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Abstract— In the context of self-driving vehicles there is
strong competition between approaches based on visual localisa-
tion and Light Detection And Ranging (LiDAR). While LiDAR
provides important depth information, it is sparse in resolution
and expensive. On the other hand, cameras are low-cost and
recent developments in deep learning mean they can provide
high localisation performance. However, several fundamental
problems remain, particularly in the domain of uncertainty,
where learning based approaches can be notoriously over-
confident.

Markov, or grid-based, localisation was an early solution
to the localisation problem but fell out of favour due to its
computational complexity. Representing the likelihood field
as a grid (or volume) means there is a trade off between
accuracy and memory size. Furthermore, it is necessary to
perform expensive convolutions across the entire likelihood
volume. Despite the benefit of simultaneously maintaining a
likelihood for all possible locations, grid based approaches were
superseded by more efficient particle filters and Monte Carlo
sampling (MCL). However, MCL introduces its own problems
e.g. particle deprivation.

Recent advances in deep learning hardware allow large
likelihood volumes to be stored directly on the GPU, along
with the hardware necessary to efficiently perform GPU-bound
3D convolutions and this obviates many of the disadvantages
of grid based methods. In this work, we present a novel
CNN-based localisation approach that can leverage modern
deep learning hardware. By implementing a grid-based Markov
localisation approach directly on the GPU, we create a hybrid
Convolutional Neural Network (CNN) that can perform image-
based localisation and odometry-based likelihood propagation
within a single neural network. The resulting approach is
capable of outperforming direct pose regression methods as
well as state-of-the-art localisation systems.

I . I N T R O D U C T I O N

The reasoning that humans can localise using vision alone,
has been used extensively to motivate machine localisation
from visual sensors such as cameras. However, there has
always been a significant gap in the performance obtained
from vision compared to LiDAR and/or Global Positioning
System (GPS). Recent advances in vision use Deep-Learning
based localisation [13], [15] to bridge this gap by employing
CNNs to regress the camera pose directly from images. The
network learns an implicit mapping between scene appearance
and location. However, the mapping cannot generalise beyond
the training data and due to the one-to-one mapping, provides
uni-modal estimates in the pose-likelihood space [11].

Most traditional sampling-based localisation approaches,
such as Markov/Grid-based localisation or more modern
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Monte-Carlo Localisation (MCL), are based on the idea
that maintaining multiple hypothesis is an important part of
the localisation problem. This makes problems like global
localisation (kidnapped robot) more stable. It also allows
algorithms to deal with self-similarity in environments.

Grid based methods model the likelihood of every location
in the map as a set of discrete states. The resolution of the grid
therefore affects accuracy. This results in a trade-off between
accuracy and memory where larger grids are slower to process.
To solve this problem and scale to large spaces, MCL was
proposed. MCL samples the space using a Particle Filter
(PF). This makes the process computationally efficient, but
such approaches suffer from particle depletion, non-uniform
sampling, sample size tuning and poor parallelisation.

This work proposes a novel deep learning architecture that
maps a single image into a pose-likelihood. The network
incorporates a grid based markov localisation framework to
estimate a robot’s pose. To make this tractable and overcome
the limitations that gave rise to MCL, we introduce a first-of-
its-kind convolutional likelihood propagation approach that
models each odometry update as a single call to a gpu-bound
convolution operation as part of the neural network. This
hybrid CNN allows us to leverage the advances of deep-
learning hardware to make grid-based localisation tractable
by developing a single CNN architecture that can perform
pose regression, localisation and odometry based likelihood
propagation, in a single network, efficiently and with one
forward pass.

I I . R E L AT E D W O R K

One of the first implementations of a localisation1 algorithm
was Extended Kalman Filter (EKF) Localisation [23]. This
approach suffered from many limitations, but the most
fundamental of which is the fact that it assumes that the
localisation likelihood is a uni-modal distribution. This is
such a crucial limitation, that grid-based localisation [3],
[14], [20] algorithms quickly replaced it as the state-of-the-
art. However, the computational efficiency of grid-based
localisation algorithms limited their application. As a response
to this, MCL algorithms [7], [8] became the de-facto standard
for localisation. More recently, approaches in autonomous
agent localisation have leveraged advances in deep learning.
One of the most common family of approaches is PoseNet
[13] and its derivatives [1], [10], [16], [24]. Fundamentally,
these approaches rely on sensor/pose pairs to train a CNN that

1While Simultaneous Localisation and Mapping (SLAM) can be used
as a method to solve the localisation problem [4], [6], here we focus on
approaches that explicitly tackle localisation within a known-environment
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can regress poses given an input sensor measurement. Kendall
et al. [13] first introduced the method of regressing pose from
images by first encoding the images using an encoder network.
This maps the image into a lower-dimensional latent space
that can then be mapped to a 6-Degree of Freedom (DoF)
pose using a series of fully connected layers. In subsequent
work, Kendall [12] introduced a better geometric loss function
that allowed faster convergence and performance and in
[11] began to model the underlying Bayesian statistics of
the localisation problem. The nature of the networks mean
a uni-modal distribution for the pose estimate is provided
i.e. the network regresses a single location for any given
input. However, it is well understood that regardless of the
sensor used, there will often be areas of self-similarity in
the environment. In this work, we regress a pose-likelihood
heatmap which provides multi-modal distributions across pose.

Sattler et al. [19] showed the limitations of PoseNet-like
models. They demonstrated that models are only reliable
at approximating an agent’s pose at a series of base poses
and do not generalise to unseen poses between these bases.
They concluded that PoseNet-like models are only reliable
for coarse pose estimation and this calls into question the
reliability of learning-based methods that do not employ other
sources of information. For example, temporal accumulation
and odometry [1]. Yang et al. [25] combined a PoseNet-like
architecture with a depth estimation network in order to
estimate motion and uncertainty. However, they only model
uncertainty in their depth estimates.

We combine modern deep learning with tried and tested
approaches to motion propagation. Pöschmann et al. [18] and
Mendez et al. [15] both combined deep-learning segmentation
with MCL to provide a robust localisation approach. Similarly,
Neubert et al. [17] used depth regression with MCL and
Iterative Closest Point (ICP). Our pose-likelihood heatmaps
are a CNN-based sensor model combined with an odometry
source. However, we implement this as a single hybrid CNN
with all operations performed on a single GPU in one forward
pass making it extremely efficient.

Although superseded by MCL, Grid-based localisation has
some important advantages e.g. not suffering from particle
deprivation, robustness to “kidnapped robot”, lack of expensive
re-sampling operations and generally being well-suited to
massive parallelisation. However, grid-based localisation
approaches have traditionally struggled to maintain robust
estimates of pose due to the computational complexity of
estimating sensor and motion models for each cell in the
grid. Coarse quantisation is typically employed to make the
approach tractable. There are several methods to improve the
performance of grid-based localisation, such as [2]. However,
they rely on less frequent sensing and/or motion integration. We
overcome these limitations by combining the pose estimation
and motion model into a single neural network that can make
efficient use of the GPU.

I I I . M E T H O D O L O G Y

We propose to leverage the advances of deep learning to
make Markov Localisation not only tractable, but also gain

state-of-the-art performance. We do this by introducing a novel
hybrid CNN architecture that combines a feature encoder
layer, a image-to-heatmap-feature bridge, a heatmap decoder
layer with multi-level supervision and finally a convolutional
odometry layer. Fig. 1 shows an overview of the architecture
used for our hybrid CNN. Note, this entire pipeline resides on
the GPU as a single network allowing both image regression,
localisation and odometry updates to be done in a single
forward pass.

A. Markov Localisation

Markov localisation, shown by the gray dotted line on fig.
1, operates by taking the state-space of the autonomous agent,
given by pt ∈ Pt and discretising it into in a grid defined as

ẋkt ∈ Ẋt (1)

where each ẋkt is a cell in the grid Ẋt at time t. The grid
Ẋt spans all possible states in the state-space Pt. For a
ground-based vehicle, it is sufficient to represent the state
space of the vehicle as a 3-DoF vector ẋ = 〈x, y, θ〉. This
means that the discretised grid Ẋt is a 3 dimensional volume.
This volume consists of 〈x, y〉 planes and θ slices. More
explicitly, this volume consists of a tensor of size [Θ×X×Y ],
where each cell represents the likelihood that the robot’s
position lies within that cell’s bounds. Under a Markov
assumption, this likelihood can be defined as

Pr
(
ẋkt
∣∣Zt, Ut) =

Pr
(
zt
∣∣ ẋkt )Pr

(
ẋkt
∣∣ut, ẋkt−1)Pr

(
ẋkt−1

∣∣Zt−1, Ut−1) (2)

which implies that the pose likelihood is conditioned on the
sensor observations zt ∈ Zt and the odometry measurements
ut ∈ Ut and is fully described by the sensor model

Pr
(
zt
∣∣ ẋkt ) (3)

the motion model

Pr
(
ẋkt
∣∣ut, ẋkt−1) (4)

and the prior likelihood of the pose

Pr
(
ẋkt−1

∣∣Zt−1, Ut−1) (5)

which implies this measurement can be performed iteratively.
In this work, we use a heatmap regression sensor model (III-B)
to update the [X × Y ] volume, while using convolutional
odometry (III-C) for the orientation. We additionally perform
a likelihood-volume-to-pose extraction, which consists of
fitting a Gaussian distribution to the likelihood volume and
reporting the mean.

B. Deep Likelihood Heatmap Regressor

One of the main reasons grid-based localisation was widely
considered intractable was because the sensor model (equation
3) has to be estimated for every cell in the grid. Estimating
this likelihood for sensors such as LiDAR, SoNAR or even
RGB-D cameras can involve expensive ray-casting for each
beam. This presents a practical issue when there are large areas
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Fig. 1: Deep Markov Localisation: System Diagram.

of the grid that we are almost certain not to be the correct
location. Instead, we propose to use a Fully Convolutional
Network (FCN) trained for pose regression to replace the
sensor model.

Using an FCN has several important advantages. Firstly, it
allows a sensor model to be trained for any arbitrary sensor
without the need for explicit mathematical derivation (although
requiring training data). Secondly, the likelihood for every cell
can be estimated simultaneously.

1) Feature Encoder Layer: To regress a likelihood for all
cells, we use an encoder-decoder architecture. The architecture
is shown in the blue dotted line on fig. 1. We use a ResNet
encoder arm [9] similar to PoseNet [11] but rather than a fully
connected layer to regress pose, we use the decoder arm of
the network (discussed below) to force the network to learn a
birds-eye-view likelihood map. We modify the ResNet by
removing the fully connected layers and replace them with a
convolutional image-to-heatmap bridge to the decoder. The
whole network is trained end-to-end.

2) Heatmap Decoder Layer: The decoder is composed of a
series of upsample blocks, which scale the image up by a
factor of two. Each upsample block contains a deconvolution
followed by two convolution blocks. The deconvolution
is performed with a [2 × 2] kernel and a stride of 2. The
convolution blocks consist of a [3× 3] convolution with a
stride of 1 followed by batch normalisation and ReLU. The
output block additionally contains a final convolution layer
with [1 × 1] kernel and a stride of 1 ensuring the desired
number of output channels is achieved. The result is a map
of size [N ×M ×M ] where M depends on the number of
upsample blocks and N is the number of channels.

Intuitively, we could map this [N × M × M ] output
volume directly to the grid we are localising in. In this mode,
the volume would represent [Θ×X × Y ] in each channel
respectively. This ties the spatial resolution to the size of each
channel, and the angular resolution to the number of channels.
Traditional Markov localisation estimates the sensor model this
way because the ray-casting operations need to be performed
differently for each θ bin. However, this is not an optimal use
of the network as it can directly estimate the probability of an
ẋkt cell without reasoning about the orientation. Furthermore,

using the output volume this way would force the network to
grow dramatically as the angular resolution increases. This not
only increases the number of parameters, but actually defines
a very complicated regression problem. Instead, we use each
output channel as a “likelihood band” which allows us to treat
the heatmap regression as a classification problem.

The likelihood volume represents Pr
(
zt
∣∣ ẋkt ) discretised

into [N ×M ×M ] bins where N represents the number
of likelihood bands, M denotes the x and y resolution and
k spans each of the pixels on the XY plane across all
orientations. More explicitly,

Pr
(
zt
∣∣ ẋkt ) ∝ Pr

(
nt
∣∣ ẋkt ) (6)

where nt ∈ N is the likelihood band of ẋkt at time t. This
discretisation of the probability space allows us to treat
likelihood regression as a classification problem, where we
classify each ẋkt cell into a pose likelihood bin.

3) Multi-Scale Supervision: Using the regression-to-
classification mapping defined in equation 6, we can define a
cross entropy loss function (after softmax)

Lc(nt, ẋkt ) = −Pr
(
nt
∣∣ ẋkt ) · log (R(I)x,y) , (7)

where R is our heatmap regressor network, I is the input
image and x, y denote the pixel location in the resulting
heatmap. We additionally provide supervision in the form of
an MSE loss, defined as

Lm =
∣∣∣∣∣∣Pr

(
nt
∣∣ ẋkt )−R(I)x,y

∣∣∣∣∣∣
L2

. (8)

The resulting loss function is defined as a weighted combination
of these losses,

L = Lc + ω Lm. (9)

where ω is a hyperparameter. Empirically, we have found that
ω = 0.1 ensures the network can produce accurate heatmaps
with a smooth distribution around the correct cell.

To ensure a more robust loss, we perform this loss function
over several different scales. Fig. 2 shows the proposed
architecture, which consists of 4 encoder residual blocks
(blue), 4 base heatmap decoder blocks (orange), followed by
4 output decoder blocks (orange + yellow). Note that the



Fig. 2: Deep Markov Localisation: System Diagram.

yellow output layers do not feed into the upscaled orange
blocks, but rather directly produce an output. Each of these
output heatmaps can be directly supervised by a ground-truth
heatmap. This multi-level supervision allows the network to
learn a coarse-to-fine heatmap regression.

4) Sensor Model: In order to use this likelihood volume as
a sensor model, it is necessary to map it back to our Markov
localisation grid. To do so, we run a softmax operation along
the probability bins, which ensures the sum of all likelihoods
for a given ẋkt cell sum to one. We then take the top n < N
slices and sum them to obtain a single pose likelihood for the
XY plane which is then repeated for the θ bins, which we
discuss in the following section.

C. Convolutional Odometry

The sensor model introduced in the previous section does
not measure the likelihood of the agent’s orientation θ. Instead,
we use a novel convolution-based odometry layer as a motion
model which estimates θ. Our model is efficient, so there is no
need to artificially limit the update rate other than to guarantee
at least one cell of displacement. This means that, assuming
a non-holonomic agent, the motion model can propagate pose
likelihoods in a manner that also selects the correct orientation.

Markov localisation relies on a motion model (equation
4) to propagate likelihoods into the correct areas of the
grid. Normally, this is implemented as a shift according
to the odometry measurement, followed by diffusion using
convolution with a separable Gaussian. The kernel of this
Gaussian is computed based on the odometry’s uncertainty.
For a 3-DoF likelihood grid this is a relatively expensive
operation as it would require a set of 3 shifts, and a 3D
convolution which would be prohibitively expensive on a
CPU. However, we formulate the odometry kernel as a deep
learning layer that enables us to perform an efficient operation
on the GPU by mapping the 3 shifts and 3 convolutions
into a singe 2D convolution kernel. By building our sensor
and motion model as custom layers on a CNN, the entire
framework can operate in a single forward pass on one GPU
incredibly quickly. In order to estimate our odometry kernel
for 2D convolution, we first look at how the odometry maps
into a simple 3D convolution kernel. The odometry data from
any non-holonomic 3-DoF vehicle can be decomposed as(

δθ1t , δxt, δθ
2
t

)
= odometry model (ut) (10)

where δθ1t is a rotation followed by a forward translation δxt
and a final rotation δθ2t [22]. Gaussian noise can be applied

Fig. 3: Visualisation of an odometry kernel with pure forward
movement. Each column represents a θc channel, while each
row represents a different odometry measurement for the
angle of the vehicle. Notice how each θc channel represents
the forward motion differently. Similarly, as the rows go down
the likelihoods shift between the different theta channels.

to each component independently, producing a new set of
odometry estimates δ̂θ1t , δ̂xt, δ̂θ

2
t .

In order to map this into a 3D kernel, we take this
representation and map it into a vector as

st =

(
sx
sy

)
=

(
δ̂xt ∗ cos( δ̂θ1t )
δ̂xt ∗ sin( δ̂θ1t )

)
. (11)

However, this odometry is not directly applicable to every
θc ∈ Θ channel in our likelihood volume. In order to apply the
odometry, we align it such that “forward” motion represents
the orientation of the θc bin. This is done using a simple 2D
rotation matrix defined as

Rc =

[
cos(θc) − sin(θc)
sin(θc) cos(θc)

]
(12)

for every θc in the likelihood volume. Each of these matrices
can then be multiplied with the linear component of the
odometry vector

St =

{(
Rc st

δθ1t + δθ2t

)
∀θc ∈ Θ

}
(13)

in order to obtain a set of rotated odometries for each channel.
The set of rotated odometries are directly mapped into a

kernel for convolution. However, it is first necessary map
these odometries to the resolution of the likelihood grid,
which can be done as S′t = St � λ where � is element wise
multiplication and λ =

〈
1
rx
, 1
ry
, 1
rθ

〉
is the resolution of the

grid which has been tiled Θ times.
We are not guaranteed that the odometry will be larger

than a single cell in the likelihood grid. For this reason, it is
necessary to accumulate odometry measurements over time as

Tt =

t∑
i

S′i − T′t−1 (14)

where T′t = Tt − bTtc and bTtc is the odometry applied to
the likelihood volume Ẋt.

Applying bTtc to Ẋt can be done by converting the rotated
odometries into a series of 3D kernels for 2D convolution.
The first step is to map each vector τ t ∈ bTtc into a 3D



Scene Name PoseNet
[13]

PoseNet
Bayesian

[13]

PoseNet
Spatial LSTM

[24]

PoseNet
Learn β

[12]

PoseNet
Geometric

[12]

Heatmap Regressor
(Us)

GreatCourt - - - 7.00 6.83 3.74
KingsCollege 1.66 1.74 0.99 0.99 0.88 0.95
OldHospital 2.62 2.57 1.51 2.17 3.20 2.13
ShopFacade 1.41 1.25 1.18 1.05 0.88 0.67
StMarysChurch 2.45 2.11 1.52 1.49 1.57 1.02
Street - - - 20.7 20.3 10.21

TABLE I: Median error (m) for Cambridge Landmarks [13]. PoseNet results are from [12], where ‘-’ are not reported by authors.

kernel. To do this we take every element of τ t and convert it
into a discrete 1D Gaussian kernel of size 〈kθ, kx, ky〉. These
kernels are then combined linearly to produce a 3D kernel
Kc of size 〈Kθ,Kx,Ky〉. This allows us to perform a 2D
convolution on a subset of the likelihood grid for each 3D
kernel. This subset consists of the channel the kernel was
estimated for as well as the Kθ channels around it. In order
to perform the operation as a single pass of a 2D convolution
on GPU hardware, we stack these kernels into a single kernel.
Each 3D kernel is offset so that it is centered on the θc
channel it corresponds to, giving us a kernel with θc Gaussian
distributions. Fig. 3 shows a visualisation of the odometry
kernel when Θ = 4 for a simple forward motion. Each column
represents a θc channel (along with padding), while each row
represents the rotated odometry for each angle bin. Notice
how each θc channel represents the forward motion differently.
Similarly, as the rows go down, the likelihoods shift between
the different theta channels and respect the circular nature of
θ by looping from the last bin to the first.

While it may seem like these are an expensive set of
convolutions, it is important to remember that these are all
performed directly on the GPU. More importantly, our Markov
localisation approach is entirely GPU bound. Both our sensor
and motion model are computed directly on the GPU with
no need to ever retrieving the cost volume. This makes our
approach both quick and efficient. In the following section,
we will show that not only is our approach fast but it is also
capable of producing state-of-the-art results for localisation.

I V. R E S U LT S

Firstly, we validate the performance of our heatmap
regressor by evaluating its performance on the well-established
Cambridge Landmarks dataset [13]. Secondly, we evaluate on
a vehicle navigating a multi-storey carpark.

All the experiments in this section are trained using the
same standard architecture for the heatmap regression network:
a ResNet50 as the encoder, with 8 decoder blocks to result in
a regressed heatmap of [256× 256] supervised at the last 4
blocks (M = [32, 64, 128, 256]). The learning rate was set to
0.0001 with a variable step learning rate and γ = 0.5.

A. Cambridge Landmarks

The dataset consists of 6 sequences of images captured at
different landmarks across the city of Cambridge (UK) using a
hand-held camera. Each sequence consists of anywhere between
300 and 6000 images which are then split between train and
test sets. Ground-truth poses are estimated using Structure
from Motion (SfM) [5] software. The sensor experiences

6-DoF motion during capture. Furthermore the SfM software
does not guarantee that there is a well-defined ground plane.
This makes the dataset inherently difficult for our approach, as
we only localise in a 3-DoF space. Since most of the motion
of the sensor is planar, we overcome this limitation by using
an Single Value Decomposition (SVD) to regress a dominant
plane and therefore the height of the sensor.

Table I shows a comparison against several pose-regression
networks. We show the median pose error on all 3 spatial
axis, as reported in [12]. It is important to note that this
is an unfavourable scenario for our 3-DoF localisation, as
our network does not directly regress the height of the
sensor. We also do not estimate the orientation of the sensor,
as the heatmap regressor should be able to cope with the
appearance variation. Regardless, our heatmap regressor is
able to outperform several state-of-the-art regression methods
in 4 out of 6 scenarios. We believe there are several reasons
for this. Firstly, a heatmap-based loss provides a more uniform
supervision signal than a pose-based loss, as the heatmaps do
not scale with the magnitude of the pose space. Secondly,
and most importantly, while we do not strictly enforce multi-
modal distributions with our losses, the network is capable of
modelling them. This allows the network to predict uncertain
poses without incurring a penalty. In the KingsCollege scenario,
we are only outperformed by PoseNet Geometric [12], which
makes use of an additional source of supervision: the 3D
reconstruction points of the ground truth. For the OldHospital
scenario, we are outperformed by Walch et al. [24] most
likely because the self-repeating nature of the architecture is
well-suited to the spatial LSTMs they employ.

B. Multi-Storey Carpark

One of the main advantages of our approach is the ability
to generalise to self-similar environments. Car-parks are
interesting environments for localisation, as they tend to be
self-similar within each floor as well as across multiple floors.
By their nature, accurate localisation within a multi-storey
car-park requires a multi-modal distribution.

1) Data Capture: This dataset consists of a vehicle driving
around a multi-storey car-park. The vehicle is equipped with
3 front-facing cameras and a 16-beam LiDAR. It traversed
12 floors, travelling a total of over 6, 500m and an area of
over 7000m2. The vehicle performed parking manoeuvres
such as 3 point turns, bay parking, interacting with traffic,
etc. The LiDAR is used to create ground-truth localisaton
data. The vehicle was driven on two separate days, with two
trajectories on the first day and one on the second. Of the
three trajectories, trajectory 1 has 3207 images, 2 has 2860



Trajectory 2 Trajectory 3
Method RMSE (m) Mean (m) Median (m) Std. Dev. (m) RMSE (m) Mean (m) Median (m) Std. Dev. (m)
PoseNet [12] 9.31 5.26 2.66 7.68 14.09 6.75 3.21 12.37
PoseLSTM [24] 9.05 5.04 2.61 7.52 12.82 6.55 2.74 11.02
Raw Odometry 12.20 9.23 5.54 7.97 24.86 23.77 24.43 7.25
Ours (H) 9.74 4.21 1.36 8.78 16.65 7.14 1.80 15.04
Ours (H+O) 6.48 3.81 2.45 5.24 6.99 3.88 2.56 5.82

TABLE II: Average Trajectory Error: PoseNet, PoseLSTM, Ours (Odometry), Ours (Heatmap), Ours (Heatmap and Odometry).
Top results are Bold, underline second.

Input Ground Truth Regressed

Fig. 4: Sample Images from the Multi-Storey Car Park dataset,
along with the ground truth heatmap and output regression.

and 3 has 3922. We use trajectory 1 as training data, and
reserve trajectories 2 and 3 for testing. The left column of
fig. 4 shows sample images from the captured dataset. This
dataset will be released upon publication of this work.

2) Heatmap Regression Training: To train our heatmap
regressor we use the pose of the LiDAR along with a calibrated
transformation between the sensors. The estimated pose is
then projected to the ground plane, where the heatmaps can
be estimated. The right column of Fig. 4 shows two example
heatmaps used in training, as well as the regressed heatmaps.

The convolutional odometry consists of a [72× 256× 256]
likelihood volume, with a kernel of size [15× 21× 21]. Using
this configuration on an AMD Threadripper 3960X with an
Nvidia GeForce GTX 1080 Ti, the heatmap regressor takes
10.701ms with a standard deviation of 0.0377ms and the
convolutional odometry layer takes 0.253ms with a standard
deviation of 0.00538ms. In order to simulate odometry, we
use the ground-truth poses acquired from the LiDAR. For
each successive pose, we add noise as described in [22]
(forcing the trajectory to drift) and estimate a set of odometry
measurements from the resulting noisy trajectory.

3) Quantitative Results: We evaluate the performance of
our approach against PoseNet [12] and PoseLSTM [24], as
both represent the state-of-the-art for camera pose regression.
We compare using the Absolute Trajectory Error (ATE) as
established by Sturm et al. [21], which accounts for orientation
errors as part of the overall trajectory. In Table II it can be
seen that our approach outperforms the state-of-the-art by
a significant margin. This is because our approach has the
ability to maintain multiple hypothesis of the pose as the
vehicle moves through the car-park. By contrast, PoseNet
and PoseLSTM are forced to relocalise the camera at every
iteration. This results in paths that are unreliable. Since our
approach keeps a likelihood field, failures in the heatmap
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Fig. 5: Trajectories of Ground Truth (GT), PoseNet, PoseLSTM,
Heatmap Regressor (H), Raw Odometry (O) and the Combined
Heatmap Regressor & Convolutional Odometry (H&O).
Note how PoseNet and PoseLSTM do not provide smooth
trajectories.

regression do not directly result in jumps in the pose estimate,
therefore smoothing our trajectory and reducing the ATE
error. We additionally show the results of the raw odometry
measurements and using our heatmap regressor only (with no
motion model). As it can be seen, the odometry measurements
are extremely noisy, resulting in a high ATE. The Heatmap
Regressor alone outperforms competing approaches but despite
the noisy odometry, its addition increase performance further.

4) Qualitative Results: In our experience, the numbers
presented in tables I and II do not adequately convey the
difference in the smoothness of the trajectories. Fig. 5 shows
the resulting trajectories from PoseNet, PoseLSTM and our
approach, as well as a comparison against the raw odometry
and heatmap regressor alone. For clarity, this is done on the
first three floors of the multi-storey carpark. As it can be seen,
our approach is significantly smoother than both PoseNet and
PoseLSTM. It can also be seen that our combined approach is
smoother than the independent heatmap regressor, as well as
more accurate than the raw odometry measurements. This is
because our likelihood heatmap, convolutional odometry and
likelihood grid work together to ensure that poor estimates do
not cause jumps in the pose estimate. Additionally, the ability
to represent a multi-modal distribution allows us to make quick
corrections when the pose has been incorrectly estimated.

V. C O N C L U S I O N

In summary, we have presented an approach that leverages
advances in Deep-learning hardware to perform deep heatmap
regression and convolutional odometry, in real time. Our
work operates on commodity GPU hardware and leverages
some of the important advances in tensor-based processing by
performing all operations directly on the GPU, without the need
to transfer data back to the CPU. Importantly, our approach
capitalises on the important probabilistic properties of Markov
localisation by exploiting modern parallel GPU technology.
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