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Abstract— Most recent works on multi-target tracking with
multiple cameras focus on centralized systems. In contrast,
this paper presents a multi-target tracking approach imple-
mented in a distributed camera network. The advantages of
distributed systems lie in lighter communication management,
greater robustness to failures and local decision making. On
the other hand, data association and information fusion are
more challenging than in a centralized setup, mostly due to
the lack of global and complete information. The proposed
algorithm boosts the benefits of the Distributed-Consensus
Kalman Filter with the support of a re-identification network
and a distributed tracker manager module to facilitate consis-
tent information. These techniques complement each other and
facilitate the cross-camera data association in a simple and
effective manner. We evaluate the whole system with known
public data sets under different conditions demonstrating the
advantages of combining all the modules. In addition, we
compare our algorithm to some existing centralized tracking
methods, outperforming their behavior in terms of accuracy
and bandwidth usage.

I. INTRODUCTION

Multi-target tracking systems have a broad range of appli-
cations, such as security surveillance or crowd behavior anal-
ysis [1], [2] and there is an increasing effort in the research
community to deploy them into real world scenarios [3], [4].
Approaching these problems with multi-camera setups brings
additional features and benefits with respect to single camera
systems, such as more complete information for large spaces
or crowded scenes. Besides, multi-camera systems naturally
lead to the development of distributed solutions, which are
lighter in communication demands, more robust to failures
and faster in processing time than centralized ones.

However, the implementation of a multi-target multi-
camera tracking in a distributed setup has several challenges.
First, the construction of robust and efficient distributed
systems in terms of bandwidth usage, consensus between
nodes and selection of accurate information to share. Second,
in the presence of multiple targets, each camera must solve
independently a data association problem between measure-
ments and trackers. In contrast with centralized systems,
where the central node unifies the high level information
returning it labeled to the nodes, in a distributed setup
the data association across cameras can only be performed
locally and with partial information.

All authors are with the RoPeRt group, at DIIS - I3A,
Universidad de Zaragoza, Spain. {scasao, abeln, acm,
emonti}@unizar.es

This work has been supported by the ONR Global grant N62909-19-
1-2027 and the Spanish projects PGC2018-098817-A-I00 and PGC2018-
098719-B-I00 and RTC-2017-6421-7 (MCIU/AEI/FEDER, UE) and DGA
T04-FSE.

Fig. 1. Distributed multi-target tracking scenario. The proposed system
maintains in each node the 3D tracking information of all targets (seen
or not by the current camera) thanks to the information shared among
connected cameras. Each camera solves an independent data association
problem. Green boxes correspond to detections while blue and red ones
refer to the two existing trackers in the scene, ID1 and ID2 respectively
(Best viewed in color).

This work tackles the challenges discussed above by ex-
ploiting synergies between complementary modules typically
studied independently in prior work. We present an approach
for multi-target tracking in a distributed camera network
boosting the implementation of a Distributed Kalman Filter
(DKF), a local data association process that uses a state
of the art re-identification network and a novel distributed
method for high level information management. The overall
idea is illustrated in Figure 1. The DKF exploits the local
data association to decide which information needs to be
merged into the distributed consensus update. Similarly, the
data association is enhanced with the uncertainty estimations
given by the DKF. Finally, the tracker manager makes sure of
correct association during the initialization and synchronized
deletion of the lost trackers. The main trade-off to consider
in our system is bandwidth usage vs accuracy, which we also
handle with a careful design.

Specifically, our main contributions are:
• A DKF implementation augmented with fully au-

tomatic data association based on geometric cues and
appearance information. Differently from existing integrated
approaches, we run a single communication message per
estimation cycle, lightening the process and increasing ap-
plicability to real world setups.
• A novel distributed strategy to manage the trackers’

information. In contrast with centralized systems, where
the central node unifies the information, we propose a
distributed data association across cameras that manages the
partial information in local nodes. To minimize the excess of
bandwidth usage caused by the exchange of appearance in-
formation, our algorithm communicates appearance features
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only once per tracker.
The proposed approach is evaluated in public benchmarks,

demonstrating the benefits with respect to a naive DKF im-
plementation, as well as established centralized algorithms.
Experimentation detailed in Section IV analyzes different rel-
evant aspects including the effect of connectivity restrictions,
the influence of appearance in the filter and the effects of our
strategy to unify high level information.

II. STATE OF THE ART

This section summarizes related work on core multi-target
multi-camera tracking aspects.

A. Multi-view multi-target tracking in centralized systems

Multi-target multi-camera tracking in centralized systems
sends the information from each camera to a common loca-
tion where all the data is processed together [5]. These imple-
mentations, which stand out for their accuracy, are typically
used in safety applications [6], [7]. Obtaining the complete
trajectories of several targets is normally formulated as an
optimization problem in a graph. The nodes represent short
trajectories, known as tracklets, obtained by the association
of detected bounding boxes. There are different variations
to compute the weights of the graph. The combination of
the similarity measure given by a triplet loss with a linear
motion model is proposed in [8]. The proposal in [9] is the
association of tracklets across views based on correlations
in motion, appearance and smoothness of the resulting 3D
trajectory. A method is presented in [10] to select a subset
of tracklets from the graph and associate them based on
geometry and motion cues. Other works such as [11] model
the tracklet association problem as a hierarchical structure
optimization. The main disadvantages of centralized methods
are the excessive bandwidth usage, required to send all
the information to the central computer, and the lack of
robustness with respect to a single point of failure.

B. Multi-view multi-target tracking in distributed systems

Distributed implementations typically focus on improving
the robustness and the efficiency through the study of the
bandwidth, the consensus between nodes and the accuracy
of the information shared. Several algorithms are proposed
in [12] to achieve a consensus in a distributed heterogeneous
sensor network performing only one communication per esti-
mation cycle. One of those algorithms is implemented in [13]
for a Pan-Tilt-Zoom (PTZ) camera network to track people
of interest, although the data association problem is not
addressed there. The work in [14] selects the Information-
weighted Consensus Filter (ICF) method [15] as consensus
algorithm and fills the gap of data association with the
Joint Probabilistic Data Association (JPDAF) algorithm [16],
which uses the previous target states to relate measurements
and trackers. A drawback of the ICF method is the use
of several communication messages per camera and es-
timation cycle, being less efficient and partially breaking
the appealing properties of pure distributed systems. Using
the same consensus algorithm, [17] proposes a tracking

approach in a distributed camera network. They address
data association within each camera through a global metric,
merging appearance and geometry cues, and across-view data
association through the euclidean distance between the 3D
position of the targets. The improvement of the Consensus
Kalman Filter is discussed in [18] posed as a Maximum
A Posteriori (MAP) optimization problem. The algorithm
consists of closed-form algebraic iterations that guarantee
the convergence to the centralized MAP over a designated
sliding time window. They assume that each target in the
environment has a unique identifier known to all sensors.
Our multi-target multi-camera tracking approach is based on
[13], and fills the gap of automatic data association between
measurements and trackers with a global metric based on
geometry and appearance. Unlike the consensus algorithm
in [17], the algorithm implemented in this work only sends
one communication message per estimation cycle, lightening
the communication process. Besides, we include a specific
strategy to manage the high level data across cameras to
improve the global data association and the consistency of
the trackers in the network.

C. Data association and re-identification

A wide variety of techniques have been proposed to
tackle the problem of data association. One of the most
popular techniques is the use of motion models to compute
similarity based on geometric constraints, and the use of
features such as histograms for appearance criteria [19], [20].
Commonly, a global similarity function is defined based on
both metrics. Other works extract body poses and relate them
by the nearest observation statistically consistent with the
distribution of positions [21]. Taking into account the factors
included in the data association problem, previous work
defines several costs related to geometry, shape, appearance,
pose and coordinate transformation to obtain a complete
similarity function [22]. The work proposed in [23] uses
inertial sensing and RGB-D cameras to capture the skeleton
data and perform a short-term pairing. A long-term pairing
process adds the color histogram to the similarity function in
order to increase robustness. The data association process in
our approach is similar to [19], but our implementation takes
advantage of re-identification strategies supported by recent
deep learning techniques. A generalized strategy is based on
comparing feature vectors, obtained from a network output,
to measure the similarity between a query image and a global
gallery (i.e., model) of individuals [24], [25], [26]. In order to
be efficient and effective, to extract these appearance feature
vectors we use the architecture proposed in [27], that mixes
global and local features in a lightweight network, changing
traditional convolution operations by depth-wise operations.

III. DISTRIBUTED TRACKING APPROACH

Figure 2 summarizes the proposed architecture. First, im-
age target positions are obtained with a people detector [28]
in each camera. Then, the association between the current
detections and existing trackers is performed locally (LDA).
This association is based on a global score computed from



Fig. 2. Overall architecture of our distributed multi-target multi-camera
tracking system.

the geometric cues, provided by the local tracking filter,
and the appearance similarity with respect to the appearance
model of the target stored in the local gallery. To continue
the cycle, each camera exchanges a single communication
message with the neighboring cameras, the trackers get into
the DKF where the new state of the target is updated and
sent to the Distributed Target Manager (DTM) block. Finally,
the DTM manages the initialization of new trackers and the
deletion of unobserved ones uniformly over the network.

A. Distributed Kalman Filter

For simplicity in the exposition, throughout
this sub-section we will consider the distributed
tracking of a single target. The target model,
x(k) = (x(k), y(k), w(k), h(k), ẋ(k), ẏ(k)), is represented
as a 3D cylinder moving on a ground plane, where
(x(k), y(k)) are the ground plane coordinates of the
cylinder center, (w(k), h(k)) are the width and height of the
cylinder and (ẋ(k), ẏ(k)) are the velocity of the target in
the x and y directions. The filter models the motion of the
target considering a discrete-time linear dynamical system,

x(k + 1) = Ax(k) + w(k), z(k) = Hx(k) + v(k), (1)

where w(k) and v(k) are zero mean Gaussian noise (w(k) ∼
N (0,Q(k)),v(k) ∼ N (0,R(k))), being Q(k) and R(k)
the model and measurement covariance matrices respectively.
The change of the target model in each step depends directly
on the transition matrix A, which considers a constant
velocity model on the target position and no dynamics on
the rest of the state. The noisy measurement z(k) is the
3D cylinder obtained as the projection of the bounding box
given by the detector, i.e., z(k) = (x(k), y(k), w(k), h(k))
defined with the output matrix H plus the noise. To obtain
this projection we assume known homographies for each
camera to map the image plane to ground plane coordinates.

The independent execution of the filter in each camera,
Ci, produces a local estimation of the target, x̂i(k), pos-
sibly different to other cameras’ estimation. A Distributed
Kalman-Consensus filter is used to mitigate these differences.

The consensus algorithm works with known data association
between the local measurement, zi(k), and target prediction
for all the cameras. From this association, each camera
computes its sensor data information, ui(k), and its inverse-
covariance matrix, Ui(k), defined as the vector and matrix
information, obtained as

ui(k) = HTRi
−1(k)zi(k), Ui(k) = HTRi

−1(k)H. (2)

The values in (2) are exchanged with neighboring cameras
in the network, Cj ∈ Cni , together with the prediction of the
target state, x̄i(k), obtained as x̄i(k) = Ax̂i(k−1). Assum-
ing the measurement noises of the sensors are uncorrelated,
the representation in information form allows the cameras
to combine all the received measurements with the acquired
one by simply adding them,

yi(k) =
∑

Cj∈Cn
i

uj(k), Si(k) =
∑

Cj∈Cn
i

Uj(k). (3)

The state is then updated by the correction in the prediction
of the target state with the merged information and the
predictions from the neighboring cameras,

x̂i(k) = x̄i(k) + Mi(k) [yi(k)− Si(k)x̄i(k)]

+ γMi(k)
∑

Cj∈Cn
i

(x̄j(k)− x̄i(k)), (4)

where Mi(k) = (Pi(k)
−1+Si(k))

−1 is the Kalman Gain in
the information form, Pi(k) is the covariance of the target
state and γ = 1/‖Mi(k)+1‖. Finally, the covariance matrix
is updated according to Pi(k + 1) = AMi(k)A

T + Qi(k).
Although the standard implementation of the DKF as-

sumes synchronization of the cameras, the consensus-nature
of the algorithm makes it amenable to a fully asynchronous,
event-triggered implementation such as [29].

B. Local Data Association

In our method, the local data association required for a
correct update of the filter is made merging two constraints
based on geometry and appearance. Let us consider now that
in a particular estimation cycle, the set of measurements Z =
{zj}1 is provided by the detector to the LDA module. Since
the DKF updates the uncertainty of the tracker state, we take
advantage of this information to calculate the Mahalanobis
distance between the x, y position on the ground of each
measurement, zj , and the predicted position, x̄i,

d(zj , x̄i) =
√
(zj −Hx̄i)V−1(zj −Hx̄i)T , (5)

being V = Pxy + Rxy , with Pxy and Rxy the sub-
matrices of Pi and Rj that encode the position covariance
of the estimation and the measurement respectively. Then,
the similarity value in geometry is computed as

sd(zj , x̄i) =

{
1
α d(zj , x̄i) if d(zj , x̄i) < τ

1 otherwise, (6)

1We use now the index j to denote different measurements observed in
a single camera instead of neighbors in the camera network.



where α is a configuration parameter and τ a threshold
applied to ignore highly unlikely candidates.

The candidates selected by the geometry constraint are
then evaluated in appearance. Instead of using traditional
hand-crafted descriptors to measure the appearance sim-
ilarity, we employ a network designed for people re-
identification [27], whose weights have been pre-trained
with the MSMT17 Benchmark [30]. Inspired by the re-
identification task evaluation methodology, we associate with
each tracker a local gallery of limited size that represents the
target appearance model. The construction of this gallery is
currently done by simply storing locally observed patches
for each target and updating them over time, saving a new
patch every N frames, and discarding the oldest one. The
appearance similarity between a query and the tracker gallery
is obtained with the minimum cosine distance,

sa(aj) = min
ai∈Ai

(
1−

aTj ai

‖aj‖‖ai‖

)
, (7)

where aj , the query, is the appearance feature vector asso-
ciated to detection zj , and Ai = {ai} is the set of feature
vectors of the target’s gallery used by camera Ci. The final
decision in the data association is based on selecting the
minimum value of the product of both scores, sa and sd.

C. Distributed Tracker Manager

Another important issue to address in a practical imple-
mentation of the DKF is the management of the trackers
through the full distributed system. This requires a correct
data association of trackers across different cameras to guar-
antee that the information mixed in (3) and (4) corresponds
to the same target. Similarly, the cameras need to agree upon
the time in which a particular tracker is no longer relevant
and should be dropped. We propose how to address these
problems in a distributed fashion.

Distributed Global Data Association: Trackers are
identified locally by a two-dimensional unique identifier, IDi,
described by the camera id in the network, i, and a local
counter, n. New trackers can either be initialized because of
a new local observation or because of a transmission from
neighboring cameras. Local initialization is done whenever
a new target generates two observations in its local gallery.
This helps filtering spurious measurements from the detector,
giving enough time for a new tracker to ensure that it
corresponds to a valid target. Once this happens, we attach to
the DKF data the appearance model, AIDi

, in the message
sent to neighbors. It is important to highlight that this is the
only moment when appearance is transmitted through the
network in our algorithm, consisting in the two descriptors
available in the local gallery at that time. The second case
that can trigger new tracker initializations in our system is the
reception of messages from neighbor cameras. Our algorithm
considers three situations for this case: 1) A single neighbor
camera sends a new tracker. Then, the camera creates a
new tracker and associates it to the received one for the
future DKF consensus updates. The local gallery is initialized

with the appearance model received. 2) The camera receives
new trackers from several neighboring cameras. 3) A new
local tracker is initialized at the same time that new trackers
from other cameras are received. In situations 2) and 3),
it is necessary to check whether the new trackers from the
different cameras are of the same target or not. We perform a
similar process to the one for local data association described
in Section III-B, replacing in (5) the measurement by the
other camera’s estimation, d(x̂i, x̄j), and the Mahalanobis
distance with the Euclidean distance, V = I, since the
covariance matrices associated to the trackers are not part of
the communication messages. This also requires a different
threshold in (6). If two or more trackers are similar enough,
they are merged locally into a single one.

Consensus-based Tracker Drop and Re-initialization:
The other main task of the Distributed Tracker Manager is
to decide when to drop a tracker. Instead of letting each
camera to decide this process individually, we have opted for
a consensus-based solution that reduces, as much as possible,
the number of iterations that different cameras carry out the
tracking individually. We let `i be the local estimation that
camera i has on the number of iterations gone since the last
local data association of a measurement to the target made by
any camera of the network. Since this is a global parameter
that involves the whole network, its estimation is sent as
part of the tracker message at every iteration. If the camera
achieves the local data association of the tracker, the new
value of this parameter is set to zero. Otherwise, the camera
chooses as new value the minimum among all the values
received, including its own, and adds one unit,

`i(k + 1) =

{
0 if detected
min
j∈Cni

(`i(k), `j(k)) + 1 otherwise (8)

The camera drops the target when `i(k+1) is higher than a
threshold κ. The tracker ID is saved together with its gallery
as an old tracker, to be recovered if the same target is back in
the camera field of view or some other camera re-activates it.
This process is checked during the local initialization. Before
assigning a new ID, a re-identification score is computed
between the new tracker gallery and the galleries from old
trackers through (7). The re-initialization is accomplished if
sa is lower than ε.

D. Communication and bandwidth requirements.

The information shared between cameras at every iteration
consists, for each active tracker, of the tracker ID, its
predicted state, the measurements obtained in (2) and the
counter of the last observation, (IDi, x̄i,ui,Ui, `i). This
message is encoded using a total of 51 elements, representing
less than 1kB of bandwidth information per tracker. In
order to carry out the process explained in the Distributed
Global Data Association, the message with the information
related to the new trackers is sent together with appearance
information. The appearance information exchange between
cameras is composed by two appearance feature vectors
required in the trackers initialization. Each one has 512



Complete Ring Chain Disconnected

Graph

Terrace

Laboratory

Campus*

Fig. 3. Ablation study for our approach considering different graph topologies (complete, ring, chain, disconnected). The variations are run on three sets
of data (Terrace, Laboratory and Campus) and evaluated using CLEAR MOT metrics. Running all the steps of the proposed approach (DKF+LDA+MT)
achieves the best results in the majority of cases. *The Campus dataset only has three cameras, obtaining the same results in the complete and ring graphs.

elements, representing 16.38kB of bandwidth information
that is sent only once per tracker.

IV. EXPERIMENTS

A. Experimental setup.

Our experiments are run on data from the EPFL
dataset [31]: Terrace set with 4 outdoor cameras, Laboratory,
with 4 indoor cameras and Campus set with 3 outdoor cam-
eras. For the person detection, all experiments run the official
Detectron implementation [28], filtering the output with a
process equivalent to non-maximal suppression. Regarding
evaluation, we use standard Multiple Object Tracking (MOT)
metrics, including Multi Object Tracking Accuracy (MOTA)
and Multiple Object Tracking Precision (MOTP), as defined
in [32], and Identification Precision (IDP), Identification
Recall (IDR) and their F1 Score (IDF1) as defined in [33].
All the evaluations follow the same process explained in [11],
giving as a final result the median of each metric for all the
cameras available in each dataset.

B. Ablation Study and Topology effect

This first experiment analyzes three configurations of
the proposed approach to evaluate the effects of the novel
modules we propose in our architecture. The simplest con-
figuration is our implementation of the Distributed Kalman
Filter using only geometric information in the data associa-
tion process (DKF). A second version adds the appearance

information from the local gallery (DKF + LDA). The latest
version includes the distributed tracker management module
in the system. This version represents the complete algorithm
presented in the paper (DKF + LDA + DTM).

Besides the ablation study, this experiment analyzes the
effects of different network topologies. For chain and ring
topologies we have considered several network alternatives
to make the evaluation independent of the individual quality
of particular cameras in the tracking. The considered com-
binations are shown in Figure 4. Furthermore, we evaluate
the influence of the appearance in a disconnected graph,
i.e., without information shared between cameras and thus
running four independent Kalman filters.

Fig. 4. Alternatives considered for (a) ring graph topologies and (b) chain
graph topologies.

Figure 3 summarizes the results of all the tests in this
experiment. Each row shows the results obtained using
certain dataset, and each column corresponds to the results
with a different connectivity graph. In all of them, the
configuration parameters from the proposed algorithm are set
to αLDA = 2000, αGDA = 50, τ = 0.5, κ = 15, ε = 0.25



Algorithm MOTA MOTP Bandwidth
[kB/frame]o

Centralized baselines
HTC [11]* 71.84 71.15 1215
KSP [31]* 65.75 57.82 1215
POM [34]* 56.9 61.33 1215
Distributed proposed approach
DKF+LDA+DTM (Complete) 80.95 75.2 28.23
DKF+LDA+DTM (Ring) 75.98 74.42 28.23
DKF+LDA+DTM (Chain) 69.74 73.96 28.23

* Results interpolated [11], only shown graphically.
o Bandwidth calculated analytically more details in the text.

TABLE I. MOT metrics and bandwidth requirements per frame of our
distributed approach and existing centralized methods on Terrace dataset.

Fig. 5. Qualitative tracking results of our approach in three datasets:
Laboratory (first row), Terrace (second row) and Campus (third row). More
on the supplementary video.

and the gallery size to 20 samples with N = 20. These
parameters were defined in Sections III-B and III-C.
Overall, we can see how both proposed modules (LDA and
DTM) bring significant improvements in all the metrics and
datasets, with more positive influence in the identification
metrics (IDF1, IDP and IDR) than the tracking metrics
(MOTA, MOTP). For a few cases it would be slightly better
to apply only LDA, but the penalization for including DTM
in those few cases (decrease of less than 5%) is not nearly
as significant as the benefits it brings in the rest of the cases
(up to 20% increase in some network topologies with respect
to the DKF+LDA configuration). Figure 5 shows some
qualitative results for each of the datasets. The supplementary
material provides additional results.

C. Comparison with other algorithms

This experiment compares the proposed approach (con-
figured exactly as in the previous experiment) with recent
centralized methods evaluated in [11]. They publish results
on public datasets running their proposed approach, Hierar-
chical Trajectory Composition (HTC), as well as two other
baselines, Probabilistic Occupancy Map (POM) [34] and K-
shorted Path (KSP) [31]. To make a fair comparison, the
evaluation parameters are those described in [11]. Among
the datasets used there that provide accurate camera-ground
plane calibration (required to run our algorithm), we picked
the most challenging sequence of Terrace, where a high num-
ber of crossings and occlusions occur between targets. Note
this does not intend to be a thorough evaluation, but rather an

experiment to see where the proposed distributed approach
gets in comparison with existing centralized approaches.

Previously discussed distributed approaches [13], [14] can
not be included in this study because up to our knowledge
they do not provide MOT metric results in available bench-
marks, or focus on different goals and metrics than us. In
[14], the experiments focused on the consensus algorithm
analysis, whereas [13] uses its own camera network to test
the proposed approach, showing as result the trajectories of
the individuals on the ground. Section II already highlighted
our approach advantages with respect to these systems.

The results are summarized in Table I, where we see better
performance of our approach with respect to the centralized
methods in two of the three graph topologies. The complete
graph, being the closest version to the centralized system,
gets an improvement of 9.11% in MOTA while the ring
graph improves the results by 4.14%. Finally the chain graph
obtains lower MOTA, but still comparable results to those
of the HTC algorithm. Regarding the bandwidth, for the
centralized systems we have computed it considering that
every camera is at one hop communication to the central
server. Since there are four cameras, the server needs to
receive 4 images of 288× 360 RGB pixels each one, giving
a total of 414,720 pixels. Each pixel is encoded with 3 Bytes
(R+G+B), so the total bandwidth required is 1,215kB/frame.
For the distributed system, we compute an upper bound of
the bandwidth, considering that every iteration there are 9
active trackers, which is the maximum number of trackers
active during the whole execution. Each tracker requires
0.78kB/frame (Section III-D), so when multiplied by the 4
cameras and the 9 trackers results 28.08kB. The total number
of trackers initialized in our algorithm is 24, that over all
the iterations average a total of 0.15kB/frame to send the
appearance information of the new trackers. The sum of these
two quantities results in the 28.23kB/frame of Table I.

V. CONCLUSIONS

This paper has presented a new multi-target tracking ap-
proach for a distributed camera network, providing a global
approach that deals with the distributed fusion of low and
high level information. In this work, the challenges of a dis-
tributed system have been addressed boosting the DKF with a
fully automatic data association and a novel tracker manager
to handle the misalignment of the high level information.
The data association is based on geometric and appearance
constraints. The distributed tracker manager takes care of
the global data association and each tracker’s consistency in
the network to reduce the number of iterations that different
cameras carry out the tracking individually. The proposed
approach is evaluated in challenging public benchmarks,
reaching comparable, or even better results than centralized
systems and demonstrating the benefits with respect to a
naive DKF implementation. The current implementation of
the DKF assumes synchronization of the cameras but the
consensus-nature of the algorithm makes it amenable to a
fully asynchronous and event-triggered implementation. This
and more sophisticated strategies of information selection to
build the galleries are open challenges left for future work.
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