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Abstract

Datasets for autonomous cars are essential for the development and benchmarking of perception

systems. However, most existing datasets are captured with camera and LiDAR sensors in good weather

conditions. In this paper, we present the RAdar Dataset In Adverse weaThEr (RADIATE), aiming to

facilitate research on object detection, tracking and scene understanding using radar sensing for safe

autonomous driving. RADIATE includes 3 hours of annotated radar images with more than 200K labelled

road actors in total, on average about 4.6 instances per radar image. It covers 8 different categories of

actors in a variety of weather conditions (e.g., sun, night, rain, fog and snow) and driving scenarios (e.g.,

parked, urban, motorway and suburban), representing different levels of challenge. To the best of our

knowledge, this is the first public radar dataset which provides high-resolution radar images on public

roads with a large amount of road actors labelled. The data collected in adverse weather, e.g., fog and

snowfall, is unique. Some baseline results of radar based object detection and recognition are given to

show that the use of radar data is promising for automotive applications in bad weather, where vision

and LiDAR can fail. RADIATE also has stereo images, 32-channel LiDAR and GPS data, directed at

other applications such as sensor fusion, localisation and mapping. The public dataset can be accessed

at http://pro.hw.ac.uk/radiate/.

I. INTRODUCTION

Autonomous driving research and development rely heavily on the use of public datasets in

the computer vision and robotics communities [1]–[3]. Camera and LiDAR are the two primary

perceptual sensors that are usually adopted. However, since these are visible spectrum sensors,

the data is affected dramatically by bad weather, causing attenuation, multiple scattering and

turbulence [4]–[8]. On the other hand, a radar sensor is known to be more robust in adverse
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Fig. 1: Examples from RADIATE. This dataset contains radar, stereo camera, LiDAR and GPS

data. It was collected in various weather conditions and driving scenarios with 8 categories of

annotated objects.

conditions [9]–[11]. However, there are few public radar datasets for automotive applications,

especially in bad weather and with object annotation.

In this paper, we present the RAdar Dataset In Adverse weaThEr (RADIATE) for perceptual

tasks in autonomous driving and driver assistance. It includes a mixture of weather conditions

and driving scenarios, representing different levels of challenge. A high-resolution 79 GHz 360°

radar is chosen as the main sensor for object annotation. RADIATE includes 5 hours of radar

images in total, 3 hours of which are fully annotated. This gives RADIATE more than 200K

labelled object instances with 8 categories of road actors (i.e., car, van, bus, truck, motorbike,



bicycle, pedestrian and a group of pedestrians). RADIATE also has stereo camera, LiDAR and

GPS data collected simultaneously. Some examples from RADIATE are shown in Figure 1.

Our work makes the following main contributions:

• To the best of our knowledge, RADIATE is the first public radar dataset which includes a

large number of labelled road actors on public roads.
• It includes multi-modal sensor data collected in challenging weather conditions, such as

dense fog and heavy snowfall. Camera, LiDAR and GPS data are also provided for all

sequences.
• As an example of a use case, we demonstrate that RADIATE can be used for robust vehicle

detection in adverse weather, when optical sensors (camera and LiDAR) fail.

II. RELATED WORK

There are many publicly available datasets for research into perception for autonomous and

assisted driving. The most popular is the KITTI dataset [1], using cameras and a Velodyne HDL-

64e LiDAR to provide data for several tasks, such as object detection and tracking, odometry and

semantic segmentation. Although widely used as a benchmark, data was captured only in good

weather and appears now as rather small scale. Waymo [3] and Argo [12] are automotive datasets

which are larger than KITTI and provide more data variability. Some data was collected in the

rain and at night although adverse weather is not their main research focus. Foggy Cityscapes

[5] developed a synthetic foggy dataset aimed at object recognition tasks but only images are

provided. All these datasets use only optical sensors.

Radar, on the other hand, provides a sensing solution that is more resilient to fog, rain and

snow. It usually provides low-resolution images, which makes it very challenging for object

recognition or semantic segmentation. Current automotive radar technology relies, usually on

the Multiple Input Multiple Output (MIMO) technique, which uses several transmitters and

receivers to measure the direction of arrival (DOA) [16]. Although this is inexpensive, current

configurations lack azimuth resolution, e.g. the cross-range image of a commercial radar with

15° angular resolution is around 10 meters at 20-meter distance. This means that a radar image

provides insufficient detail for object recognition or deatiled scene mapping. Scanning radar

measures at each azimuth using a moving antenna, providing better azimuth resolution. This



TABLE I: Comparison of RADIATE with public automotive datasets that use radar sensing.

Dataset Size Radar Lidar Camera Night Fog Rain Snow
Object

Detection

Object

Tracking
Odometry

3D

Annotations

nuScenes [2] Large
3

(Sparse Point Cloud)
3 3 3 7 3 7 3 3 7 3

Oxford Radar RobotCar [13] Large
3

(High-Res Radar Image)
3 3 3 7 3 7 7 7 3 7

MulRan [14] Large
3

(High-Res Radar Image)
3 7 7 7 7 7 7 7 3 7

Astyx [15] Small
3

(Sparse Radar Point Cloud)
3 3 7 7 7 7 3 7 7 3

RADIATE (Ours) Large
3

(High-Res Radar Image)
3 3 3 3 3 3 3 3 3

7

(Pseudo-3D)

type of sensor has recently been developed to tackle radar based perception tasks for automotive

applications [9], [17], [18].

For most datasets which provide radar data for automotive applications, the radar is used

only as a simple detector, e.g. NuScenes [2], to give sparse 2D point clouds. Recently, the

Oxford Robotcar [13] and MulRan datasets [14] provided data collected from a scanning Navtech

radar in various weather conditions. However, they do not provide object annotations as the

data was designed primarily for Simultaneous Localisation and Mapping (SLAM) and place

recognition in long-term autonomy. The Astyx dataset [15] provides denser data (compared

to current MIMO technology) but with only about 500 frames annotated. It is also limited in

terms of weather variability. Table I compares existing public automotive radar datasets with

RADIATE. To summarise, although research into radar perception for autonomous driving has

recently been gaining popularity [19]–[21], there is no radar dataset with a large set of actor

annotations publicly available. We hope the introduction of RADIATE can boost autonomous

driving research in the community.

III. THE RADIATE DATASET

The RADIATE dataset was collected between February 2019 and February 2020. The data

collection system was created using the Robot Operating System (ROS) [22]. From the ”rosbag”

created by ROS, we extracted sensor information, each with its respective timestamp. Figure

3 shows the folder structure used for the dataset. To facilitate access, a RADIATE software

development kit (SDK) is released for data calibration, visualisation, and pre-processing.
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Fig. 2: Sensor setup for data collection.

annotations
+----- annotations.json

GPS_IMU_Twist
+----- 000001.txt
+----- ......

Navtech_Cartesian
+----- 000001.png
+----- ......

Navtech_Polar
+----- 000001.png
+----- ......

velo_lidar
+----- 000001.csv
+----- ......

zed_left
+----- 000001.png
+----- ......

zed_right
+----- 000001.png
+----- ......

meta.json
GPS_IMU_Twist.txt
Navtech_Cartesian.txt
Navtech_Polar.txt
velo_lidar.txt
zed_left.txt
zed_right.txt

{
"name": "city_3_7",
"type": "urban",
"set": "test",
"version": "1.0",
"date_created": "Sat Mar  7 04:19:15 2020"
}

[
  { "id": 1,
    "class_name": "car",
    "bboxes": [
       {"position": [568.87, 513.06, 15, 32.55],
        "rotation": 0}
         {...}
    ]},
  { "id": 2,
    "class_name": "van",
    "bboxes": [
       {"position": [550.54, 504.03, 15, 35],
       "rotation": 0},
       {...}
    ]},
{...}]

Frame: 000001 Time: 1563274239.216517860
Frame: 000002 Time: 1563274239.446287055
Frame: 000003 Time: 1563274239.679625164
Frame: 000004 Time: 1563274239.904217921
...

Fig. 3: Folder tree, annotation, metadata and timestamp structure of each sequence

A. Perception Sensors

RADIATE includes radar, LiDAR and stereo cameras. Figure 2 shows the sensor setup and

the extrinsic configuration on our vehicle. To support sensor fusion, the sensors are calibrated

(details in Section III-B).



a) Stereo Camera

An off-the-shelf ZED stereo camera is used. It is set at 672 × 376 image resolution at 15

frames per second for each camera. It is protected by a waterproof housing for extreme weather.

The images can be seriously blurred, hazy or fully blocked due to rain drops, dense fog or heavy

snow, respectively. Some examples are shown in Figure 1.

b) LiDAR

A 32 channel, 10Hz, Velodyne HDL-32e LiDAR [23] is used to give 360° coverage. Since

the LiDAR signal can be severely attenuated and reflected by intervening fog or snow [8], the

data can be missing, noisy and incorrect.

c) Radar

RADIATE adopts the Navtech CTS350-X [24] radar. It is a scanning radar which provides

360° high-resolution range-azimuth images. It has 100 meters maximum operating range with

0.175m range resolution, 1.8° azimuth resolution and 1.8° elevation resolution, Currently, it does

not provide Doppler information.

B. Sensor Calibration

Sensor calibration is required for multi-sensor fusion, feature and actor correspondence. The

intrinsic parameters and distortion coefficients of the stereo camera are calibrated using the

Matlab camera calibration toolbox [25]. Then, rectified images can be generated to calculate

depths. In terms of extrinsic calibration, the radar sensor is chosen as the origin of the local

coordinate frame as it is the main sensor. The extrinsic parameters for the radar, camera and

LiDAR are represented as 6 degree-of-freedom transformations (translation and rotation). They

are performed by first explicitly measuring the distance between the sensors, and then fine-tuned

by aligning measurements between each pair of sensors. The sensor calibration parameters are

provided in a yaml file. The sensors operate at different frame rates and we simply adopt the

time of arrival of the data at each sensor as the timestamp.

C. Data Collection Scenarios

We collected data in 7 different scenarios, i.e., sunny (parked), sunny/overcast (urban), overcast

(motorway), night (motorway), rain (suburban), fog (suburban) and snow (suburban).



a) Sunny (Parked)

In this scenario the vehicle was parked at the side of the road, sensing the surrounding actors

passing by. This is intended as the easiest scenario for object detection, target tracking and

trajectory prediction. This was collected in sunny weather.

b) Sunny/Overcast (Urban)

The urban scenario was collected in the city centre with busy traffic and dense buildings.

This is challenging since many road actors appear. The radar collected in this scenario is also

cluttered by numerous reflections from non-road actors, such as trees, fences, bins and buildings,

and multi-path effects, increasing the challenge. Those sequences were collected in sunny and

overcast weather.

c) Overcast (Motorway)

The motorway scenario was captured on the Edinburgh city bypass. This can be considered

as relatively easy since most of the surrounding dynamic actors are vehicles and the background

is mostly very similar. This scenario was collected in overcast weather.

d) Night (Motorway)

We collected data during night in a motorway scenario. Night is an adverse scenario for

passive optical sensors due to lack of illumination. Lidar and radar were expected to behave

well since they are active sensors and do not depend on an external light source.

e) Rain (Suburban)

We collected 18 minutes of data in substantial rain. The collection took place in a suburban

scenario close to the university campus.

f) Fog (Suburban)

We found foggy data challenging to collect. Fog does not happen very often in most places

and it is very hard to predict when it will occur and how dense it will be. In practice, we

collected foggy data opportunistically when parked and driving in suburban areas.

g) Snow (Suburban)

RADIATE includes 34 minutes of data in snow, in which 3 minutes are labelled. Snowflakes

are expected to interfere with LiDAR and camera data, and can also affect radar images to a



17801

72457

14851

4200

17261

1836 1795

5733

22199

3383

185

2410

285

27

2677 2621 2543
1669 1913

64

8223

230

31

1325

59

32

463

223

106

393

10846

124

5028

41

N
um

be
r o

f O
bj

ec
ts

 (l
og

)

50

500

5000

50000

Sunny 
(Parked)

Sunny/Overcast 
(Urban)

Overcast 
(Motorway)

Night 
(Motorway)

Rain
 (Suburban)

Fog 
(Suburban)

Snow 
(Suburban)

Car

Van

Truck

Bus

Motorbike

Bicycle

Pedestrian

G. of Pedestrians

Fig. 4: Category distribution for each scenario.

76.24
81.46

17.95
24.01 24.62

40.74
33.88

Scenario

Le
ng

th
 (m

in
ut

es
)

0.00

25.00

50.00

75.00

100.00

Sunny 
(Parked)

Sunny/Overcast 
(Urban)

Overcast 
(Motorway)

Night 
(Motorway)

Rain
 (Suburban)

Fog 
(Suburban)

Snow 
(Suburban)

Not Labelled Labelled

RADIATE Dataset Length

Fig. 5: Dataset length for driving scenarios and weather conditions

(in minutes). Fig. 6: Sensors covered in

snow

lesser extent. Moreover, heavy snowfall can block the sensors within 3 minutes of data collection

(see Figure 6). The data in snow was collected in a suburban scenario.

D. Labelling

Labelling radar images is challenging because it is not easy for a human to recognise objects in

radar data. This means most existing annotation tools which are designed for a single sensor [26]–

[28] are inadequate. Therefore, a new annotation tool was developed to automatically correlate

and visualise multiple sensors through sensor calibration.



Fog Rain SnowNightSun

Fig. 7: Data in various weather conditions. Top: Image with LiDAR points projected. Middle:

Radar with objects annotated. Bottom: LiDAR with objects projected from radar annotation.

Note both image and LiDAR images are degraded in fog, rain and snow. The yellow circles

encloses false LiDAR points caused by snow flakes.

Eight different road actors are labelled in RADIATE: cars, vans, trucks, buses, motorbikes,

bicycle, pedestrian and group of pedestrians. 2D bounding boxes were annotated on radar

images after verifying the corresponding camera images. Each bounding box is represented

as (x,y,width,height,angle), where (x,y) is the upper-left pixel locations of the bounding box, of

given width and height and counter-clockwise rotation angle. To achieve efficient annotation, the

CamShift tracker was used [29].

In total, RADIATE has more than 200K bounding boxes over 44K radar images, an average

4.6 bounding boxes per image. The class distribution for each driving scenario is illustrated in

Figure 4. In Figure 5, the length and the total number of objects in each scenario are given.

IV. EXAMPLE OF USE: RADAR BASED VEHICLE DETECTION

One of the key perception capabilities of autonomous vehicles is to detect and recognise road

actors for safe navigation and decision making. To the best of our knowledge, there is no existing

work on radar based object detection for autonomous driving in extreme weather. Therefore, we



present as a use case the first baseline results using RADIATE. Figure 7 shows some examples

of our data collected in adverse weather, in which trained networks fail to recognise actors in

the optical images. As shown in Figure 7. The radar images are less affected so we would

hypothesise that robust object detection is more likely in all conditions.

Drawn from the data acquired in several weather conditions, RADIATE includes 3 exemplary

data sets that can be used for evaluation for vehicle detection:

• Training set in good weather: This only contains data in good weather, sunny or overcast.

It was created to validate whether sensors are capable to adapt from good weather to bad

weather conditions.

• Training set in good and bad weather: This additional set includes data from both good

and bad weather conditions (night, rain, fog and snow). This was used to develop algorithms

for all weathers.

• Test set: This test set includes data from both good and bad weather conditions and is used

for evaluation and benchmarking.

As a first baseline, we have performed evaluation of vehicle detection from single images. We

defined a vehicle as one of the following classes: car, van, truck, bus, motorbike and bicycle. In

Table II are shown the number of radar images and vehicles used to train and test the network.

TABLE II: Number of images for each set defined.

#Radar Images #Vehicles

Training Set in Good Weather 23,091 106,931

Training Set in Good and Bad Weather 9,760 39,647

Test Set 11,289 42,707

Total 44,140 147,005

A. Radar based Vehicle Detection in the Wild

We adopted the popular Faster R-CNN [30] architecture to demonstrate the use of RADIATE

for radar based object detection. Two modifications were made to the original architecture to

better suit radar detection:

• Pre-defined sizes were used for anchor generation because vehicle volumes are typically

well-known and radar images provide metric scales, different from camera images.



• We modified the Region Proposal Network (RPN) from Faster R-CNN to output the bound-

ing box and a rotation angle which the bounding boxes are represented by x, y, width, height,

angle.

To investigate the impact of weather conditions, the models were trained with the 2 different

training datasets: data from only good and data from both good and bad weather. ResNet-50 and

ResNet-101 were chosen as backbone models [31]. The trained models were tested on a test set

collected from all weather conditions and driving scenarios. The metric used for evaluation was

Average Precision with Intersection over Union (IoU) equal to 0.5, which is the same as the

PASCAL VOC [32] and DOTA [33] evaluation metrics. Table III shows the Average Precision

(AP) results and Figure 8 shows the precision recall curve. It can be seen that the AP difference

between training with good weather and good&bad weathers is marginal, which suggests that

the weather conditions cause no or only a subtle impact on radar based object detection. The

heat maps of the AP with respect to the radar image coordinates are also given in Figure 9.

Since the AP distribution of the model trained only on the good weather data is very similar to

the model trained with both good and bad weather data, it further verifies that radar is promising

for object detection in all weathers. Regarding the results in each scenario, it is mainly biased

by the type of data, rather than the weather itself. The parked scenario is shown to be the

easiest, achieving close to 80% AP, potentially aided by the consistency in the radar return from

the environmental surround. Results in snow and rain data performed more poorly. Examining

Figure 7, the radar sensor used was affected by rain changing the background pixel values. In

fog, we achieved considerably better results using radar. Since it is a challenging scenario for

optical sensors, radar is shown to be a good solution for dense fog perception. In nighttime,

motorway scenarios, the results were close to the results in daytime. This was expected, since

radar is an active sensor and is not affected by the lack of illumination. Figure 10 illustrates

some qualitative results for radar based vehicle detection in various driving scenarios and weather

conditions, using the Faster R-CNN ResNet-101 trained in good weather only.

V. CONCLUSIONS

We have presented the new, labelled, large scale RADIATE dataset for research into sensory

data perception for autonomous and assisted driving. The sensor setup, calibration and labelling

processes are described, and we show examples of data collected under several different weather

and road scenarios. As an example of use, we show how it can be used for radar based vehicle



TABLE III: Average Precision results on test set.

Overall
Sunny

(Parked)

Overcast

(Motorway)

Sunny/Overcast

(Urban)

Night

(Motorway)

Rain

(Suburban)

Fog

(Suburban)

Snow

(Suburban)

ResNet-50 Trained on Good and Bad Weather 45.77 78.99 42.06 36.12 54.71 33.53 48.24 12.81

ResNet-50 Trained on Good Weather 45.31 78.15 47.06 37.04 51.80 26.45 47.25 5.47

ResNet-101 Trained on Good and Bad Weather 46.55 79.72 44.23 35.45 64.29 31.96 51.22 8.14

ResNet-101 Trained on Good Weather 45.84 78.88 41.91 30.36 40.49 29.18 48.30 11.16
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Fig. 8: Precision recall curves.
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Fig. 9: Heatmap of Average Precision.

detection in the wild. These results show that radar based object detection is less affected by the

weather, especially in foggy scenarios, where recognition from LiDAR data fails at a very short

range depending on the fog density. This initial, baseline experiment demonstrated promising
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Fig. 10: Qualitative results of radar based vehicle detection.

results, especially in adverse conditions. In this preliminary study, we emphasise that motion

is not used for recognition, in part as actors may well be stationary, and in part because no

Doppler data is available, although frame to frame tracking is an obvious avenue for further

research provided a long term motion memory model is employed. We hope RADIATE will

facilitate research in the community, particularly for robust perception in adverse weather.
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