arXiv:2008.10544v1 [cs.CV] 24 Aug 2020

TORNADO-NET: MULTIVIEW TOTAL VARIATION SEMANTIC
SEGMENTATION WITH DIAMOND INCEPTION MODULE

A PREPRINT

Martin Gerdzhev*, Ryan Razani, Ehsan Taghavi, Bingbing Liu
Noah’s Ark Lab, Huawei Technologies
Canada, Toronto
{martin.gerdzhev, ryan.razani, ehsan.taghavi, liu.bingbing}@huawei.com

ABSTRACT

Semantic segmentation of point clouds is a key component of scene understanding for robotics and
autonomous driving. In this paper, we introduce TORNADO-Net - a neural network for 3D LiDAR
point cloud semantic segmentation. We incorporate a multi-view (bird-eye and range) projection
feature extraction with an encoder-decoder ResNet architecture with a novel diamond context block.
Current projection-based methods do not take into account that neighboring points usually belong to
the same class. To better utilize this local neighbourhood information and reduce noisy predictions,
we introduce a combination of Total Variation, Lovasz-Softmax, and Weighted Cross-Entropy losses.
We also take advantage of the fact that the LiDAR data encompasses 360° field of view and uses
circular padding. We demonstrate state-of-the-art results on the SemanticKITTI dataset and also
provide thorough quantitative evaluations and ablation results.

Keywords Robotics, Autonomous Driving, Spherical Transformation, Bird’s Eye view, Multi-view fusion (MVF),
Semantic Segmentation, LiDAR point cloud

1 Introduction

Semantic segmentation of point clouds, specially on data collected from LiDARs is becoming a crucial task in many
applications such as robotics, autonomous driving, etc. Semantic segmentation is a key component of a larger scope of
tasks called scene understanding. The role of scene understanding is even more pronounced for autonomous systems
such as self-driving cars, where safety is paramount and errors in the perception stack can lead to bad planning and
accidents.

While semantic segmentation has been used on images in other domains, such as medical imaging and surveillance
systems, it has seen limited applications in self-driving due to the difficulty of data annotation of the different sensors.
An autonomous vehicle is equipped with many primary sensors, including cameras, LIDARs, RADARs and possibly
other secondary sensors such as sonars, which help the task of perception for an autonomous system. The earliest
works on data labeling in robotics and autonomous driving have been done on cameras and images due to their wide
availability and somewhat easy labeling procedure.

To enable 3D data collected from LiDARs to be fully utilized in perception modules, one needs a labeled point cloud
at the point level (semantic) to be available. To this date, SemanticKITTI [[1] proved to be one of the best LIDAR
datasets with point wise labels available to researchers and industries. Due to this reason, the focus of this work is
mainly on literature available on LiDAR semantic segmentation using SemanticKITTI [1]] as a benchmark dataset. It is
worth noting that, due to wider field of view, precise distance measurements and light-invariance, most autonomous car
platforms use LiDAR sensors for scene understanding on the road.

LiDAR point clouds present a number of challenges as compared to images - they are unstructured, sparse and their
density varies with distance. Some methods try to tackle the problem by operating on the point clouds directly [2],
while others try to utilize the approaches from the image domain, by projecting the point clouds onto images (Bird Eye
View, or Frontal projection) or 3D voxels, and applying convolutions on the structured representation [3].
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This work builds upon several approaches like multiple views projections similar to MVF [4] and encoder-decoder
networks like SalsaNext [15] to propose an end-to-end model that achieves state of the art results on SemanticKITTT [[1]].
With TORNADO-Net we introduce the following contributions:

e A pillar based learning module that learns and extracts features on BEV data representation of LiDAR point
clouds;

e A novel global context module, named Diamond feature extractor, that processes the spherical range-image
LiDAR data and extracts rich features suitable for semantic segmentation;

e A novel loss function based on total variation denoising techniques that improves the overall accuracy of point
cloud semantic segmentation models;

e Circular padding to account for the LiDAR data with 360° horizontal field of view;

e An analysis on the semantic segmentation performance using different architectures through an extensive
ablation study;

The rest of the paper is organized as follows. In Section[2] a brief review of recent and related works is given. Section[3]
describes the proposed neural network model and the new loss functions in detail. Training details and experimental
results including qualitative, quantitative, and ablation studies can be found in SectionE}, along with the benchmarks
from all available and published methods in the literature for reference. Finally, conclusions and future work are
presented in Section[3}

2 Related Work

Until recently, there have been few approaches that focus on LiDAR point cloud based semantic segmentation due
to the lack of large-scale labeled datasets. Some of these early methods include PointNet [2], SqueezeSeg [3] and
DeepTemporalSeg [[6]. The introduction of the SemanticKITTI dataset [1]] has spurred the development of novel
LiDAR-based segmentation methods [[7, 18,19, 16, 10, [11} 112} |5, [13} [14].

Based on how the point cloud is represented, methods can be grouped into methods that operate on points directly
(point-wise), or methods that project the point cloud into a different, easier to work with structure (projection-
based). Point-wise methods like PointNet [2]], KPConv [7] and RandL.A-Net [[15] don’t require any preprocessing
or transformation. Although capable of processing smaller point clouds, they are less useful for large point clouds
(specially those which collect 360° data) due to large memory requirements and slow inference speeds. To address
some of these problems, some methods like SPG [8]] utilize a superpoint graph, which is formed by geometrically
consistent elements. Some of the more prevailing methods, however, aim to project the pointcloud into either a 3D
voxel grid, or a 2D image (Bird-Eye-View (BEV) or spherical Range View (RV)), and utilize convolutional operators
that work on structured data [3, 9,16, [10L [11, 12,15, [16]. The projection-based methods usually have achieved higher
accuracy, while maintaining a much faster inference time. Therefore, TORNADONet aims at solving the problem of
LiDAR semantic segmentation using projection-based techniques that combines multiple projections - first to BEV, and
then to RV similar to [[16]] to extract complementary features and achieve state-of-the-art results.

In addition to the neural network model that is designed to address a specific problem, the choice of a loss function
can play a crucial role to the accuracy of the model. For semantic segmentation tasks, cross entropy (CE) loss is
one of the most widely used loss functions. However, since there can be a big class imbalance with many classes
being over-represented in the data, the loss functions that take the class frequency into account, such as weighted
cross entropy (WCE) or Focal loss [[17]], can improve the performance. While these losses work well in a variety of
tasks, they do not optimize the same criterion that is used to evaluate the performance of semantic segmentation, i.e.,
intersection-over-union or Jaccard Index (IoU).

Since IoU is a discrete function and cannot be optimized for directly, surrogate functions that are differentiable have
been proposed. Lovasz-Softmax loss [[18] and Dice loss [19]], optimize the Jaccard and Dice coefficients, respectively in
order to maximize the mean IoU(mlIoU).

These losses however do not take into account the local neighbourhoods of the pixels/points and can lead to noisy
predictions. To address this problem, regularization functions, such as, the Total Variation regularizer, have been used
to regularize the overall loss by the smoothness of the prediction over neighboring pixels or data points. More recently,
the TV regularizer was used to address the denoising problem in image applications [20} 21]]. A major target in image
denoising is to preserve important image features, such as edges, while removing noise. In our work, we use this
concept and propose a novel TV loss function that takes into account neighbouring information.
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To achieve better results, it is also common to use a weighted combination of multiple loss functions. For example,
SalsaNext [10] uses a combination of WCE loss and Lovész-Softmax loss. In this paper, a combination of WCE loss,
Lovasz-Softmax loss and the novel TV loss is proposed to help TORNADO-Net achieve state-of-the-art accuracy in
LiDAR semantic segmentation.

3 TORNADONet

3.1 Model architecture

In this paper, a novel and intuitive NN architecture is introduced to solve the problem of LiDAR semantic segmentation
benefiting from information extraction in different views. Although the encoder-decoder model processes range image
similar to [5]], the pillar-projection-learning module (PPL) learns and extracts information in the Bird’s Eye View (BEV).
This series of different projections as shown in Fig. [T} help the model pick up features that are otherwise difficult
to extract. Results and ablation studies on the SemanticKITTI [1]] dataset benchmark show the effectiveness of the
proposed CNN model. The details of the new architecture are explained in the subsections below.
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Figure 1: TORNADO Architecture.

3.1.1 Pillar Projection Learning

The proposed model starts off with the PPL module (see Figure [2) in which the raw LiDAR point cloud P is processed
by mapping the unordered points to BEV. We follow the approach similar to [16] where points are grouped into pillars
and their normalized z, y, z pillar coordinates are appended to the point cloud features. The point cloud goes through a
FC layer to extract better features and is then mapped to the BEV pillars. All points within a pillar are processed through
another FC layer and then after a pooling operation each pillar is represented by a single feature vector. The projected
pillars then undergo a series of strided convolutions followed by upsampling layers in order to capture neighbouring
information. All points are then augmented with the features from the pillar that they belong to.

The PPL thus generates rich point features that can be used for different applications. For the purpose of LiDAR
semantic segmentation, range images have shown better and more accurate results with reasonable computational
complexity. Because of this reason, in the proposed model and after applying PPL, the features are projected onto the
range-image for further processing.
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Figure 2: PPL Block
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To accomplish this, one can use a transformation from point cloud to image as follows for R? — R?2

uw) 111 — arctan(y, z)m 1 |W 1

v)] = \[1 - (arcsin(zr=1) + fup)%]H M
where (u, v) are the coordinates of a given point cloud (z, y, z) in spherically transformed data, hereafter range-image,
W is the desired horizontal resolution and H is the desired vertical resolution. Moreover, the vertical field of view of
the sensor can be described as f = f,;, + fdown. In its simplest form, the channels of the new range-image can be
filled with (z,y, z, rem, r), where rem is remission reading of points and r is the range. If desired, other channels
can be added to the range-image to address the much needed features for a specific task. As the point cloud is already
processed using a PPL block, in this NN model, we use extracted features C'p and project them onto the range-image.
Empty pixels in the transformed data can be masked.

3.1.2 Diamond contextual block

Here we propose a new global context module to process the output of PPL, named diamond context block (DCB).
DCB uses regular 2D convolutions and provides context at different scales with efficient computation that can be used
in various CNN models without loss. A generic block diagram of DCB is shown in Figure[3] DCB consists of three
diamond shape convolution blocks. Each block is a combination of 3 x 3,5 x 5 and 7 x 7 2D convolutions. Moreover,
to carry the local features, a skip connection with 1 x 1 2D convolution connects the input to the output of the second
diamond block. Finally, the third diamond block is concatenated with the skip connection of its input to generate the
final feature tensor for further processing. Our ablation studies show that DCB enhances semantic segmentation on
SemanticKITTI.
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Figure 3: Diamond contextual block. This block processes the range-image output from the PPL block and provides
rich contextual features which are suitable for LiIDAR semantic segmentation.

3.1.3 Encoder-Decoder

After the raw point cloud is processed by PPL and DCB, the feature tensor is fed to an encoder-decoder CNN similar to
what is proposed in [10]. The architecture of the proposed encoder-decoder is illustrated in Figure[T] The input to the
network is the spherical projection of the extracted features from PPL+DCB in section[3.1.2] The encoder-decoder part
of TORNADONet is built upon the base SalsaNet model [[10] which follows the standard encoder-decoder architecture
with a bottleneck compression rate of 16. As opposed to the original implementation of SalsaNet with series of ResNet
blocks [22]], we use the blocks introduced in [5] with dilations in the convolutions both on the decoder and encoder
parts of the network.

3.2 Loss function

One of the major contributions of this paper comes in the design of a new loss function using ideas introduced in [23]],
[18] and [24]). In this section, we first briefly review the common loss functions used in semantic segmentation tasks.
Then the proposed loss function is introduced.

The weighted cross entropy loss [23} 25]] can be written as,

Lwce(yﬂg) = - Z azp(yl) logp(yl)a a; = 1/\/@/7«) (2)
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where v; is the frequency of each class, and P(g;) and P(y;) are the corresponding predicted and ground truth
probability. Note that P(y;) acts as indicator for the correct label class.

This loss is suitable where a NN model deals with multiclass classification problem much like semantic segmentation.
Moreover, because it minimizes the distance between the two probability distributions, namely, predicted and actual,
WCE makes sure that the difference between P(¢;) and P(y;) is being minimized.

The Lovasz-Softmax loss [[18] can be expressed as:

Lis= 157 C| > J(e(e)) 3)

ceC

where J is the Lovész extension of IoU, e(c) is the vector of errors for class ¢, e(c) € [0, 1], and p is the number of
pixels considered. J denotes a piece-wise linear function, with a global minimum. It has been shown in various works
such [26 5], that Lovasz loss is an effective additional loss term that can be used for different machine learning tasks
such as object detection and segmentation. Hence, in the process of training the proposed model, Lovész loss will be
combined with other losses to achieve better overall accuracy of the trained model.

Total variation (TV) regularization has been used in the literature to address the denoising problem in images [21} 20].
This technique forms a significant preliminary step in many computer vision tasks, such as object detection and object
recognition (i.e. object localization and classification). A major concern in designing image denoising models is to
preserve important image features, such as edges, while removing noise from a digital image.

The same problem can be recognized in machine learning when one tries to identify pixel or point level classification
for images or point cloud data points. Although the task is not directly denoising, classifying a pixel in an image or a
data point in a point cloud relies heavily on the information provided by the neighboring pixels or data points. Hence,
designing a loss function based on TV regularization seems viable. In [24]], a total variation regularizer was introduced,
which regularizes the overall loss by the smoothness of the prediction over neighboring pixels or data points, resulting
in a better optimization for any machine learning task such as image or point cloud semantic segmentation.

Although the technique introduced in [24] and [27] is mathematically sound and effective, it is only a regularization
term. In this implementation, the TV regularizer is modified to a new loss function. Moreover, in combination with a
standard CNN for semantic segmentation its effectiveness is shown for the task of LIDAR semantic segmentation.

Given an image-like prediction and label for the ground truth, one can write the TV loss as follows:

Lo, 9) = > Yiai.0) — Yan.o)llpa + 1Ya).a5 = Y. loa
AL, Aj (4)

Vi, j, Ai,Aj € Z,p,qg > 1
where i, j are indexes for the pixel location, A and Aj are the step sizes in row and column directions, respectively.
The ground truth label is denoted by y and § is the prediction of the network. In this expression, the quantities Y( a4, ()

and Y(;) (a,) represent the difference in pixel values of the current pixel with its vertical and horizontal neighbours,
respectively. They are computed as,

Yiai,6) = Ya+ai),G) — Yiils Yiy,ai = Wa),G+a5) = ¥iil; Vi, j, Ai, Aj € Z (5)

For the task of LIDAR semantic segmentation on range-image, equationcan be simplified to the following for L ;
norm and one sided neighbours, i.e., Ai, Aj = 1,p,q = 1:

Lo (y, ) Z Y15 = ¥igl = |Gir1s — Gigll + [Wige1 = Yisl = |9i541 — il (6)

The total loss that is used to train the proposed model is a combination of Lovasz, WCE, and TV losses introduced
above. In order to balance the effect of each loss in the training, different weights are introduced for each loss term that
can be accomodated as hyperparameters. The final loss can be formulated as

Ltotal = ﬂlsLls + 6wceLwce + ﬁt’uLtv (7)

where 05, Bwee and By, are weights for Lovasz loss, WCE loss, and TV loss, respectively.
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3.3 Training Details

Before feeding the raw pointclouds P into the model, they are truncated to the range [-80, 80], [-80, 80], [-5,5] in the
x, y, and z directions respectively. This is followed by a series of augmentations. We adopt an augmentation scheme
similar to [Sl], where we do random point dropping, global pointcloud rotation and translation, and flipping along the
x-axis. We drop up to 20% of the points. For the rotations, we randomly sample angles in the range [—5, 5], [—5, 5],
and [—180, 180] degrees for x, y and z axes respectively. Similarly, for the translations, we sample in the range [—5, 5],
[-3,3], [-1,1] for z, y, and z directions. Each augmentation is independently applied with a probability of 0.5.

The model was trained using the Adam optimizer with a one-cycle learning rate scheduler for 50 epochs. The maximum
learning rate was set to 0.004, division factor of 10 and cosine annealing phase split of 0.3. A weight decay of 1074
was also used. The models were trained on 4 Tesla V100 with per GPU batch sizes of 4 for the low-res and 3 for the
high-res models respectively.

The voxel size of the PPL block was set to [0.3125, 0.3125, 10] leading to a voxel grid of [512 x 512]. We used C' = 64,
Cp =7, Cp = 192 for filter sizes, and the height and width of the projected image were set to H = 64 , W = 2048,
except for the high-res model where H = 128.

The weights for the losses were set to 5;s = 1.5, Byce = 1.0, and By, = 7.5.

In the post-processing stage, the KNN used a kernel size of 5 for the low-res model and kernel size of 11 for the hi-res
model, K = 5, 0 = 1, and a cutoff of 1m for all models.

4 Experimental Results

We use the SemanticKITTI dataset [[1] to evaluate the performance of our model and compare it with the state-of-the-art
methods. It provides over 43K frames with dense point-wise annotations for the entire KITTI Odometry Benchmark
across 22 sequences. The dataset consists of 22 distinct semantic classes and is divided into two sets. The first set,
referred to as the training and validation set, includes the sequences of (00 - 10), while the second set referred to as
the test set, includes the sequences of (11 - 21). The validation set is sequence 08 upon which the ablation studies are
based upon. The point-wise labels for the first set are publicly available, however, the labels for the second set are not
provided and are kept hidden for competition purposes.

In order to evaluate the results of the trained methods, the mIoU metric is used. mIoU is the most popular metric for
evaluating semantic point cloud segmentation. It can be formalized as,

n

TP,

ToU = — :
mae nZ;TR+FR+FN:

®)

where T'P. is the number of true positive points for class ¢, F' P, is the number of false positives, and F'NV,. is the number
of false negatives.

4.1 Quantitative Analysis

We compare the numerical experiments of our work with the existing methods in Table[I] It demonstrates the class
wise IoU, Frames Per Second (FPS), and mean IoU for different approaches. We categorized the methods into two
classes of point-wise and projection-based methods. In each category, the best IoU per class is selected. As shown, the
proposed method achieves the state-of-the-art result, outperforming all the previous methods in mIoU and almost all
the classes in its category. While the proposed method achieves high accuracy it is also faster than most point-based
methods, making it applicable to the real-time systems.

4.2 Qualitative Analysis

In order to better understand the results produced by the proposed method, TORNADO-Net, in this section, four
different samples from the SemanticKITTI [1]] validation set are provided in Figure d] The results are presented
along with ground truth labels for each case presenting the quality of the results in different situations where different
objects/scene are available. Case 1 shows how well TORNADO-Net can perform where there exist many dynamic
objects such as cars (parked or otherwise). Cases 2 and 3 depicts the successful prediction for road, vegetation, pole
and other structural objects. As it is shown, TORNADO-Net can handle most of the cases well and in many cases,
distinguishing between ground truth and prediction is hard.



TORNADO-Net: mulTiview tOtal vaRiatioN semAntic segmentation with Diamond inceptiOn module

3 z E
i) -2 2 3 = g

o] 3] = - 3] o o0

?I = =, F 2 £ 3 gﬂié?o‘%"vgx,g S =
Q < 52 o g g 5 £ 2 = E g = S 2 = & o £ &
5 s 8§ ¥ 2 2 £ 5 2 & 2 F 2 £ 2 5 2 2 B 5 EL
O |Method = U @M =2 £ O A& @ = £ & »n O @4 @ > B B A& B I
PointNet [2] 14.6 46.3 1.3 03 0.1 08 02 0.2 0.0 61.6 158 35.7 1.4 41.4 129 31.0 4.6 176 24 3.7 2
SPGraph [8] 20.0 68.3 0.9 45 09 08 1.0 60 0.0 495 1.7 242 0.3 68.2 22.5 59.2 27.2 17.0 18.3 10.5 0.2

o | PointNet++ [28] 20.1 53.7 1.9 02 0.9 02 09 1.0 0.0 720 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9 0.1
£ | SPLATNet[29] 22.8 66.6 0.0 0.0 0.0 00 0.0 00 00 704 08 41.5 0.0 68.7 27.8 72.3 35.9 358 13.8 0.0 1
£ | TangentConv [30] 35.9 86.8 1.3 127 11.6 10.2 17.1 20.2 0.5 82.9 152 61.7 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.2 0.3
E PointASNL [31] 46.8 87.9 0 25.1 39.0 29.2 34.2 57.6 0 874 24.3 743 1.8 83.1 43.9 84.1 52.2 70.6 57.8 36.9 —
RandLa-Net [15] 53.9 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7 22
S-BKI [32] 51.3 83.8 30.6 43.0 26.0 19.6 8.5 3.4 0.0 92.6 65.3 77.4 30.1 89.7 63.7 83.4 64.3 67.4 58.6 67.1 —
Kpconv [7] 53.8 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 (9.1 56.4 47.4 —
SqueezeSeg [3] 20.5 68.8 16.0 4.1 3.3 3.6 129 13.1 0.9 85.4 269 54.3 4.5 57.4 29.0 60.0 24.3 53.7 17.5 24.5 66
SqueezeSeg-CRF [3] 30.8 68.3 181 51 4.1 48 165 17.3 1.2 849 284 547 4.6 61.5 29.2 59.6 25.5 54.7 11.2 36.3 55
DeepTemporalSeg [6] 37.6 81.5 29.4 196 6.6 6.5 23.7 201 24 858 87 59.3 1.0 78.6 39.6 77.1 46.0 58.1 32.6 39.1 —

3 | SqueezeSegV2-CRF 9] 39.6 82.7 21.0 22.6 14.5 15.9 20.2 24.3 2.9 88.5 42.4 65.5 18.7 73.8 41.0 68.5 36.9 58.9 12.9 41.0 40
Z |SqueezeSegV?2 [9] 39.7 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 36.3 50
% | SalsaNet [10] 45.4 87.5 26.2 24.6 24.0 17.5 33.2 31.1 8.4 89.7 51.7 70.7 19.7 82.8 48.0 73.0 40.0 61.7 31.3 41.9 26
.S |RangeNet21 [12] 474 854 26.2 26.5 18.6 15.6 31.8 33.6 4.0 91.4 57.0 74.0 26.4 81.9 52.3 77.6 48.4 63.6 36.0 50.0 20
2 |RangeNet53 [12] 49.9 86.4 24.5 32.7 25.5 22.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2 13
‘2" |LatticeNet [11] 52.9 92,9 16.6 22.2 26.6 21.4 35.6 43.0 46.0 90.0 59.4 74.1 22.0 88.2 58.8 81.7 63.6 63.1 51.9 484 7
A | RangeNet53++KNN [12] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9 12
PolarNet [13] 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5 16
3D-MiniNet-KNN [14] 55.8 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 745 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6 28
SqueezeSegV3-53 [33] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9 6
SalsaNext [3] 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1 24
TORNADONet [Ours] 61.1 93.1 53.0 44.4 43.1 39.4 61.6 56.7 20.2 90.8 65.3 75.3 27.5 89.6 62.9 84.1 64.3 69.6 55.0 64.2 7
TORNADONet-HiRes [Ours] |63.1 94.2 55.7 48.1 40.0 38.2 63.6 60.1 34.9 89.7 66.3 74.5 28.7 91.3 65.6 85.6 67.0 71.5 58.0 65.9 4

Table 1: IoU results on the Semantic-Kitti dataset test split. FPS measurements were taken using a single GTX 2080Ti
GPU, or approximated if a runtime comparison was made on another GPU. Note that a FPS of 10 or more is considered
real-time, since the acquisition frequency of the Velodyne HDL-64E 64 beam LiDAR sensor is 10 Hz.

However, there are situations for which TORNADO-Net fails to predict the correct class in a scene. Case 4 presents
one of the more common failures seen in our analysis. In this case, the truck on the middle-right part of the scene is
predicted partially as a car and partially as a truck. This is mostly due to limited number of training samples and a
fair amount of shared features between different types of vehicles such as overall structure, intensity reflection, etc.
Nevertheless, the authors think these issues should be addressed even with limited labeled data and is part of the future
research on this topic. For more thorough analysis of the results a video of the predictions on sequence 8 will be
available publicly as supplementary material.

4.3 Ablations

As shown in Table[2] each of our contributions amounts to an improvement in the overall mloU. We receive the biggest
increases with the introduction of the TV Loss. Circular padding mostly had a positive effect (about 0.5%). The PPL
block is also a key component introducing a 1.5% jump at the cost of extra parameters and reduction in speed. Using a
hi-res version of the same model leads to a further improvement in the mIoU at the cost of speed. KNN post-processing
is also a key component leading to a 2-3% jump. The high-res model benefits from a higher KNN search value due to
the sparser projection of points onto the image.

5 Conclusion

Semantic segmentation has been a subject of interest in many fields, such as autonomous driving. While other deep
learning techniques are promising on the LiDAR semantic segmentation task, they are complex systems to implement.
However, other methods that are real-time systems lack accurate performance. The main objective of this work was
to propose a novel deep neural network, TORNADO-Net, for 3D LiDAR point cloud semantic segmentation. We
leveraged a multi-view (bird-eye and range) projection feature extraction with an encoder-decoder ResNet architecture
with a novel diamond context block. Moreover, TV loss was introduced along with Lovasz-Softmax, and WCE loss to
efficiently train the network. We evaluated the proposed method on the SemanticKITTI benchmark and were able to
achieve state-of-the-art results on its published leaderboard, outperforming all the previous methods.
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(c) Case 3 (d) Case 4

Figure 4: Ground truth (top) and prediction (bottom) on SemanticKITTT validation set projected onto the camera images.
[al @b [c] show successful semantic predictions, while dd| highlights the challenge of distinguishing between 2 similar
classes.

58.3 62.0 61.9
v’ 61.2 63.6 63.9
v’ v’ v’ 61.8 64.2 64.5

o R &
Architeeture | B 99T @V e g @B mloU - mloU - mioU
Baseline 550 581  58.1
v 551 583 584
v 551 583 584
v 573 609 608
v v 578 613 612
TORNADONet| s 25 65
v
v
v
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Table 2: Ablative Analysis evaluated on SemanticKITTI dataset validation (seq 08).
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