
  

 

Abstract—Robotic exoskeletons are exciting technologies for 

augmenting human mobility. However, designing such a device 

for seamless integration with the human user and to assist 

human movement still is a major challenge. This paper aims at 

developing a novel data-driven solution framework based on 

reinforcement learning (RL), without first modeling the 

human-robot dynamics, to provide optimal and adaptive 

personalized torque assistance for reducing human efforts 

during walking. Our automatic personalization solution 

framework includes the assistive torque profile with two control 

timing parameters (peak and offset timings), the least square 

policy iteration (LSPI) for learning the parameter tuning policy, 

and a cost function based on transferred work ratio. The 

proposed controller was successfully validated on a healthy 

human subject to assist unilateral hip extension in walking. The 

results showed that the optimal and adaptive RL controller as a 

new approach was feasible for tuning assistive torque profile of 

the hip exoskeleton that coordinated with human actions and 

reduced activation level of hip extensor muscle in human. 
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I. INTRODUCTION 

Lower limb robotic exoskeletons are promising 
technologies to augment the locomotion performance and 
energetics of both healthy individuals and persons with motor 
deficits [1]. Studies have shown that the human hip joint plays 
a critical role in walking with the highest delivery of positive 
mechanical power during a gait cycle [2, 3]. Therefore, 
powered hip exoskeletons have been actively researched for 
potential deployment [4]-[8]. Compliance between the device 
and its human user is an essential factor in design 
considerations.   

Several prototypes of hip exoskeletons have been reported, 
featuring compliance between the device and its human user.  
Kang et al [8] built a robotic hip exoskeleton with two degrees 
of freedom (DOFs) and a weight of around 7 kg, which was 
actuated by two series elastic actuators (SEAs) with a peak 
torque of 60 Nm. Giovacchini et al [9] developed an active 
4-DOF hip exoskeleton named APO weighing about 4.2 kg. 
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Wherein, hip flexion/extension were actively actuated by the 
SEAs while abduction/adduction were passive.  A robotic hip 
exoskeleton was developed by Chen et al [10] to support lift 
movement assistance of heavy tasks with hip flexion and 
extension movements, which was powered by two SEAs that 
achieved a peak torque of 22 Nm. Masood et al [11] have 
developed a robotic exoskeleton with 12 DOFs to assist 
able-bodied people with manual handling tasks. Only hip 
flexion and extension were active with an output torque of 
approximately 53 Nm but a weight of 11.6 kg, which were 
actuated by two parallel elastic actuators (PEAs). Our 
previously developed a SEA-driven 4-DOF hip exoskeleton, 
called NREL-Exo, in which both hip flexion/extension and hip 
adduction/abduction were actively controlled [12]-[14]. While 
these devices have achieved some level of success, they are 
restrained by the SEA for a narrow bandwidth and limited 
stiffness range. Additionally, their bulkiness also limits their 
application. In this paper, we present a newly developed 
lightweight, compact, compliant, and modular 2-DOF robotic 
hip exoskeleton with powered flexion and extension motions. 

Automatic personalization of the control of a hip 
exoskeleton to fit its user has been challenging. Currently, 
there are mainly three control schemes, which almost all use 
fixed control parameters. Direct regulation of force or torque 
is one of the most common hierarchical architecture control 
methods in robotic hip exoskeletons. The control system 
includes the high- and low-level layers in which the high level 
is responsible for estimating the gait phases of the wearer 
while the low level controls torque or force, in order to provide 
pre-defined assistance to the wearers [15]-[17]. Another 
widely used control approach is impedance or admittance 
control. It is a compliance-based control method that can 
produce the complementary portion of the torque necessary to 
complete a compliant movement for the wearers. The integral 
admittance shaping algorithm was proposed to control the 
robotic hip exoskeleton in the research of Nagarajan et al [18]. 
The adaptive oscillator-based method is the third control 
scheme, which is developed on the basis of the concept of the 
centralized pattern generator, and can be applied to robotic hip 
exoskeletons [19, 20]. The adaptive oscillators will control the 
frequency properties, such as the input signal amplitude and 
frequency. Lenzi et al [21] suggested an assistive controller 
utilizing an active frequency oscillator for the robotic hip 
exoskeleton. A specially built adaptive oscillator was 
suggested by Lee et al [22]-[24] for the measurement of the 
gait status by the robotic hip exoskeleton. The aforementioned 
control approaches were usually conducted using a fixed 
control strategy with a set of fixed control parameters. Thus, to 
provide optimal assistance to each wearer, the control of 
exoskeleton needs to be personalized and finely adjusted. 
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Human-in-the-loop optimization for personalization of the 
robotic assistance has been an emerging topic recently, but it 
lacks the ability to adapt to new environments. Gopinath et al 
[25] proposed a mathematical framework to solve user-driven 
customization of shared autonomy in assistive robotics with 
nonlinear optimization techniques. They based their approach 
on an interactive optimization procedure that customizes 
control sharing using an assistive robotic arm. Kim et al [26] 
used a sample-efficient, noise-tolerant, and global 
optimization approach to minimize the metabolic cost of the 
walking assistance task by optimizing walking step 
frequencies. Compared to an existing approach based on 
gradient descent, this method realized the objectives with 
lower overall energy expenditure, faster convergence, and 
smaller inter-subject variability. Zhang et al [27] used a 
covariance matrix adaptation evolution strategy (CMA-ES) 
optimization approach to improve the effectiveness of 
assistive devices by minimizing human energy cost, in order 
to identify a good assistance pattern and customize it to 
individual needs. Ding et al [5] used the Bayesian 
optimization approach and metabolic rate as an optimization 
index to find optimal peak and offset timing of hip extension 
assistance by minimizing walking energy costs. Their results 
indicated that personalized control strategies were better than 
fixed ones in terms of reducing metabolic cost. Although these 
methods can customize the control strategies or parameters, 
they are time-consuming and lack of adaptation. A small 
change of the wearer requires a re-design of the control.   

Reinforcement learning (RL) control is promising 
technology for optimal adaptive control of wearable robotics 
as demonstrated in [28-31]. However, these RL control 
strategies were model-dependent. Vogt et al [28] used learned 
interaction models to capture the important spatial 
relationships and temporal synchrony of body movements 
between two interacting partners. Peng [29] described the 
dynamics of the lower limb exoskeleton system as a general 
nonlinear mechanical system and first validated it in a 
simulation environment before human-related experiments. 
Hamaya et al [30, 31] exploited a data-efficient model-based 
reinforcement learning framework called Probabilistic 
Inference for Learning Control (PILCO) to learn a proper 
assistive strategy. Generating a well-validated model for the 
controller generally requires large amount of data, and it can 
be time-consuming. Additionally, the uncertainties introduced 
by the inevitable modeling errors can adversely affect control 
performance.         

The goal of this study is to develop a new RL-based 
optimal adaptive control solution framework for a hip 
exoskeleton to produce personalized torque assistance over 
time in order to reduce human efforts during walking. Even 
though we have developed RL control approaches, 
specifically data-driven without independent modeling 
procedures, in our previous studies [32]-[35], they exclusively 
focus on tackling the parameter personalization problems for 
robotic knee prostheses.  

Our contributions to the new solution framework include 
the following. (1) Instead of using metabolic cost reduction as 
the optimization goal, we used proposed transferred work ratio 
between the exoskeleton and wearer.  This ratio can be 
estimated at a higher rate than metabolic cost by the torque 

sensor in the exoskeleton without additional instruments such 
as a mask and a cardiopulmonary system. This is time efficient 
and user friendly. (2) We designed and implemented a RL 
controller based on least square policy iteration (LSPI), an 
approximate policy iteration algorithm to configure the 
optimal assistive torque profile represented by two timing 
parameters. (3) We validated this new solution framework on 
a human wearer and demonstrated its feasibility for 
personalizing exoskeleton control while walking with the 
device quickly and effectively. 

In the rest of the paper, Section II introduces the new RL 
based solution framework based on our newly developed 
2-DOF robotic hip exoskeleton; Section III introduces human 
in the loop optimization experiments using LSPI; Section IV 
presents experimental results and detailed data analyses. 
Conclusions and future work are presented in Section V. 

II. NEWLY DEVELOPED HIP EXOSKELETON AND CONTROL 

A. Newly Developed Modular Joint 2-DOF Hip Exoskeleton 

 

Fig. 1. The mechanical design description of modular joint  

Compared with our previous designs [12]-[14], we have 
recently developed a new lightweight, compact, compliant and 
fully powered 2-DOF robotic hip exoskeleton with modular 
joints shown in Fig.1, which can be easily extended with 
modular design.  Unlike the previous designs relying on SEAs, 
we utilized the admittance control [18] in this new design to 
realize the equivalent compliance thereby reducing the weight 
of modular joint from 1.5 kg to 1 kg, while providing higher 
bandwidth, and a broader range of adjustment for stiffness and 
damping. 

A flat brushless DC motor (UTO-52, Celera Motion, MA, 
USA) equipped with a high precision incremental encoder 
(163840 ppr, CE400, Celera Motion, MA, USA), producing a 
continuous torque rating of 0.353 N·m. The transmission ratio 
of the harmonic gearbox (CSD-20-100-2A-GR-SP674, 
Harmonic Drive, MA, USA) is 100:1, resulting in an output 
torque of approximately 35.3N·m, and a peak torque of 
approximately 105.9 N·m. Each joint weighs only 1 kg. The 
entire assembly of the actuator and the transmission is 
designed to weight 1 kg and it can provide a joint velocity up 
to 300 deg/sec ,which is sufficient to support fast walking and 
slow running activities. We use the world’s smallest platinum 
solo twitter (G-SOLTWIR50/100EE1H, Elmo, Israel) as the 
motor drive with a maximum power of 1000W.    
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Fig. 2. Reinforcement learning control, (a). LSPI diagram, (b). The 
concept definitions of action, state and reward. 

B. Reinforcement Learning Control 

 

Fig. 3. Assistive torque as a function of peak timing and offset timing 

The hip assistive torque as admittance torque was input to 
admittance controller shown in Fig.2 (b). The admittance 
controller was executed using the EtherCat protocol based on 
the TwinCat 3.1 software (Beckhoff Automation, Germany) 
with sampling rate of 1000Hz. The assistive torque profile was 
a mixture of two halves of minimum jerk curves joined 
together at their tops shown in Fig.3. This profile has been 
specified by two free parameters (peak force and onset timing) 
that were tuned by reinforcement learning. We set the peak 
torque to 30% body weight to ensure sufficient assistance 
while also considering the comfort of the user during walking, 
which is further confirmed by the prior research [4]. The 
timing of onset was determined by the maximum hip flexion 
based on a previous study [5]. The peak and offset timing were 
limited to 15 to 40% and 30 to 55%, respectively, in this newly 

established gait cycle with maximum hip flexion as the start 
time [5].The RL action vector u  consisted of adjustable peak 

and offset timing. The initial timing control parameters 
I were defined in (1), 

2[ , ]T

peak offsetI t t                          (1) 

u I                                         (2) 

where u was the action vector and the increment adjustment 

I of I in (2), and peakt and offsett were the predefined initial 

timing control values, respectively. 

The interaction behavior between the human and robotic 
exoskeleton is a process of energy transferring. In order to 
produce movement assistance, this study designed an 
exoskeleton applied torque that can maximize the motor 
effective positive power and minimize the motor effective 
negative power [6, 39, 40]. Power is the product of measured 
torque and velocity, and work is the time-based integration of 
power during a gait cycle. This process is equivalent to 

maximizing the transferred positive work motorW  and 

minimizing the transferred negative work motorW    in a gait 

cycle [6, 39, 40].     

We define a state x in (3) as shown below for the 

reinforcement learning controller,  

( )tx                                          (3) 

where is a scaling factor,  is the measured transferred work 

ratio defined as 

=
motor

motor motor

W

W W
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and t in (3) is an empirical target transferred work ratio 

corresponding to ideal assistances. 

In this paper, the human-robot system is taken as a discrete 
nonlinear system, 

1 ( , ), 0,1,2,...k k kx F x u k                       (5) 

( )k ku x                                   (6) 

where k  is the discrete time index that represented each 

timing control parameter update, kx  is the state vector 

x  at k-th update, 2

ku   is the action vector u  at k-th 

update, F  is the unknown system dynamics, and 
2:   

is the control policy. To provide the adaptive learning control 
of the human-robot interaction system, we define a stage cost 
with the following quadratic form for RL controller, 

( , ) T T

x uU x u x R x u R u                          (7) 

where 
1 1

xR  and 
2 2

uR  are positive definite matrices. 

We use (12) to regulate state x  and action u , as larger state 

deviation as in (3) and larger action adjustment as in (2) will 
be penalized with a larger cost. LSPI RL [36]-[38] was used to 
minimize the reward of the equation (7). The quadratic basis 



  

function was used to calculate the cost function. As there were 
one 1-D state and one 2-D action in this study, the RL policy 
learnable weight vector was 6-D. A sample consisted of state, 
action, reward and next state. The number of samples was 
usually selected more than twice the weight vector dimension.  
The derived process of the online LSPI RL optimal control 
was referred to the studies [37, 38]. The reinforcement 
learning controller shown in Fig. 2 was realized in MATLAB, 
which communicated with the admittance controller by the 
real-time UDP. 

III. HUMAN IN THE LOOP OPTIMIZATION EXPERIMENTS 

A.  Experimental Protocol and Setup 

 

Fig. 4. The subject walking with the hip exoskeleton in the experiment 

The experimental protocol was approved by the 
Institutional Review Board (IRB) of University of North 
Carolina at Chapel Hill. The proposed controller was 
experimentally tested with a male able-bodied subject (80kg 
of weight, 172 cm of height; 36 years of age).  He had no 
history of lower limb injury or neurodegenerative disorder. 
The subject practiced walking with hip extension assistance 
on a day prior to the experiment to ensure that he was 
comfortable in walking with the exoskeleton. The surface 
EMG electrode was placed on the gluteus maximus of the 
subject’s left hip. The ground electrode was placed on the 
radial styloid of right wrist. EMG data were collected by 
MA400-28 EMG system (Motion Lab Systems, Inc., Baton 
Rouge, LA, USA) and sampled at a rate of 1000 Hz. The 
subject walked on a dual-belt treadmill (1000 Hz, Bertec Corp., 
Columbus, OH, USA) at a fixed speed of 1.3 m/s under three 
different modes. 

Free Walking: The subject walked for two minutes without 
wearing the hip exoskeleton in order to measure the baseline 
EMG activity of the gluteus maximus during walking. 

Zero Torque: The subject walked for two minutes with the 
exoskeleton attached and controlled in a transparent mode. In 
this mode, the peak torque of hip assistance was set to zero 
hence operating in “Zero Torque” mode. The hip exoskeleton 
admittance controller parameters were set to minimize the 
interaction torque with the wearer’s leg in order to reduce the 
loading effect of the robot. This mode was used as a basis for 
the evaluation of assistance mode to understand the impact of 
the exoskeleton assistance on transferred power and energy in 
addition to muscle recruitment during optimal assistance. 

Assisted Torque: In order to validate the proposed RL 
control, hip extension assistance was provided to the left side 
while the right hip robotic joint operated in the zero-torque 
mode. The assistive torque was provided to the wearer after he 
walked in the zero-torque mode for two minutes. The initial 
control parameters: peak timing and offset timing were 
randomly selected in this mode. The assistive torque was 
gradually increased from zero to the target peak torque in a 
span of 15 steps.     

To reduce the influence of noises introduced by the 
inherent human variance during walking, a window of length 
5 gait cycles or steps were set as a RL action update period 
(i.e., the time index   in (5)).The state was obtained with an 
average of every 5 gait cycles. The proposed online LSPI RL 
controller was used to automatically update the action: two 
timing control parameters according to the state-action policy 
function. A policy was updated every 15 samples (75 gait 
cycles) if the stopping criterion was not met. An acceptable 
error range was considered as the RL stopping criterion due to 
the human variance in walking. If the reward errors stayed 
within the target set for 10 consecutive action updates, the 
assisted-torque mode would be considered reaching the 
stopping criterion. In this study, the bound range of reward 
errors was set to 0.01. In order to prevent subject fatigue, the 
training would be stopped automatically if the assisted-torque 
mode training time exceeded 15 minutes. The assistive mode 
was switched to zero-torque mode if RL control met the 
stopping criterion. If an assisted trial with a well-learned 
policy took less than 15 minutes, it was regarded as a 
successful trial. Four assisted experimental trials were 
conducted. The last 20 steps of assisted-torque mode in a 
successful trial were considered as an “optimal assistance” 
phase. The maximum flexion as the start of gait cycle was 
detected by the hip joint position sensor. The target transferred 
work ratio in (3) was set to 0.16 based on experience and the 
scaling factor was 7. The subject wore a 2-DOF hip 
exoskeleton and walked on the treadmill as shown in Fig. 4. 

B.  Evaluation Measures 

Measures of transferred power and work during a gait 
cycle were obtained with an average of the last 20 strides in 
zero-torque and assisted-torque walking modes. Transferred 
power was compared among the “optimal assistance” phases 
of successful trials and the zero-torque phase of the first trial. 
The transferred positive and negative work were calculated 
separately by integrating the area under the power curve 
during an averaged gait cycle. For processing the EMG signals, 
we band-pass filtered (Butterworth, 20-300 Hz, 4th order), 
full-wave rectified, and low-pass filtered (Butterworth, 1 Hz, 
4th order) them to create a linear envelope. The envelope was 
then averaged to a gait cycle with last 20 strides in three 
different modes. EMG data were normalized by the maximum 
peak observed during the last 20 strides of free walking. All 
gait events were identified by ground reaction forces. EMG 
activities of the same muscle were compared in a gait cycle 
with the last 20 strides averaged among the “optimal 
assistance” phases of successful trials, the free-walking base 
line and the zero-torque phase of the first trial. The root mean 
square (RMS) of EMG and standard derivation were 
calculated, in order to evaluate the human hip extension effort.



  

 
Fig. 5. Evolution of peak timing, offset timing, state and reward in three successful assisted-torque trials. (a) Trial 1 , (b) Trial 2, (c) Trial 3. 

IV. EXPERIMENTAL RESULTS 

The recruited subject participated in four assistive torque 
trials. Wherein, three trials were successful and one stopped 
due to overtime. These “optimal assistance” periods in the 
three successful trials were called phases of Optimal 
Assistance 1, 2 and 3, respectively. 

 
Fig. 6. Transferred power in the human-robot interaction  

 
Fig. 7. Transferred work in an averaged gait cycle 

A.  Evaluation on RL successful trials 

The total number of action updates in these three trials is 
65, 67 and 66, respectively. The policy was updated thrice for 
each of the successful trials, executed at the action update 
number 15, 30 and 45, respectively. As Fig. 5 shows, the states 
and rewards in the initial stages were distant from the target 
ones in Trial 1. Clearly, after the policy was updated once, the 
control parameters: peak and offset timing were both adjusted 

to obvious larger values by the proposed RL controller, which 
made the states and rewards gradually approach the targets. 
The peak timing and offset timing for optimal assistance 
during Trial 1 were found to be 22.67% and 38.86%. The peak 
and offset timing during Trial 2 was unchanged before the 
policy was updated. Clearly, after the policy was first updated, 
peak timing decreased while offset timing increased. The 
optimal assistance was achieved for Trial 2 with peak timing 
15.27% and offset timing 39.39%. In Trial 3, the states and 
rewards before the first policy update were always kept at the 
initial values, which were caused by peak or offset timing 
going out of the action bound along with each action update. 
From the start of the first updated policy, peak and offset 
timing, state, and reward suddenly changed. Parameters for 
optimal assistance in Trial 3 were found:  peak timing 20.78% 
and offset timing 41.28%. The results of three trials indicated 
that LSPI RL controller was able to realize the optimal 
assistance from different initial parameters. The similarities of 
control parameters in these three optimal assistance phases 
were found. The assisted-toque training time of these three 
successful trials was 347, 369 and 358 seconds, respectively, 
which were much less than the average time 1284 seconds 
required for optimization using the Bayesian approach [5] 
indicating that LSPI RL method was more time-efficient.   

B.  Transferred power and energy from exoskeleton to human 

Transferred power and work measures provided a 
quantitative evaluation on the performance of RL-based 
control. Fig. 6 illustrates the effective motor power supplied 
by the hip exoskeleton to the wearer in three “optimal 
assistance” phases and the zero-torque mode. The positive 
power amplitude peaks with three optimal assistance phases 
were 101.2 W, 101.1 W and 98.51W, respectively, while the 
one in the zero-torque mode was 31.12W. The optimal 
assistance phases had much higher peak positive power 
compared to the zero torque condition, while the peak 
negative power was similar across trials.  These results 
showed that RL control can maximize the transferred positive 
power to the wearer compared with the zero-torque mode. The 
total transferred positive and negative work across an 
averaged gait cycle is shown in Fig. 7 where it can be inferred 
that there was no statistical difference in the negative work 



  

across all trials. While there was no significant difference in 
positive wok across the three optimal assistance phases, all the 
three of them were significantly higher than the zero-torque 
mode. By comparing the measured transferred work ratio with 
the target ratio, the performance of the RL controller was 
assessed. The target transferred work ratios for three “optimal 
assistance” phases were 0.1593, 0.1621 and 0.1602, 
respectively. As the zero-torque mode was realized by the 
minimization of the interaction torque between the wearer and 
the hip exoskeleton, the ratio with zero-torque mode was 
0.3396, which indicates that some positive work was still 
transferred even under the zero-torque condition. The 
behavior of the transferred work in these three trials with 
optimal assistance was consistent both temporally and 
quantitatively validating the feasibility of the proposed LSPI 
RL controller. The analysis reflected how the transferred work 
ratio shifted with the exoskeleton supplying more positive 
work and thereby reduced human efforts. 

C.  Muscle effort reduction 

 
Fig. 8. EMG activities of gluteus maximus with different conditions within 

one averaged gait cycle 

 
Fig. 9. RMS EMG during an averaged gait cycle under different conditions, 

OA: optimal assistance.  

The linear envelope of the recorded EMG signals was 
computed to generate the temporal pattern of the muscle 
activation shown in Fig.8, which represents EMG activity of 
the hip extensor gluteus maximus under the five conditions: 
three “optimal assistance” phases, free-walking and 
zero-torque. The peak of the linear envelope shows the 
maximum activation, which is well correlated to the maximum 
force produced by this muscle. The averaged EMG peaks in 
sequence are 0.4064, 0.4841, 0.4546, 0.996 and 0.9437, 
respectively. The peaks of three optimal assistance phases 
were reduced to 59.24%, 51.40% and 54.36% of the EMG 
peak amplitude during free walking. Fig. 9 shows the RMS 
EMG envelope as an indication of the total effort spent during 
a gait cycle during walking. The mean values for these five 
conditions are 0.1297, 0.1317, 0.1249, 0.2241 and 0.2113, 
respectively. The mean value in the zero-torque mode was a 

slightly lower than that of free-walking mode in Fig. 9, which 
indicated that there was some transferred positive energy to 
the wearer in the zero-torque mode. The results of EMG 
activities demonstrated that LSPI RL controller can reduce the 
muscle contraction intensity with the optimal assistance. 

The timing control parameters exhibited somewhat 
oscillatory patterns between the first and the second policy 
update of the second successful trial shown in Fig. 5. This was 
because the RL takes trial and error strategies, involving the 
dynamical interactions between the wearer and the hip 
exoskeleton. Such varying interactions would introduce more 
perturbations to the robot and resulted in oscillations. Under 
the above discussed disturbances, the RL controller responded 
by adjustment when it observed discrepancies between target 
and actual states. The reason for one trial failure was that one 
initial RL policy was randomly generated, especially one 
nonideal policy, which cannot guarantee a successful trial with 
less than 15 minutes. These unique phenomena are the results 
of dealing with an inherently co-adapting human-robot 
RL-based control system. 

V. CONCLUSION AND FUTURE WORK 

In this paper, a novel LSPI RL adaptive optimal controller 
was developed to configure timing parameters of assistive 
torque automatically for a robotic hip exoskeleton. The online 
learning controller was able to successfully learn the control 
policy as was demonstrated not only by increased the 
transferred positive work, but also by the decreased EMG 
activity of the hip extensor muscle. These results indicated that 
that the online LSPI RL controller is a promising new tool to 
solve the challenging parameter tuning problems for 
personalized walking assistance. 

We only applied this newly designed reinforcement 
learning to hip extension assistance and validated the method 
on one human subject. Further studies need to be done to 
investigate whether the outcome of the proposed method can 
be adapted for both flexion and extension assistance of both 
the hip joints in coordination. Studies using additional subjects 
can further verify if the proposed assistance protocol can be 
generalized across subjects. In addition, our future work will 
extend the current design to facilitate further online control 
policy adjustment. We believe such an integrated approach 
will facilitate even broader range of the human-robot 
interaction behavior to address changes in environment, task, 
and human physical condition. 
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