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Abstract— We introduce a spherical fingertip sensor for
dynamic manipulation. It is based on barometric pressure and
time-of-flight proximity sensors and is low-latency, compact,
and physically robust. The sensor uses a trained neural network
to estimate the contact location and three-axis contact forces
based on data from the pressure sensors, which are embedded
within the sensor’s sphere of polyurethane rubber. The time-
of-flight sensors face in three different outward directions, and
an integrated microcontroller samples each of the individual
sensors at up to 200 Hz. To quantify the effect of system
latency on dynamic manipulation performance, we develop
and analyze a metric called the collision impulse ratio and
characterize the end-to-end latency of our new sensor. We also
present experimental demonstrations with the sensor, including
measuring contact transitions, performing coarse mapping,
maintaining a contact force with a moving object, and reacting
to avoid collisions.

I. INTRODUCTION

Humans can perform fast, robust, and dynamic manipu-
lation tasks, while modern robots are often constrained to
quasi-static manipulation scenarios. While this is partly due
to limitations in actuation, robot hands can be as fast and
strong as human hands [1]–[7]. More importantly, human
fingertips have dense concentrations of different tactile af-
ferents to detect stimuli at broad frequency ranges, varying
amplitudes, and low latencies [8]. In contrast, modern robots
often have slow or non-existent tactile sensing. Instead, they
typically rely on vision systems for planning and feedback,
but cameras can become occluded during critical manipu-
lation steps. In general, current tactile sensors cannot yet
enable human-level manipulation performance, even when
paired with nimble, dexterous fingers such as those devel-
oped by Bhatia [9] and Lin [10].

To achieve robust and dynamic manipulation, robots
should be able to quickly sense and react to a diverse set
of potential fingertip contact interactions. Valuable contact
data can come from many directions relative to a robot’s
fingertips, especially in cluttered environments, and sensors
should be able to capture as much of this data as possible.
Furthermore, the sensing speed, for contact forces, con-
tact locations, and non-anthropomorphic pre-touch proximity
data, is critical for effectively controlling fingers. Each of
these data streams are necessary to avoid collisions, minimize
contact forces, and control changing contact modes with
objects.
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Fig. 1. Multimodal fingertip sensor for dynamic manipulation. The
sensor uses barometric pressure sensors and a neural network to estimate 3-
D contact forces and 2-D contact locations. Time-of-flight proximity sensors
measure distances from the three outward faces.

We present a compact multimodal fingertip sensor de-
signed for dynamic manipulation tasks, building on earlier
work [11]. The sensor, shown in Fig. 1, is low-latency,
physically robust, and can be easily attached to the tips of
robotic fingers. To quantify the effects of system latency
on dynamic manipulation performance, we develop a metric
called the collision impulse ratio. Finally, we present several
demonstrations with our new sensor for measuring contact
transitions, contact following, and coarse multimodal map-
ping of environments and object surfaces.

II. RELATED WORK

In this section, we review relevant tactile sensors, address
applications of proximity sensing to tactile sensing, and
discuss our previous sensor design. Table I compares tactile
sensors using various sensing technologies and modalities,
including our new sensor. More comprehensive reviews of
tactile sensing based on different technologies, including
proximity sensing, can be found in [8], [21]–[23].

A. Tactile Sensing

Tactile sensors can be grouped two categories: vision-
based and non-vision-based. While traditional force/torque
sensors, such as those from ATI [24], can record high-
bandwidth force and torque data, they are not well-suited
to tactile sensing because they are bulky, heavy, and prone
to resonance and inertial noise. Non-vision-based tactile
sensors have been developed using resistive [25]–[27], ca-
pacitive [28]–[30], barometric pressure [11], [31], [32], and
magnetic field [19] modalities, among others. Sensors with
resistive and capacitive measurements are cheap and robust.
They can cover large sensing areas, but they are also noisy
and low resolution, which limits their effectiveness for fin-
gertip sensors. The commercially-available BioTac fingertip
sensor [13] measures fluid pressure to mimic the modalities
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TABLE I
TACTILE SENSOR COMPARISON

Sensor Technology Output Sample Area Spatial Force Force Proximity
Rate Resolution Range Resolution Range

Human finger [8], [12] - Contact force, location, texture DC-1 kHz - 1 mm 40 N 0.06 N a -
BioTac [13], [14] Fluid-based sensing Contact force and location 100 Hz 484 mm2 2.4 mm 10 N 0.26 N b -
GelSight-based [15], [16] Camera with soft elastomer Tactile RGB image 30 Hz∗ 252 mm2 30 µm 22 N 1.9 N b -
Soft-bubble [17] Camera with inflated elastomer Tactile depth image 45 Hz∗ - - - - -
Insight [18] Camera with soft elastomer 3D force map 11 Hz 4800 mm2 0.4 mm 2 N 0.03 N c -
ReSkin [19] Magnetic field Contact force and location 400 Hz 400 mm2 1 mm 2.5 N 0.2 N a -
Lancaster et al [20] Time-of-flight Contact force and proximity 30 Hz ~600 mm2 - 10 N - 0-50 mm

Ours (previous) [11] Pressure Contact force and location 200 Hz 184 mm2 ~1.11 mm 25 N 0.65 N b -
Ours (this paper) Pressure, time-of-flight Contact force, location, and proximity 200 Hz 406 mm2 ~1.31 mm 25 N 1.58 N b 0-150 mm

∗ Sample rate is based only on camera frame rate, additional latency was not reported.
a,b,c Reported force resolution as a minimum distinguishable force or b root-mean-squared-error (RMSE) or c median error relative to an evaluation dataset.

of the human fingertip, but it is expensive and fragile. The
ReSkin sensor, which uses magnetometers, has a very high
sample rate but a low maximum normal force and is limited
to a 2-D planar profile [19].

Vision-based tactile sensors are constructed around off-
the-shelf cameras and reflective elastomer skins [22] and
operate by capturing images of imprints of touched objects.
The GelSight sensor [15] is one of the most common vision-
based sensors; its design has been modified for slimmer
fingers [16], [33], integration into tips of commercial robot
hands [34], 3-D sensing of surfaces [18], [35], [36], and
pre-contact sensing with semi-transparent skin surfaces [37]–
[39]. Other vision-based sensors use depth cameras instead
of RGB cameras [17], [40] to obtain tactile point clouds.

Vision-based tactile sensors have been used for a wide
range of manipulation tasks, from cable manipulation [41]
to iterative re-grasping [42]. They have excellent spatial res-
olution and are well-suited for powerful learning approaches
for estimation and control [15], [17], [43]. However, they
suffer from severe limitations during dynamic applications,
as the amount of collected image data introduces significant
latency in transmission and processing. First, while the frame
rates for the cameras used in these sensors can reach 90
fps, additional latencies of 40 ms to 70 ms are reported
in [35], [44], which can drop the bandwidth to 20 Hz or
lower. Second, control algorithms capable of dealing with
large amounts of data, such as convolutional neural networks,
are often very intensive to evaluate, especially when using
multiple sensors. As a result, while the sensors can be
trained to estimate contact forces, applications are generally
restricted to slow, quasistatic, and low-force interactions.

B. Proximity Sensing

Proximity sensing is complementary to typical sensing
modalities of vision and touch and has commonly been
used in robotics applications for safe human-robot interaction
and reactive grasping [23]. Typically, capacitive or optical
sensing technologies are used, but optical sensors can provide
longer sensing ranges. Optical proximity sensors have been
used in robotic manipulation for finger shaping control [45]–
[47] and coarse mapping of object surfaces [48]–[50].

Optical proximity sensors that measure the intensity of
reflected light [45]–[48], [51]–[54] are easy to deploy and
have fast sample rates. However, their outputs are highly

dependent on object properties, which makes them difficult to
calibrate. Optical time-of-flight sensors have slower sample
times, but they return precise measurements over broader dis-
tances and are not as dependent on object properties. Minia-
ture versions of these sensors, specifically the VL6180X from
STMicroelectronics, have recently been integrated into many
systems [20], [49], [55]–[57]. Multimodal sensors have been
created using optical proximity sensing [20], [48], but the
outputs are still strongly dependent on object properties.

C. Previous Sensor Design

This work improves on our previous sensor [11], which
used barometric pressure sensors embedded in polyurethane
rubber to estimate contact force and location. The sensing
area of the previous design is limited due to its hemispherical
shape. While the sensor performs well for antipodal grasps
on a 1-DoF gripper [58], the small sensing area limits the
effectiveness of more nimble fingers.

Our new version uses a spherical design to expand the
sensing area and allow contact sensing over a 180° range
without adding more pressure sensors or decreasing the
sampling rate. We also include time-of-flight proximity
sensors on the edges of the sensor base to measure pre-
contact distances. By placing proximity sensors outside the
rubber and using pressure sensors inside the rubber, we
avoid compromising the proximity modality, unlike other
multimodal sensors [20], [48], [59].

III. IMPORTANCE OF SENSING BANDWIDTH

Unintended collisions can ruin carefully constructed ma-
nipulation plans by causing an object to escape the fingers’
grasp, especially if the system has too much latency to pre-
pare for and react to the contact appropriately. So, low system
latency, through actuation bandwidth, sensing bandwidth,
and fast information processing, is critical for fast, reactive,
and robust manipulation performance. However, the effect
of latency, especially during collisions and contacts, is not
captured in traditional metrics for manipulation or dynamic
capabilities. For manipulators, metrics such as manipulability
or dynamic manipulability do not consider behavior during
collisions [60], [61]. The impact mitigation factor, or IMF,
considers the passive dynamics of floating-base systems
during collisions but does not address system latency [62].
Bhatia [63] creates a collision reflex metric to characterize



Fig. 2. Collision model diagram. Left: The sensor collision model consists
of two masses, connected by a spring, impacting a rigid object with an initial
velocity. After a delay due to latency, the control system can react to the
collision. Right: Three distinct regions of the force plot correspond to three
phases of the collision.

Fig. 3. Collision impulse ratios. Left: Collision impulse ratio, η, for
varied stiffnesses and latencies. For high stiffnesses, reducing latency will
reduce the ratio. Right: η for varied initial velocities and latencies. Initial
velocity does not have a large effect on the ratio compared to the latency.
For both plots, red slice corresponds to the actual sensor latency of 7 ms,
as reported in Section VI-A. The blue ‘x’ marks the measured stiffness
of the sensor. Nominal simulation parameters: [mf ,mr, tl, k, v0, Fin] =
[0.005kg, 0.1kg, 7ms, 1500N

m
, 0.15m

s
, 10N].

the transparency of closed-loop robotic systems based on
the total impulse during a collision between the robot and
the environment. However, their collision model includes
non-physical velocity jumps and does not explicitly include
latency. Here, we model the full collision dynamics and
explicitly include the system latency to show that it is critical
to overall system performance and impulse minimization.

Our finger collision model is shown in Fig. 2. It is based
on the model in [63]. The model consists of a fingertip mass,
mf , and a finger mass, mr, connected by a spring with
stiffness k, which collide with a rigid object. In our model,
the fingertip mass is nearly zero, representing the sensor’s
surface, and the finger mass is the effective mass of the end
of an individual robot finger. The stiffness represents the
lumped stiffness of the finger in series with the rubber of
the sensor. Before the collision, both masses have an initial
velocity v0.

The collision starts with a plastic impact between the
fingertip mass and the rigid object, at which point the
displacement of the finger mass, x(t), is set to x(0) = 0.
This initial impact generates an impulse that, when detected,
indicates to the control system that a collision has occurred.
The collision ends at tf when the displacement of the finger
mass returns to 0, such that x(tf ) = 0. The system latency,

tl, defines a delay from the start of the collision, after which
the finger actuator can react to the initial impulse, exerting
a force Fin on the finger mass. During the delay period,
we assume the mass-spring system behaves according to
its unforced dynamics. A fundamental assumption in our
model is that the initial impulse is detectable after the latency
period, regardless of incoming velocity. This assumption
depends strongly on the sensitivity of the force sensor;
realistically, the magnitude of the initial impulse needs to be
above the product of the sensor’s minimum force resolution
and sample time for it to be detected.

Based on our collision model, the displacement of the
finger mass during a collision is given by

x(t) =


v0
ω0

sin(ω0t), 0 ≤ t < tl

(xl − Fin

k ) cos(ω0(t̃))

+ vl
ω0

sin(ω0t̃) +
Fin

k , tl ≤ t ≤ tf

(1)

where t̃ = t− tl, xl = v0
ω0

sin(ω0tl), and vl = v0 cos(ω0tl).
After the initial fingertip collision, the system’s natural

frequency is given by ω0 =
√

k
mr

and the total force on the
finger mass is given by F (t) = −kx(t). The total impulse,
obtained by integrating the force during the collision, is

I = mfv0 +mrv0(1− cos(ω0tf ))

+ Fin(tf − tl −
sin(ω0(tf − tl))

ω0
.

(2)

To isolate the effect of varied system latencies on the total
impulse, we normalize by the total impulse for the system as
if there were no control input, i.e. Fin = 0 in (2); essentially,
this is normalizing by the natural dynamics. This “natural”
impulse is given by

IN = mfv0 +mrv0(1− cos(ω0tf )) (3)

We call our normalized total impulse the collision impulse
ratio, represented by η:

η =
I

IN
(4)

This ratio represents how much of the collision impulse a
system can avoid due to its control effort after the latency
period. It can vary from 0 to 1, with smaller ratios being
more desirable.

Fig. 3 shows plots of the collision impulse ratio, η, for
various system latencies, stiffnesses, and initial velocities.
The isolines of η are shown in bold black to give a better
sense of the shape of the surfaces. The left plot shows that
low stiffness and low latency can each reduce the collision
impulse ratio. However, high stiffness is desirable for the
fast, high-bandwidth control actions necessary in dynamic
manipulation scenarios. So, reducing latency is the most
practical method for minimizing impulses during collisions.
The right plot shows that the collision impulse ratio is nearly
invariant to initial velocities, due to the normalization by
the natural impulse. However, the ratio is sensitve to the
latency for any initial velocity, even ones close to zero. From
this analysis, we can conclude that minimizing the system



latency, independent of other parameters, is crucial for good
manipulation performance.

In real-world systems, the total latency used in this anal-
ysis can come from actuation, sensing, and data processing.
While high actuation bandwidth is essential for fast and
dynamic manipulation, fully utilizing fast actuators also
requires fast sensors. In particular, minimizing the latency is
useful for tactile sensors for quickly detecting and reacting
to collisions. In the case of our sensor, the contact force
measurement is obtained at the maximum sample rate of
the individual pressure sensors, and the estimation neural
network is small and fast to evaluate. Using pre-touch data
from the proximity sensors effectively reduces our sensor
latency further by allowing fingers to prepare for collisions
before they occur, as demonstrated in Section VI-C.

IV. SENSOR DESIGN

Our sensor design is compact, physically robust, and fea-
tures high-bandwidth contact force, location, and proximity
sensing modalities. Fig. 4 shows detailed views of the new
sensor. The complementary proximity and contact sensing
modalities allow us to have accurate distance measurements
without compromising our contact sensing bandwidth. The
expanded contact area allows for a broad and continu-
ous sensing range for diverse motions, including antipodal
grasping, forward prodding, and finger extension. The time-
of-flight proximity sensing along different axes allows for
detecting and tracking objects between and in front of the
fingertips.

The sensor consists of a rigid-flex PCB, a rigid base piece,
and a cast rubber dome. It can sense contacts over a 180°
by 90° region of the dome’s surface, corresponding to −45°
to +135° about the base frame’s y-axis and ±45° about the
base frame’s x-axis, and can measure shear forces of ±15 N
and normal forces up to 25 N. The time-of-flight proximity
sensors have a range of 10 mm to approximately 150 mm.

The rubber dome is 20 mm in diameter and has a usable
sensing area of over 400 mm2. Within the cast rubber are
eight BMP384 barometric pressure sensors, which can be
sampled at 200 Hz. These sensors are chosen for their small
footprint, just 2 mm by 2 mm, and fast sampling rate.
The pressure sensors are evenly split between the first two
boards of the rigid-flex PCB, which are mounted facing
perpendicular directions. Distributing the individual sensors
across two boards enables us to expand the sensing area
compared to [11].

Five VL6180X time-of-flight proximity sensors are placed
around the rubber dome and on the back sensor surface to
measure distances along three outward directions from the
fingertip. The sample rate of time-of-flight sensors is not
deterministic, but the typical update rate is roughly 100 Hz.
These sensors are chosen because they are compact, fast, and
have a long sensing range.

An STM32F334 microcontroller and a CAN transceiver
are included on the sensor PCB to sample the individual
sensors and send data back to the control system. A cable
consisting of four flexible and thin 30AWG wires powers

Fig. 4. Sensor design. The time-of-flight sensors are shown in yellow
and the pressure sensors are shown in red. The two contact angles, θ and
φ, correspond to positive rotations about the x- and y-axes of the sensor
base frame, B. The portions of the sensor surface covered by each training
dataset are shown in blue, green, and purple.

and communicates with the sensor, making it easier to route
wires from the tip of the finger. The rigid base piece is
machined from PEEK plastic, with two threaded inserts for
mounting to robot fingers or other hardware. The rubber
dome is cast from Smooth-On VytaFlex 20 polyurethane
rubber. The entire sensor is approximately 23 mm x 22 mm
x 24 mm and has a total mass of about 10 g.

V. DATA COLLECTION AND TRAINING RESULTS

A neural network is trained on the data from the eight
internal pressure sensors to estimate the 2-D contact location
on the spherical surface and the corresponding 3-D contact
force. The network has eight inputs and three fully connected
layers of 12, 64, and 64 nodes with ReLu activations. There
are five outputs, so the model can be represented as

[Fx, Fy, Fz, θ, φ]
T = f(s1, s2, s3, s4, s5, s6, s7, s8) (5)

where si are the individual pressure readings.
The contact angles θ and φ define the contact location on

the sphere surface relative to the sensor base frame, shown
in Fig. 4. The first contact angle, θ, defines an initial rotation
about the x-axis of the sensor base frame. The second contact
angle, φ, defines a subsequent rotation about the y-axis of the
sensor base frame. The SE(3) transform between the sensor
base frame and the contact frame on the sensor surface is
given by

Tbase,contact =

[
Ry(φ) 0
0T 1

] [
Rx(θ) 0
0T 1

] [
I3 p0

0T 1

]
p0 =

[
0 0 rsensor

]T (6)

where rsensor = 10 mm is the sensor radius. The three-axis
force vector, Fx, Fy , and Fz , is defined in the contact frame.
The z component of the vector is the normal force, and the
x and y components are the shear forces. The z-axis of the
contact frame is the contact normal vector.

The sensor is fixed to the end-effector of a delta robot and
repeatedly brought into contact with a rigid bowl attached
to an ATI Delta SI-660-60 sensor to collect training data
for the neural network estimator. The end-effector can move
in x, y, and z directions, and the bowl has planar patches
corresponding to pairs of sensor contact angles. During each
period of contact between the sensor and the bowl, the robot
moves in a layered asterisk pattern to induce different levels



Fig. 5. Sensor training setup. The training platform consists of the delta robot, an ATI sensor, and the contact bowl. Data is collected with the sensor in
three orientations. For each inidividual dataset, the robot presses the sensor into each contact patch and executes a multi-layered asterisk pattern, exerting
the full range of shear and normal forces.

of shear and normal forces at each contact location. Due
to the high coefficient of friction between the sensor rubber
and the bowl, there is little slip during the contact periods.
If slip does occur, however, the sensor contact angles do
not change because each patch of the bowl is planar. Fig. 5
shows the data collection setup with a detailed view of the
contact bowl and an example of the asterisk trajectory for
each contact patch.

To cover the expanded sensing surface of the new sensor,
we collect three separate datasets and combine them to
form the training dataset. Each individual dataset corresponds
to a 90° cone of the sensor surface, so the sensor needs
to be rotated by 0°, −45°, and −90° about the y-axis of
the sensor base frame to cover the entire sensing surface.
The regions corresponding to each of the three individual
datasets are illustrated in Fig. 4, and Fig. 5 shows each of
the three sensor training orientations. During training, the
applied shear forces range from approximately −15 N to
+15 N, the normal force ranges from approximately 0 N to
−25 N, the contact angle θ ranges from −45° to +45°, and
the contact angle φ ranges from −135° to +45°.

The full dataset consists of roughly 350,000 data points.
We randomly select 90% of the dataset for training, and
the remaining 10% of the dataset is used for testing. The
network is trained using Keras with the Adam optimizer for
ten epochs with a batch size of ten. Collecting the entire
training dataset for one sensor takes roughly 20 minutes of
operator setup time and 3 hours of robot run time. Training
the estimator network takes less than three minutes using a
desktop with an i9-11900K processor.

Table II reports the RMSE values for the training and
testing datasets for two sensors manufactured according
to the presented design. Compared to the previous sensor
version, the RMSE values are slightly higher, and the values
for sensor #1 are worse than those for sensor #2. However, in
practice we have not observed any negative effects due to the
higher errors. Furthermore, we have not noticed significant
drift in the overall force and contact outputs after over 40
hours of experimental use of the sensors.

A drawback of this training setup is that the contact
angle parameterization and the contact bowl design require
a spherical sensor surface. While the well-defined contact
kinematics enable a smooth transfer from the training setup

TABLE II
SENSOR TRAINING RESULTS, RMSE

Sensor Train Test
Forces Angles Forces Angles

1 1.71 N 0.153rad 1.72 N 0.154rad

2 1.42 N 0.108rad 1.43 N 0.109rad

to real-world applications, the spherical shape is not as
practical for grasping as a flatter, more oblong shape, since
it results in point contacts rather than larger contact patches.

VI. EXPERIMENTAL DEMONSTRATIONS

A. Sensor Latency and Contact Transitions

To characterize the end-to-end latency of the contact force
sensing, we mounted the sensor to the training platform and
repeatedly pressed it into the surface of the ATI sensor,
collecting data at 1 kHz across the range of force capabilities.
Similarly, to measure the latency of the proximity sensor, we
mounted the sensor to an instrumented stage and moved it
back and forth repeatedly, collecting data at 2 kHz. We esti-
mated the end-to-end latency for both sensing modalities by
calculating the time-domain shift that maximized the cross-
correlation between the ground truth and processed sensor
signals. This measured latency includes all communication,
processing and mechanical delays. The calculated contact
force latency is approximately 7 ms averaged across the us-
able force ranges, and the proximity latency is approximately
4 ms.

Fig. 6 shows measurements from a single proximity sensor
and the sensor’s estimated normal force, recorded at approx-
imately 200 Hz, as the fingertip makes contact with a rigid
block. The lower bound of the proximity sensing range is
reached as the block makes contact with the sensor surface.
Once contact is made, the contact force and location can
be measured. There is a smooth transition between the two
sensing modalities at the moment of contact.

B. Mapping of Objects and the Environment

We can use the proximity data from when the finger is in
free motion to generate coarse maps of the environment near
the fingertip. For example, the upper part of Fig. 7 shows the
actual environment, which has three walls and two objects,
and a coarse map generated by sweeping the fingertip back
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Fig. 6. Example contact transition. Before the sensor comes into contact
with a block, the proximity measurement, shown in blue, go to zero. After
the contact, the normal force measurement, shown in red, becomes non-zero.
The dashed lines in the figure correspond to the raw data. The solid lines
correspond to filtered data. Moving average windows of 7 and 15 for the
proximity and force data, respectively, were applied using the filtfilt
function in Matlab.

Fig. 7. Mapping experiments. The passively collected proximity data
can be used to create coarse maps of the environment or of object surfaces.
For object surfaces, any contact locations and associated normal vectors can
be included in the map with the proximity data.

and forth. Across three experiment trials, we sequentially
removed the objects from the environment. These changes
are accurately reflected in the maps from the fingertip sensor
for each trial.

The surfaces of individual objects can also be mapped
using proximity data. If the sensor contacts the object, the
map can then be updated to include the world contact
location and the contact normal vector. The lower part of
Fig. 7 shows the combined mapping data as the fingertip was
moved in 3-D space around a wooden block, intermittently
making contact with the object. Dense mapping with only
contact data is sample-inefficient, but by incorporating the
proximity data from between taps on the object, we can
quickly create an accurate map. Furthermore, the proximity
data could be used to reduce uncertainty in collision timing
before the finger taps to prevent excessive disturbances.

C. Dynamic Reactions

The low sensor latency enables dynamic reaction behav-
iors, such as stable contact following and potential fields

for collision avoidance. Real-time videos from the contact
following and collision avoidance trials can be found here1.

The combination of fast contact location and contact force
sensing allows us to create a contact-following behavior with
our sensor. In this behavior, a user initiates contact with
the fingertip sensor. Then, feed-forward joint torques exert
a constant force at the fingertip along the sensed contact
normal. As the user maneuvers the contact surface, and thus
the contact point and contact normal, the fingertip “sticks”
stably to the contact, following it through the workspace.
Qualitatively, the fingertip behaves like a virtual magnet,
using only feed-forward force control at the actuators.

Proximity data can be used to create virtual potential
fields around each fingertip. Any measured distance below
a specified threshold creates a spring force on the fingertip,
which is tracked using feed-forward joint torque commands.
The potential fields allow the fingers to quickly react to seen
objects and avoid collisions or unexpected contacts without
a long planning horizon or vision sensing.

We use a combination of similar reactive behaviors, called
reflexes, to achieve robust and autonomous grasping [64].
The reflexes take advantage of our manipulation platform’s
low-latency sensors and fast actuation bandwidth to react
to objects in the environment, compensate for inaccurate
planning based on coarse vision information, and control
contact interactions with grasped objects.

VII. CONCLUSION

We have presented a new sensor that combines proximity
and pressure sensing modalities to provide data before,
during, and after contacts. It is compact for easy integration
into the fingertips of robotic hands, and it is well-suited to
dynamic manipulation scenarios due to its low latency.

We plan to deploy this fingertip sensor in our manipu-
lation system with the final goal of achieving human-level
manipulation skills. To do this, we will need to improve the
sensor sampling rate and force resolution, especially if we
want to operate in the low-force regimes in which humans
excel. Additionally, vision-based planning and vision-based
tactile sensing, used before first contact is made and after a
grasp has been completed, respectively, are complementary
to our sensor’s capabilities and could help to further reduce
the gap to human manipulation.

Future iterations of the sensor will include several engi-
neering improvements. As commercially available sensors
improve, we will upgrade to sensors with higher sampling
rates to further increase our bandwidth. We can also improve
our sensing accuracy with better casting processes for the
rubber dome or different locations of the individual pressure
sensors. Finally, each sensor currently requires a uniquely
trained neural net model. An important direction for future
work on improving the usability of the sensors is to train a
model that generalizes across all of the sensors that share
the same shape and topology.

1Videos can be found at https://youtu.be/tr5UQTEbIuk

https://youtu.be/tr5UQTEbIuk
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