloud to local robots. Furthermore,
we propose the DAT Network (Data Augmentation and Transfer-
ring Network) to implement the data processing in PARL. DAT
Network can realize the augmentation of data from multi-local
robots. We conduct experiments on a simplified self-driving task
for robots (cars). DAT Network has a significant improvement in
the augmentation in self-driving scenarios. Along with this, the
self-driving experimental results also demonstrate that PARL is
capable of improving learning effects with data collaboration of
local robots.

I. INTRODUCTION

Enhanced by the powerful capacity of AI, robotics has
achieved many complicated tasks that could not be accom-
plished before. Deep learning is applied in large robotic
projects such as grasping [1] and navigation [2]. With more
training samples, robots can cope with more kinds of sce-
narios. Owing to cloud computing availability, the concept
of “cloud robotic system” [3] is attracting more and more
attention from the researchers nowadays. Computing resources
and information are obtained by robots through the cloud,
which makes the intelligence of the robotic system expand
to a broader scope.

However, the high performance of learning methods usually
demands numerous data and more computing resources. As
computing can be offload to the cloud, data is gradually
becoming the bottleneck restricting the robustness of robots.

*This research is supported by the Shenzhen Science and Technology Inno-
vation Commission (Grant Number JCYJ2017081853518789), the Guangdong
Science and Technology Plan Guangdong-Hong Kong Cooperation Innovation
Platform (Grant Number 2018B050502009) and the National Natural Science
Foundation of China (Grant Number 61603376) awarded to Dr. Lujia Wang.

1Boyi liu, Lujia Wang (Corresponding Author), Xinquan Chen, Lex-
iong Huang are with Shenzhen Institutes of Advanced Technology
(SIAT), Chinese Academy of Sciences. Boyi liu is with Joint Lab-
oratory of Artificial Intelligence and Robotics of SIAT and Univer-
sity of Macau. by.liu@ieee.org; lj.wang1@siat.ac.cn
xq.chen@siat.ac.cn; lx.huang@siat.ac.cn

2Boyi Liu and Cheng-Zhong Xu are with the University of Macau.
czxu@um.edu.mo

3Xinquan Chen and Lexiong Huang are also with the University of Chinese
Academy of Sciences.

Peer 
Assist

Peer 
Assist

Peer Assist

One of the most visible approaches of peer assisted 
learning comes out of cognitive psychology. It is 
applied in the "mainstream" educational framework.  
Can cloud robotic system learn from this approach of 
humans education?

Humans 
to Robots Knowledge 

Augment

Fig. 1. Peer-assisted learning has been researched in the field of cognitive
psychology and pedagogy since the 1990s [4]. Students can realize the goal
of education by thinking collision and learning from each other. Inspired by
this, we present Peer-Assisted Robotic Learning to solve data constraint and
data islands, thus improving the learning ability. Robots realize peer assisting
in cloud robotic systems with PARL.

For instance, imitation learning needs lots of data as well
as labels to cover the situations that robots may encounter.
When data is insufficient, learning methods cannot generalize
well to unseen scenarios, which eventually leads to mistakes.
In reinforcement learning, robots need to interact with the
environment. However, the acquisition of interaction is of-
ten expensive and time-consuming. Traditionally, the solution
in computer vision is data augmentation, including random
cropping [5] , flipping [6], rotation, scale, and so on. The
value distribution of pictures changes significantly in this way.
But the distribution of objects remains unchanged. Therefore,
augmentation can’t provide more semantic information for
decision making. In automatic driving scenarios, the model
trained with an insufficient dataset will cause deadly mistakes.
It is worth seeking how to achieve data augmentation at
the semantic level and enrich the content information, which
facilitates decision making.

In traditional machine learning, training data of the model
need to be independent and identically distributed. Data from
different distributions would not be processed together. On
the other hand, data from various sources is gathered by the
cloud robotic system and used by it. It is easier to excavate the
value of data of different robots with its powerful computing
capacity. For example, we can utilize the data collected in
different cities and transfer them to the target domain in
automatic driving, which significantly improves the object’s
distribution in the training dataset.

To avoid islands and enrich the datasets of local robots to
enhance robotic systems’ robustness, we propose the Peer-
Assisted Robotic Learning (PARL) in the cloud robotic sys-
tem. Contributions are as follows: 1. The work presents a
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novel framework with the implementation of PARL, which
is capable of addressing data insufficiency and data island by
peer-assisting. 2. We propose the DAT Network to augment the
dataset of each self-driving robot in the cloud. It can realize
a series of operations of data gathering, augmentation and
transferring in PARL.

II. RELATED THEORY

A. Cloud Robotic System

James Kuffner first proposed the term “Cloud Robotics”
[7] in 2010. After that, more and more research on cloud
robotics is emerging [8]. With the development of big data
and cloud computing, it is possible to design an effective,
high real-time and low-cost cloud robotic system [9]. The
cloud robotic system’s expectation is transferring lumbersome
computing to the cloud and realizing the interaction of data
between cloud and robots. A single robot doesn’t need to equip
with a powerful CPU. At the same time, various robots can
share their data and technique with others [10] [11].

Relied on cloud computing, many complex operations that
require high real-time performance now can be achieved by a
robot. For example, C2TAM [12] is a cloud robotic framework
designed for SLAM in robotics. Map optimization and storage
are allocated to the cloud, and different robots can share their
maps. A web community project named RoboEarth [13] for
robots to share knowledge was initiated by the Eindhoven
University of Technology. Robots could easily acquire infor-
mation and technique to meet their demands without going
through complicated conversation process. [14] suggested a
resource allocation scheme for the cloud robotic system, which
could improve resource utilization. Furthermore, cloud robotic
technology also can be combined with the Internet of Things
[15], optimizing the production process. The above research
provided a broad imagination for cloud robotics. However,
we need to be aware that many problems such as privacy and
security concerns still exist in cloud robotics. Overall, cloud
robotics is a promising research field.

B. Supervised Learning and Collaborative Learning on Robot

Supervised learning has been used to solve the training
problem in robotics. Control policies often need to be provided
as part of the input to the robot to learn. Foothold positions as
well as features of the force-torque signal are supplied to the
neural network [16] to predict properties of the terrain ahead
of the robot. The legged robot using this network can traverse
diverse and rugged terrain. Through supervised learning, [17]
cognitive robot can acquire corresponding concepts in human
knowledge. Eventually, robots would perform better than hu-
mans in terms of relevance, accuracy and cohesiveness.

Collaborative learning is one of the most critical topics in
cloud robotics. It is about how robots collaborate with other
robots to finish complex assignments [18]. Sharing knowledge
is an essential part of the collaboration, which means robots
share knowledge, perception and technique with each other.
[19] presented a method to utilize OPENEASE cloud engine
to exchange knowledge. By being connected, robots share
the same structured knowledge and semantic rules. They

can use other robots’ execution logs for reasoning. In [20],
multiple robots can share their experience and learn a policy
collectively. This work can shorten the data collection process
and improve training time. Moreover, collaborative learning
can be used in SLAM [21]. Pose graphs obtained by multiple
robots would be aggregated to generate a global pose graph.
Because of its facility and practicability, supervised learning
and collaborative learning are adopted in more and more
robotic research.

C. Peer-Assisted Learning

The process of PAL can be defined as “people from similar
social groupings who are not professional teachers help each
other to learn and learn themselves by teaching” [22]. It’s
a bidirectional process which means both sides are equal
and beneficial. By means of PAL, teachers and learners are
involved in the learning process greatly. Thus much more
thorough comprehension is acquired by them. Nowadays PAL
is mainly used in modern medical curricula [23]. Related re-
search [24] shows that not only could PAL improve knowledge
acquisition of peer teacher and peer learner, but also it could
help them achieve better performance at the end of year the
exam.

Inspired by PAL, we present Peer-Assisted Robotic Learn-
ing (PARL). Robots can help each other and learn from other
robots like PAL. Then, each robot’s performance will be
improved. In order to achieve this, we propose a new network
model: Data Augmentation and Transferring Network (DAT
Network). It can address the problem of data insufficiency
in robotic learning and make robots perform better when
encountering a new situation.

III. METHODOLOGY

For this section, the work proposes the framework and
procedure of PARL in cloud robotic systems in the first
subsection. Then, the architecture of the DAT Network is
proposed and described in the second subsection.

A. Framework and Procedure of PARL

Fig.2 presents the framework of PARL. The figure has
consisted of five modules. The middle box represents data
processing in the cloud. The four boxes around the middle
box respectively represent the data processing of four local
robots. We use Dl1, Dl2, Dl3 and Dl4 to represent the four
local datasets corresponding to training samples of each lo-
cal robot. Al1, Al2, Al3 and Al4 represent semantic datasets
corresponding to segmentation images in the figure. Sa1, Sa2,
Sa3, Sa4 represent the four augmented semantic datasets and
they are presented as the second-row icons in the middle box.
C1, C2, C3, and C4 represent four augmented datasets for four
local robots. The corresponding labels of C1, C2, C3 and C4
are denoted by label1-label4.
Computing in local robots. The computing tasks of local
robots are mainly semantics. The outputs of local robots are
Pix2Pix model [25], semantic maps and instance maps. First, if
there are no matching samples of scenarios and semantic maps.
In order to acquire instance maps and semantic maps, the local
robots need to perform semantic segmentation for the local



Fig. 2. Framework and procedure of PARL. The box in the above figure filled with color represents the scenarios. The white and color interlaced boxes
represent the semantic map. The arrows indicate the direction of data processing and transmission. The four-block diagrams on both sides respectively represent
the calculation process of the local robot. The middle block diagram shows the data processing in the cloud, and the arrows of different colors represent
different Pix2Pix models. The data of each robot is represented by a different color.
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Fig. 3. Example of data processing in one local robot. Black arrows denote
the data direction. Colored boxes represent computing parts in the cloud
or modules from other robots. Left images indicate local scenarios, middle
images indicate semantic maps and right images indicate augmented scenarios.

dataset. Local robots train Pix2Pix model to transfer semantic
maps to scenarios. Pix2PixHD [26] is an improved version
of the Pix2Pix, so we apply Pix2PixHD actually in work. The
trained Pix2PixHD networks in local robots will be transmitted
to the cloud for data augmentation and style transferring in the
cloud. The key is that the Pix2PixHD network of each local
robot is trained separately. So, each local Pix2PixHD network
possesses different parameters to translate semantic maps into
scenarios. This corresponds to the second dimension of data
augmentation in the cloud and the expansion of image style.
After this step, the computing of the local robot is completed.
Pix2PixHD model, semantic maps and instance maps will be
transmitted to the cloud.
Computing in the cloud. Cloud augments the datasets that

are transformed from local robots. The augmentation process
is completed by the cloud part of the DAT network. This
process can be understood as two stages: the augmentation of
semantic maps and the augmentation through different Pix2Pix

networks. So in the middlebox in the figure, the first step we
show is to perform the augmentation for the basic semantic
dataset of each local robot Al1, Al2, Al3, Al4 to C1, C2, C3,
C4. Then, the augmented semantic maps assembly generates
scenarios through different pix2pix networks to complete the
second-dimension expansion. Since the generated data has no
label, we label each data sample by crowdsourcing the local
robot model. The shared model can be generated with the
labeled data. Finally, the cloud model will be transferred to
the local side to do fine tuning. Then we can get the decision
model that can make use of all the data in the cloud robotic
system.

B. DAT Network

As can be seen from the above, DAT Network is the key to
realize PARL. In this section, we present a comprehensive
DAT Network. It shows the complete steps of generating
multiple scenarios from one scenario. These steps are intercon-
nected and interact with each other, although DAT Network
is composed of several stages. Therefore, the DAT Network
should be regarded as a whole. It can be used as a function
module to augment the self-driving data in the case of offline.

As shown in Figure 4, it is the architecture of the DAT
Network. A single image of the scenario is input into panoptic
to obtain an instance map and a semantic map. Then, the
scenario, instance map and semantic map are input into the
“Where prediction” module and “What prediction” module
[27] for semantic level data augmentation. For example in
the figure, one semantic map is augmented to three. The
“Where and What modules” are trained by combining the
STN (Spatial Transformer Networks) and GAN (Generative
Adversarial Network), which is inspired by the method from
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Fig. 4. The framework of DAT Network. The input of the DAT Network is one scenario image and the output of the DAT Network is multi scenario images. A
trapezoid placed vertically represents a neural network that includes the functions of an encoder or functions described on it. The arrows indicate the direction
in which the data is transferred. The different colored network layers below represent different local robots, and the same colored ones represent the same
parameters and structure. The blue icon in the left bottom denotes dataset of real scenarios.

[27]. DAT Network input semantic maps to the Pix2Pix Net-
work to generate scenarios. Pix2Pix networks have different
styles because of different datasets of local robots. As shown
in the figure, it has the same down-sampling layer, but the
conversion layer and the up-sampling layer are different. These
complete the second augmentation, image style augmenta-
tion. Different scenario styles are indicated in these different
local Pix2Pix networks. Finally, a discriminator is added
to determine whether the generated scenario is reasonable.
The discriminator is trained by images generated and real
scene datasets. The network retains the generated image when
the output of the discriminator is higher than a threshold.
Otherwise, the generated image is considered to be of low
quality and it will be thrown away. The objective of the
training of the DAT Network [27] [26]:

min
G

max
D1,D2,D3

∑
k=1,2,3

LG (G,Dk)

min
Gil

max
Dil

Lil (Gil ,Dil)

min
Gis

max
Dis

Lis (Gis,Dis)

(1)

The above equation 1 respectively represent the three optimal
conditions we need to obtain. The Lil indicate the loss of insert
layout network. The Gil and Dil respectively indicate the loss
of generator and discriminator network of layout prediction.

Lil(Gil ,Dil) = Ladv
il (Gil ,Dbox

layout)+Lrecon
il (Gil)+Lsup

il (Gil ,Da f f ine)
(2)

Lis (Gis,Dis) = Ladv
is

(
Gis,Dinstance

layout

)
+Lrecon

is (Gis)+

Lsup
is

(
Gis,Dshape

) (3)

Dbox
layout and Dinstance

layout focus on finding whether the new bound-
ing box and instance fits into the layout of the input semantic
map. Da f f ine and Dshape aim to distinguish whether the trans-
formation parameters are realistic. Dil and Dis can denote the
above discriminators that are related to the location prediction
and shape prediction. Then, a mini-max game between Gl and

Dl is formulated as above formula 2, 3.

LFM (G,Dk) = E(s,x)

T

∑
i=1

1
Ni

[∥∥∥D(i)
k (s,x)−D(i)

k (s,G(s))
∥∥∥

1

]
(4)

min
G

((
max

D1,D2,D3
∑

k=1,2,3
LG (G,Dk)

)
+λ ∑

k=1,2,3
LFM (G,Dk)

)
(5)

In the above formulas, D1, D2 and D3 are trained at the three
different scales. the ith-layer feature extractor of discriminator
Dk as D(i)

k . The feature matching loss LFM(G, Dk) is then as
formula 4. T denotes the total number of layers, Ni is the
number of elements in each layer. Therefore, the new full
objective update to the formula 5.

IV. EXPERIMENTS

In this section, we conduct experiments to verify the ef-
fectiveness of PARL on addressing data insufficiency in local
robotic learning. The scene of our experiments is a self-driving
case because a self-driving car is actually an advanced robot.
Our experiments aim to answer the following two questions:
(1) Assisted by other robots in the cloud robotic system, can
DAT Network in PARL generate training data corresponding
to the distribution of training samples in the original robot? (2)
Under the condition of insufficient data, can PARL improve
the local robot’s learning effect in a cloud robotic system?
For the first question, we split the self-driving data by several
different locations in the Cityspace dataset [28] as different
agents, and then carried out a data augmentation experiment
on one agent based on DAT Network. To answer the second
question, we conduct a self-driving experiment to compare the
performance of the generic imitation learning and PARL. By
performing robot executions of the two approaches, we can see
that PARL is superior to imitation learning in many aspects.

A. Experiment of DAT Network in Peer-Assisted Learning

In this section, we conduct the experiment of the DAT
Network to verify the effectiveness and compare it with other
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Fig. 5. Image augmentation samples with DAT Network. DAT Network expanded the two scenarios to 8 scenarios. In this process, DAT Network augmented
the scenarios in two dimensions, semantic and image style. We have adopted a 2-fold increase in each dimension. It can be seen from the figure that after
the scenarios transformed into the semantic maps, the instances in it are added by DAT Network. Different pix2pix networks are used in the process of
transferring segmentation images to scenarios. The image styles generated by each pix2pix network are different, so the data is also augmented in the image
style dimension.

TABLE I
COMPARISON OF AUGMENTED RESULTS BY DIFFERENT METHODS

Color jitter

Random resized crop

DAT Network

1 Color Jitter and Random Resized method augmented one scenario to five. DAT Network augmented three scenarios to ten. The yellow box is new instances
that was generated.

2 As seen, DAT Network generates samples that are more similar to real scenarios than the other methods. The data augmentation of the other two methods is
only geometric transformation, which has gap to real scenarios.

methods. The experimental details and results are shown as
follows:
Experimental setup. In the work, we used Cityscapes Dataset.
The Cityscapes dataset comprises a large, diverse set of stereo
video sequences recorded in streets from 50 different cities.
Five thousand of these images have high-quality pixel-level
annotations; 20000 additional images have coarse annotations
to enable methods that leverage large volumes of weakly-
labeled data. In the experiment of DAT Network in Peer-
Assisted Learning, we divide the dataset into different parts
based on the style of scenarios. Therefore, a different part of
the dataset has a different distribution. Each part represents a
different local robot in the cloud robotic system. Local robots

acquire skills by training their own part of data in general
imitation learning. DAT Network needs to implement data
augmentation corresponding to the data distribution of local
robots.
Baselines. We compare to the following methods:
- The color jitter method. Data enhancement of image color:
changes of image brightness, saturation, contrast and other
related factors.
- The random resized crop method. It is used to crop and scale
the image, including scale jittering method or scale and aspect
ratio enhancement transformation. VGG and ResNet use this
method for data augmentation.
- The proposed DAT Network. Several scenario images were



TABLE II
PERFORMANCE OF CONTROLLERS BASED ON PARL AND GENERIC IMITATION LEARNING IN KEY CHALLENGING TASKS

Turns

E-PARL:0.00, E-IL:0.11 E-PARL:0.02, E-IL:0.06 E-PARL:0.00, E-IL:0.06 E-PARL:0.00, E-IL:0.03

Avoid cars

E-PARL:0.02, E-IL:0.05 E-PARL:0.01, E-IL:0.02 E-PARL:0.01, E-IL:0.03 E-PARL:0.00, E-IL:0.01

Go straight

E-PARL:0.01, E-IL:0.03 E-PARL:0.00, E-IL:0.02 E-PARL:0.00, E-IL:0.02 E-PARL:0.00, E-IL:0.01
1 In each figure in the table, there are three arrows and three length bars. Red represents label, blue represents PARL’s output, and green

represents IL’s output. The direction of the arrow represents the output torque. The length of the length bar reflects the output torque
value. Among them, when the torque is 0.5, it means to go straight, when the torque is less than 0.5, it means to turn left, and when the
torque is greater than 0.5, it means to turn right. Below the figures are the corresponding specific values, E-PARL means errors of PARL
and E-IL means errors of IL.

randomly selected and inputted to the DAT Network. Then we
will obtain outputs several times the number of inputs.
Metrics. As there are no specific quantitative metrics of
data augmentation, we compare data augmentation through
qualitative analysis. It includes whether the augmented data
is logical, whether there is semantic augmentation, whether
there is instance augmentation, the number of augmentations,
etc. These factors are shown in the first line of Table III.
Results. We present the result with two subsections: the

TABLE III
QUALITATIVE ANALYSIS OF DATA AUGMENTATION METHODS

Methods Number Semantic Instance Reality

Random Resized Crop A+ D (None) D (None) C
Color Jitter B D (None) D (None) A+

DAT Network A A- A+ A
1 From A+ to D means performance from good to bad.

implicit process of implementation for DAT Network and
results comparing different methods. As shown in Fig.5, two
scenario images are taken as examples to demonstrate the
implicit process of DAT Network. The DAT Network realizes
the augment of scenario in two dimensions: semantic augment
and image style augment. In semantic augment, the results
show that DAT Network has successfully augmented one
semantic structure two times. Semantic maps reflect the logical
relationship between image content and instance. From the

experimental results, we can know that the DAT Network
can learn the logical connection between image contents.
Furthermore, it can generate new samples that conform to
the distribution of this logical relationship. In the next, DAT
Network performs the transferring between semantics to sce-
narios with its own P2P model. It transformed a large number
of segmentation images from different agents and the cloud
into scenarios. Moreover, the generated scenarios match the
data distribution of the local robot. This figure demonstrates
that DAT Network can generate samples corresponding to the
distribution of training samples in local robots.

Augmented results comparison are presented in Table I and
the qualitative analysis are shown in Table III. It can be seen
from the two tables that DAT Network performed all well
in ”whether the augmented data is logical”, ”whether there
is semantic augmentation”, ”whether there is instance aug-
mentation”, ”the number of augmentations”. Other methods
only did well in individual indicators and did not achieve
actual augmentation. Only the proposed DAT Network has
achieved an increment of information in robotic learning. The
availability of the augmented samples from DAT Network is
higher because of the reasonable logic and style matching.

B. Experiment of self-driving with PARL

In this part, we also carried out two sub-experiments, one
is to verify the effect of PARL, the other is to compare with
other approaches.



TABLE IV
QUANTITATIVE COMPARISON BETWEEN PARL AND CENTRALIZED-IL IN DIFFERENT ENVIRONMENTS

Environment\Error type
Environment 1 Environment 2 Environment 3

Obstacles Turns Straight Obstacles Turns Straight Obstacles Turns Straight

Imitation Learning
30.00% 28.57% 16.67% 36.67% 11.11% 25.00% 0.00% 27.27% 10.00%

Overall : 27.27% Overall : 34.04% Overall : 19.05%

Peer-Assisted Learning
5.00% 0.00% 0.00% 6.67% 0.00% 12.50% 0.00% 9.09% 0.00%

Overall : 3.03% Overall : 6.38% Overall : 4.76%
1 The percentage in the table indicates the percentage of controller errors in the task. Calculating it by dividing the number of errors

by the number of tasks of this type.

TABLE V
PERFORMANCE COMPARISON BETWEEN PARL AND CENTRALIZED-IL IN DIFFERENT ENVIRONMENTS

Some Samples of result. Overall error: Centralized:0.105, PARL:0.015

Experiment 1 0.49; 0.47; 0.46 0.31; 0.30; 0.41 0.50; 0.51; 0.42 0.29; 0.30; 0.42 0.37; 0.38; 0.40 0.50; 0.48; 0.46

Environment 2 0.56; 0.55; 0.50 0.50; 0.49; 0.52 0.53; 0.53; 0.51 0.49; 0.49; 0.50 0.62; 0.62; 0.56 0.50; 0.50; 0.51

Environment 3 0.44; 0.43; 0.49 0.30; 0.31; 0.51 0.71; 0.69; 0.52 0.40; 0.41; 0.49 0.39; 0.40; 0.49 0.62; 0.64; 0.55
1 Arrows and length bars are same to Table II. Below the figures are the corresponding specific values. Torque value of label, Torque value of PARL

output and torque value of centralized-IL are from left to right.

Experimental setup. In work, we have used Microsoft AirSim
as our simulator to evaluate the presented approach. In addi-
tion to have high-quality environments with realistic vehicle
physics, AirSim has a python API that allows for accessible
data collection and control. In order to collect training data,
a human driver is presented with a first-person view of
the environment (central camera). The simulated vehicle is
controlled by the driver using the keyboard. The car should
be kept at a speed around 7m/s, collisions with vehicles or
pedestrians should strive to be avoided, but traffic lights and
stop signs will not be considered.

Baselines. The former verified experiment:
- Generic imitation learning (IL). The local robot performs
generic imitation learning with its dataset and executes the
trained policy model in the simulated environment.
- The proposed Peer-Assisted Robotic Learning (PARL). The
local robot performs PARL in cloud robotic system and
executes the trained policy model in the same environment.
The later comparative experiment:
- Policy model based on centralized datasets. Three datasets
are gathered together and then performed imitation learning
directly. Then, the obtained policy model is executed in the
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Fig. 6. Experimental process of PARL. Each robot augments its dataset
through DAT Network. After the cloud gets the assisted model, it is returned
to the local for fine tuning. The local side computes the local part of the DAT
Network and fine tunes assisted model. The cloud side computes the cloud
part of DAT Network and generates labels etc.

simulation environments of three agents.
- Policy model based on PARL. Performing self-driving learn-
ing with PARL and then execute the three models output from
PARL in these three different environments. The experimental
process of PARL is presented in Fig.6. With the DAT Network,
every local robot utilizes information from others to get
an assisted model and fine tune it to match its style of
scenarios. Finally, the fine tuned model will be executed in
the corresponding experiments.



Metrics. We collected and tagged the dataset. Every label of
scenario is the torque recorded from the human-drive car in the
simulator environment. We compare the torque gap between
the output of the model tested and the label.
Results.
-The former verified experiment:
The performance of controllers based on the two methods in
key challenging tasks is presented in TABLE II. The results
are summarized in Table IV. From the results, we can see
that compared with general models that trained by traditional
imitation learning without information from other robots, the
PARL model obtained in the cloud robotic system performs
significantly better in accuracy. Moreover, PARL improves the
training process of imitation learning with the help of shared
knowledge. There is a pre-trained model from the cloud for
transferring in local imitation learning. So there is no need
for local robots to learn from scratch. The transferred policies
have a lower error starting point and the error value.
-The later comparative experiment:
Table IV and Table V are the performances and the summary
of PARL controllers and Centralized-IL-controllers in their
respective environments. It can be seen from the two tables
that PARL has a better performance. Centralized-IL-controller
directly centralizes the data without considering the actual
contribution of the model for training. PARL considers the
image style and logic in data augmentation. The data PARL
generated has a higher utilization ratio, which improves the
accuracy of the model.

V. CONCLUSION

This work proposes Peer-Assisted Robotic Learning to ad-
dress data insufficiency and data island of local robots. PARL
can enable each local robot to utilize the data and knowledge
of the entire cloud robotic system. Not only does PARL
converge all the data from local robots, but also it is useful for
all local robots by augmenting and transferring. This greatly
improves the available training samples for local robots, thus
improving the training effect. Furthermore, the work presents
the DAT Network to implement data augmentation in PARL,
which achieves impressive results in the self-driving case. The
experimental results in the self-driving case also verify the
effectiveness of PARL.
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Lopez, K. Häussermann, R. Janssen, J. Montiel, A. Perzylo, et al.,
“Roboearth,” IEEE Robotics & Automation Magazine, vol. 18, no. 2,
pp. 69–82, 2011.

[14] L. Wang, M. Liu, and M. Q.-H. Meng, “A hierarchical auction-based
mechanism for real-time resource allocation in cloud robotic systems,”
IEEE transactions on cybernetics, vol. 47, no. 2, pp. 473–484, 2016.

[15] J. Wan, S. Tang, Q. Hua, D. Li, C. Liu, and J. Lloret, “Context-aware
cloud robotics for material handling in cognitive industrial internet of
things,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2272–2281,
2017.

[16] L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena, and
M. Hutter, “Where should i walk? predicting terrain properties from
images via self-supervised learning,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 1509–1516, 2019.

[17] O. A. Zatarain and Y. Wang, “Experiments on the supervised learning
algorithm for formal concept elicitation by cognitive robots,” in 2016
IEEE 15th International Conference on Cognitive Informatics & Cog-
nitive Computing (ICCI* CC), pp. 86–96, IEEE, 2016.

[18] K. Bakliwal, M. H. Dhada, A. S. Palau, A. K. Parlikad, and B. K. Lad,
“A multi agent system architecture to implement collaborative learn-
ing for social industrial assets,” IFAC-PapersOnLine, vol. 51, no. 11,
pp. 1237–1242, 2018.
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