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Abstract— Clothes grasping and unfolding is a core step in
robotic-assisted dressing. Most existing works leverage depth
images of clothes to train a deep learning-based model to
recognize suitable grasping points. These methods often utilize
physics engines to synthesize depth images to reduce the cost
of real labeled data collection. However, the natural domain
gap between synthetic and real images often leads to poor
performance of these methods on real data. Furthermore,
these approaches often struggle in scenarios where grasping
points are occluded by the clothing item itself. To address the
above challenges, we propose a novel Bi-directional Fractal
Cross Fusion Network (BiFCNet) for semantic segmentation,
enabling recognition of graspable regions in order to provide
more possibilities for grasping. Instead of using depth images
only, we also utilize RGB images with rich color features
as input to our network in which the Fractal Cross Fusion
(FCF) module fuses RGB and depth data by considering global
complex features based on fractal geometry. To reduce the cost
of real data collection, we further propose a data augmentation
method based on an adversarial strategy, in which the color and
geometric transformations simultaneously process RGB and
depth data while maintaining the label correspondence. Finally,
we present a pipeline for clothes grasping and unfolding from
the perspective of semantic segmentation, through the addition
of a strategy for grasp point selection from segmentation regions
based on clothing flatness measures, while taking into account
the grasping direction. We evaluate our BiFCNet on the public
dataset NYUDv2 and obtained comparable performance to
current state-of-the-art models. We also deploy our model
on a Baxter robot, running extensive grasping and unfolding
experiments as part of our ablation studies, achieving an 84 %
success rate.

I. INTRODUCTION

In recent years, robot-assisted dressing has gained in-
creased attention in the field of assistive robotics [1]-[7].
Zhang and Demiris propose a robot-assisted dressing pipeline
for people with limited limb mobility, composed of clothes
grasping and unfolding, robot navigation, and user upper-
body dressing [1]. This task is highly dependent on the robots
ability to recognize grasping points, and many methods
have been proposed to tackle this sub task. Most existing
works apply deep learning methods for keypoints recognition
leveraging depth images of the clothing. Due to collection of
real labeled depth images being extremely time consuming,
physics engines such as Maya and Blender are usually used
for data enrichment [1], [5], [6], [8], [9]. However, a clear
domain gap is present between the synthesized and real depth
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Fig. 1: Clothes grasping and unfolding. (a) Experimental
setup. (b) Clothes segmentation and calculation of grasping
points. (c) Grasping operation. (d) Unfolding operation.
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images, with the real depth images containing significant
noise. Furthermore, a reliance on depth information only,
results in existing methods struggling in situations where
pre-defined points are self occluded by the garment itself.

In this paper, we propose a novel Bi-directional Fractal
Cross Fusion Network (BiFCNet) for semantic segmentation
and apply it in the scenario of clothes grasping and unfolding,
as shown in Fig [l We employ semantic segmentation to
recognize graspable regions on the clothing item. Unlike
key point recognition, we find that segmentation provides
rich information allowing for more accurate grasping point
selection. As an addition to depth only methods, RGB data
can also be leveraged for this task, allowing for greater
recognition of the folded area of clothing item.

Recently, RGB-D semantic segmentation has been applied
in a variety of complex scenes [10]-[16]. In the majority of
these works, two branches are used to extract features from
RGB and depth images separately and later fuse the feature
representations. These methods, however, mainly consider
the fusion of local features and ignore the fusion of global
features [17]-[21]. Global features are crucial for enabling
the complex spatial information of deep features to assist
the propagation of RGB semantic information, and fractal
geometry has been shown to be an effective method for
extracting globally complex features [22]. In our proposed
BiFCNet, the Fractal Cross Fusion (FCF) module can realize
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Fig. 2: Overview of the RGB-D semantic segmentation pipeline for clothes grasping and unfolding. The item of clothing is
segmented into 3 parts, inner collar, outer collar and the remaining area, for the selection of grasping points based on the
inner and outer collar later. Given a collection of RGB images, depth images and corresponding ground-truth segmentation
results, we propose a data augmentation method for data enrichment. Then, we train a semantic segmentation model on the
clothing dataset using the proposed BiFCNet and deploy it on the Baxter robot. Given real-time RGB and depth images, the
robot can distinguish different regions of the clothes, decide grasping points, perform the grasping and unfolding motion.

the fusion of RGB data and depth data by considering global
complex features based on fractal geometry.

Moreover, we propose an adversarial strategy-based data
augmentation method for RGB-D semantic segmentation that
can process both RGB and depth images based on color
and geometric transformations while maintaining consistency
with the image labels. Data augmentation methods based
on adversarial strategies have been proven to be a better
choice for enhancing the generalization ability of models
in the case of limited data [23], [24]. We notice that the
type of clothes in current robot-assisted dressing research
is quite limited [1]-[5]. Our proposed adversarial strategy-
based data augmentation method directly addresses this,
facilitating training with small amounts of labeled real data
even when the type of clothing changes.

With the aforementioned proposed methods, we intro-
duce an RGB-D semantic segmentation pipeline for clothes
grasping and unfolding, as shown in Fig [2| Based on the
segmentation results of the clothes, we select the most
suitable grasping points from the identified graspable regions
by establishing a flatness measurement model for different
regions of the item of clothing. The main contributions can
be summarized as follows:

1) We propose an RGB-D semantic segmentation model
BiFCNet, in which the FCF module fuses RGB information
and depth information based on fractal geometry by consid-
ering global complex features.

2) We propose a data augmentation method based on
an adversarial strategy, in which the color and geometric
transformations can simultaneously process RGB and depth
data while maintaining the label correspondence.

3) We propose an RGB-D semantic segmentation pipeline
for clothes unfolding, through the combination of the afore-
mentioned contributions with a strategy to select graspable
points from segmented regions, based on clothing flatness
measures while taking into account the grasping direction.

4) We evaluate BiFCNet on the NYUDv2 dataset, with
mloU and PA of 51.8% and 77.9% respectively, reaching
a level comparable to the state-of-the-art methods.We also
evaluate our method through an extensive ablation study fo-
cusing on real world robotic clothes grasping and unfolding.

II. RELATED WORK
A. RGB-D Semantic Segmentation

Depth images have become practical and have been widely
used in semantic segmentation tasks [10]-[15]. At present,
many RGB-D semantic segmentation models study the fu-
sion method of RGB features and depth features, mainly
considering the fusion of local features and the problem of
local noise present in depth data, while ignoring the fusion
of global features [17]—[21]. This results in poor alignment
between RGB and depth features, limiting the ability of the
depth’s spatial information to assist in propagation of RGB
semantic information. Fractal geometry has been shown to be
an effective method for extracting globally complex features
[22]. In this work, we apply fractal geometry to the feature
fusion process of RGB-D semantic segmentation.

B. Data Synthesis and Augmentation

Reducing the cost of data collection and labeling while
enhancing the generalization of the model is a major prob-
lem in robotics-related research. Some studies use physics
engines such as Maya or Blender to synthesize large amounts
of data [1], [5], [6], [8], [9], [25], but the distribution of
synthetic data and real data is vastly different. This leads
to a requirement for domain adaptation processing [1], [8],
[9]. However while this processing does reduce the domain
gap, it limits the ability of the model to generalize and as a
result limits the effectiveness of synthetic data for improving
accuracy. Data augmentation based on adversarial strategies
has been applied to a variety of vision models in the training
of public datasets to enhance the generalization ability of the
models [23], [24]. We propose a data augmentation method
for the multi-input case of RGB-D semantic segmentation,
and apply it to our clothing dataset training to reduce
the cost of data collection and labeling, and enhance the
generalization of the model.

C. Robotic Manipulation of Flexible Objects

Enabling robots to recognize and manipulate flexible ob-
jects such as clothing has been extensively studied [2]-[4],
[26]-[29]. Many works leverage deep learning to calibrate
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Fig. 3: The overview of BiFCNet. We use a stage-by-stage Bi-directional propagation structure in the encoder. Two parallel
ResNet-101 are used as the backbone and DeepLab V3+ is used as the decoder. The input of the network is a pair of RGB
and depth images. Feature pairs output by each layer of ResNet-101 are fused by a FCF module and propagated to the next
layer. Fusion results of the first and the last FCF modules are propagated to the DeepLab V3+.

and identify graspable points on objects [5], [6], [25], [30]-
[32]. However, due to the high deformability of flexible
objects, self-occlusion often leads to recognition failures.
Current state-of-the-art research addresses this by identifying
graspable regions, as opposed to keypoints, and selecting
graspable points from within these regions. These methods
often rely solely on depth information to perform segmen-
tation, however this is often susceptible to noise in the
depth data [1], [8], [33], [34]. Alternatively, RGB only
segmentation methods struggle with single color distributions
often present in clothing. Therefore, we propose an RGB-D
semantic segmentation model, utilising combined RGB and
depth data, to identify the graspable regions of clothing.

I11. METHODS
A. BiFCNet for RGB-D Semantic Segmentation

Our network adopts an encoder-decoder structure, as
shown in Fig [3] The encoder is formed of two parallel
ResNet-101 [35] as the backbone. The output of each layer
of ResNet-101 is fused in the FCF module. We set up two
feature processing paths in the FCF fusion module: extracting
channel weights and cross-fusion propagation. The Fractal
Process (FP) module in the cross-fusion propagation path can
extract global complex features based on fractal geometry.
The two paths finally converge to obtain the fused feature
map. We use DeepLab V3+ [36] as the decoder. The fusion
results of the first and the last FCF modules are used as the
shallow feature input and deep feature input for the DeepLab
V3+ network. Finally, the decoder performs feature decoding
and outputs the resultant per pixel segmentation labels.

For the FCF module, RGB features and depth features
are taken as inputs and denoted as L2“. A 1x1 convolution
is applied in order to change the number of channels in

L2 to n, where n is a hyperparameter, which we set it to
three [22]. The transformed results are used as inputs to the
FP module. The two types of features are cross-propagated
through multiple FP modules to finally form a fusion feature
F,,. At the same time, we perform a global average pooling
operation on the input RGB and depth features. Two feature
layers perform a stacking operation in the channel dimension
to obtain W,,,. We use an MLP network to process W, to
get a set of channel weights, denoted as W;. We perform
channel-wise multiplication on F, and W. Finally, we apply
a 1x1 convolution, to obtain a fusion feature fy with the
same number of channels as L2“%.

For the FP module, the input feature map is first separated
based on the channel dimension to obtain three single-
channel feature maps of C}", Ci", and C%". For each
Cin, Co% is obtained through the f? module, which are
subsequently concatenated to form the output of the FP
module. During the fZ operation, a series of 6 convolutions
with kernels of varying sizes from 1 to 6 are performed
on C!" to obtain six single-channel feature layers [22]. We
stack the obtained six feature layers in the channel dimension
to obtain feature f,,;4. Then the process ¢ of obtaining
the corresponding C’g“t from f,,;q can be expressed as the
following formula, in which the X and Y are the results
of taking the corresponding average value in the channel
dimension of X and Y. We define Fg as the sum of all
channels at each location in the feature map and the ® means
channel-wise multiplication.

X = log, [Relu (fimia) + 1]
Y = tensor (logy 1,10g5 2, ..., log, 6)
out _ Fal(X —X)@ (Y —Y)]
"Ry -Y)e (Y -Y)

(1)
(2)
(3)
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Fig. 4: The process of training BiFCNet using an adversarial strategy-based data augmentation method. We build color
transformation and geometric transformation based on MLP networks. The data augmentation network (color transformation
and geometric transformation in the figure) and BiFCNet are alternately trained in turns to update the parameters.

B. Data Augmentation Based on Adversarial Strategy

We train BiFCNet using our proposed adversarial strategy-
based data augmentation method, as shown in Figure E} The
figure outlines three paths (red, green, and blue) showing
possible data transformation situations that occur with prob-
ability 1, 1, and 1, respectively. The training process for
the network comprises two steps. In the first step, parameter
@ of data augmentation networks ¢, and g, is fixed, only
parameter € of BiFCNet is updated, and the loss value is
minimized. In the second step, parameter # of BiFCNet is
fixed, only parameter ¢ of data augmentation networks c,
and g, is updated, and the loss value is maximized. The two
steps are carried out alternately, taking the blue path as an
example, the process is represented as follows.

maxnin {Loss [fy (9, (¢,)) 9. (D)]} (4)

C. Design of Robot Operation

Our proposed method outputs the grasp points on the
object and the corresponding grasp direction. We establish a
two-dimensional plane rectangular coordinate system, where
the origin lies at the geometric center of the segmented
region. As shown in Figure b), for each point d°“! in the
red outer edge, a point set D, is formed, and for each point
d’™ in the green inner edge, a point set D;,, is formed.

dot (z9", yo*) € Dowr,n=1,2,3...

n
&7 (237, 42) € Dinym = 1,23 ..

m?

(5)
(6)

A direction vector p,, is formed by searching for a point
di",di™ € D;, with the smallest Euclidean distance L&*"
in the inner edge for each point d°“! in the outer edge. For
each direction vector, the sin and cos values of the angle
between it and the horizontal x-axis is calculated, denoted

sin cos
as K and K:°°.

out in

; Yn —Y
K> =22 u =1,2,3... 7
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For each point d%*! in the outer edge, we select the N
points around it, as shown in Figure 5[c). The flatness F,, of
the area around this point is then represented by the result of
the following formula for approximating the variance. K 3"
and K¢°s represent the average of K3 and K¢ of these
points.

N+1 . L 2
x> (K x Kt - K x i) (9)
k=1

1

F, =
N +1

Finally, the point with the smallest value of F), is the
selected graspable point, defined as point P, as shown in
Figure [5(c). We sample and average the depth values for 4
locations, each with a pixel distance of 1 around the selected
point P, to determine the point P in three-dimensional space.
We apply a transformation to the grasp point in order to
calculate its location in the robot’s coordinate system. We
take the vector § of point P as the direction of the spatial
plane where y-axis and the z-axis are located in the robot
coordinates. We keep the projection direction of the vector
g on the plane where y-axis and the z-axis are located, and
then adjust the angle with the positive direction of the x-axis
to 45° to get the grasping direction, as shown in Figure [5(d).
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Fig. 5: Strategy for selecting graspable points and grasp
directions. (a) The item of clothing in the hanging state.
(b) Semantic segmentation. (c) Selection of grasp point P.
(d) Coordinates transformation for the calculation of grasp
direction.

IV. EXPERIMENTS
A. Clothing Dataset

We use a white medical suit as the target clothing, as
shown in Figure [f[a). We set up three segmentation regions,
as shown in Figure [§(b). We set up an environment for
data collection in the laboratory, as shown in Figure [6{c).
This environment consists of a hanger suspended at a fixed
position 0.8m in front of the robot. A Kinect camera placed
in front of the robot was utilised to collect RGB-D images at
a resolution of 750 by 750 pixels for both the RGB and depth
components. Each time an image is collected, the hanging
point of the medical clothing is manually and randomly
changed to obtain a good data distribution. We collected
350 pairs of RGB-D data through this method, and used
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Fig. 6: Collection and labeling of our clothing dataset. (a)
Target clothing. (b) Semantic segmentation of the clothing
item, where red represents the outer edge (the area with a
width of 1.5cm from the outermost edge of the collar), green
represents the inner edge (the remaining area of the collar),
and yellow represents other areas of the garment. (c) Side
view of the data acquisition environment.

TABLE I: Experiment results compared with state-of-the-art
RGB-D semantic segmentation models on NYUDv2.

Method Backbone mloU 1+  PA T
ESANet [18] ResNet-50 50.5% /
VCD+RedNet [13] ResNet-50 50.7% /
Malleable 2.5D [14]  ResNet-101 50.9% 76.9%
ShapeConv [19] ResNet-101 51.3% 76.4%
CANet [40] ResNet-101 51.5% 77.1%
BiFCNet (Ours) ResNet-101 51.8% 77.9 %

the LabelMe [37] tool to annotate the segmented regions of
the 350 RGB images. We divided the data into training and
test sets consisting of 150 and 200 image pairs respectively.

B. Model Training and Evaluation

We conduct training and evaluation experiments on
NYUDv2 [38] and our clothing dataset, using mean
Intersection-over-Union (mloU) and pixel accuracy (PA) as
two performance evaluation metric. We use the PyTorch
framework to complete all experiments, training the model
using mini-batch SGD with momentum and cross-entropy
loss as the loss function.

For a fair comparison on NYUDv2, we choose the 40-
class version and use depth images in the form of HHA
[39], trained for 300 epochs. As shown in Table |I} the final
evaluation effect mIoU and PA on the test set reached 51.8%
and 77.9%, respectively. Figure [7] shows the visualization
results of our method.

For the clothing dataset, we set 4 classes, namely Back-
ground, Outer Edge, Inner Edge and Other Parts of Clothing,
and trained for 60 epochs. As shown in Table [[I} the final
evaluation results mloU and PA on the test set reached
85.13% and 97.95%, respectively. Figure [§] shows the vi-
sualization results of our method.

C. Evaluation of Robot Operation

We deploy the model trained on the clothing dataset to the
Baxter system. Input RGB and depth images are collected by
the Kinect camera placed in front of the robot. These images
are then passed through our proposed BiFCNet producing
corresponding segmentation maps. According to the designed
point selection strategy, the graspable points on both sides are

RGB
Fig. 7: Visualization results on the NYUDv2.

HHA Ground Truth Ours

TABLE II: Segmentation results on the clothing dataset. We
note that while “Other Parts of Clothing” and “Background”
achieves IoU values of over 97%, “Inner Edge” and “Outer
Edge” only achieve 70%. This is due to the relatively small
areas and complicated shapes of inner and out collar.

Classes IoU1t  mloU 1 PA 1
Background 97.45%
Outer Edge 74.65%
Inner Edge 70.36% 85.13%  97.95%
Other Parts of Clothing  98.08%

Fig. 8: Visualization of the segmentation results on the
clothing dataset. (a) RGB images of the target garment. (b)
Depth images of the target clothing. (¢) Manually annotated
label images. (d) Segmentation results using our proposed
BiFCNet.

determined, and the coordinates are transformed into robot
coordinates with respect to the depth information. In relation
to the calculated grasp points and grasp direction, a path
is planned, and the robot starts the grasping and unfolding
operation. The success criteria for a successful grasp and
unfold, requires the robots two grippers to successfully grasp
the item of clothing, remove the item from the hanger and
perform the unfold operation. We randomly changed the
hanging point of the clothes and conducted 100 experiments.
The success rate reached 84%, as shown in the first row of
Table in the third row of Table and in the first row
of Table [V1



D. Ablation Study

We conducted a series of ablation experiments to evaluate
our method. For each trained model, we completed 100
grasping and unfolding tasks on the Baxter robotic system.

1) To demonstrate the effectiveness of the data augmen-
tation method, we evaluate the performance of the proposed
pipeline with and without our data augmentation component
on varying quantities of training data. The experimental
results are shown in Table We first tested the use of
our proposed method with and without data augmentation
on a dataset of 150 training image pairs. Additionally,
we collected and annotated 300 pairs of RGB-D images,
compared the effects of dataset size by training a model
without data augmentation on the total 450 training image
pairs. For a fair comparison, we trained the models with
a dataset size of 150 images for 60 epochs, where as the
model with a dataset size of 450 images for only 20 epochs.
Our data augmentation method results in a higher percentage
of successful grasps and unfolds outperforming both cases
where data augmentation is not used, even when additional
training data is provided. This shows that data augmentation
is effective for improving model generalization, improving
the generalization of the model beyond the method of manual
collection of additional annotated real data.

TABLE III: Results of ablation experiments considering
data scale and data augmentation factors. We note that
the performance drops significantly without the use of data
augmentation, even when dataset size is accounted for.

Train Data Grasp and Unfold

Scale  Augmentation mloU PA T Success Rate 1
150 v 85.13%  97.95% 84%

150 X 6525%  79.68% 57%

450 X 76.18%  95.67% 74%

2) To demonstrate the effectiveness of the proposed BiFC-
Net, we evaluate our pipeline with and without the FCF
feature fusion method by varying the input data types. We
first evaluated the pipeline with segmentation only performed
on RGB data as a baseline, using DeepLab V3+ [36] as
the semantic segmentation model and ResNet-101 as the
backbone. We compared this with two methods. First the use
of RGB-D data where features are fused via stacking (two
parallel ResNet-101 networks are used as the backbone) and
finally the use of RGB-D data with our full FCF pipeline.
As shown in Table the experiments show that use of
both RGB and depth information is advantageous compared
to use of RGB information only. These results further show
that our FCF module is able to outperform stacking to fuse
RGB and depth data. This is due to the stacking method not
considering the extraction of global features.

3) In order to demonstrate the effectiveness of the pro-
posed method for selecting grasping points from the gras-
pable regions, we evaluate the performance of our method
compared with a strategy of random point selection from the
the outer edge region of the clothing item. We additionally
compare our method against a method based on ResNet-

TABLE IV: Results of ablation experiments considering dif-
ferent types of input data and different fusion methods. The
results show that the use of our FCF module is advantageous
to the use of stacking as a fusion method.

Feature Fusion Grasp and Unfold

Inputs Method mloU PA T Success Rate 1
RGB None 76.98% 96.8% 73%

RGB-D Stacking 81.21%  97.35% 79%

RGB-D FCF 85.13%  97.95% 84%

101 which directly regresses to graspable points instead of
identifying graspable regions first. This final method utilises
only depth data as input. The experimental results are shown
in Table [V| These results demonstrate how first identifying
graspable regions before identifying graspable points, results
in higher quality grasp point prediction.

TABLE V: Results of ablation experiments considering
different graspable point selection methods. Our proposed
method outperforms both random selection and direct iden-
tification of grasp points without segmentation.

Recognition Point Grasp and Unfold
Method Selection miloU 1 PA T Success Rate 1
Ours Ours 85.13%  97.95% 84%
Ours Random  85.13%  97.95% 57%
ResNet-101 / / / 61%

V. CONCLUSIONS

In this paper, we propose an RGB-D semantic segmenta-
tion network BiFCNet to allow robots to recognize graspable
regions of clothing. The FCF module in our network can
consider global complex features based on fractal geometry
to achieve fusion of RGB and depth data. We also propose an
adversarial strategy-based data augmentation method to train
BiFCNet, thereby reducing the cost of real data collection. A
pipeline for clothes grasping and unfolding is proposed, by
combining BiFCNet with a strategy to select graspable points
from segmentation regions based on clothing flatness mea-
sures while taking into account the grasping direction. We
evaluate BiFCNet on the public dataset NYUDv2, achieving
comparable results to the state-of-the-art models. We deploy
our model on Baxter for extensive grasping and unfolding
experiments to demonstrate the effectiveness and superiority
of our proposed method. In the future, we will consider
unsupervised methods for semantic segmentation to further
reduce the cost of data annotation.
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