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Abstract— Tactile pose estimation and tactile servoing are
fundamental capabilities of robot touch. Reliable and precise
pose estimation can be provided by applying deep learning mod-
els to high-resolution optical tactile sensors. Given the recent
successes of Graph Neural Network (GNN) and the effectiveness
of Voronoi features, we developed a Tactile Voronoi Graph Neu-
ral Network (Tac-VGNN) to achieve reliable pose-based tactile
servoing relying on a biomimetic optical tactile sensor (TacTip).
The GNN is well suited to modeling the distribution relationship
between shear motions of the tactile markers, while the Voronoi
diagram supplements this with area-based tactile features
related to contact depth. The experiment results showed that the
Tac-VGNN model can help enhance data interpretability during
graph generation and model training efficiency significantly
than CNN-based methods. It also improved pose estimation
accuracy along vertical depth by 28.57% over vanilla GNN
without Voronoi features and achieved better performance on
the real surface following tasks with smoother robot control
trajectories. For more project details, please view our website:
https://sites.google.com/view/tac-vgnn/home

I. INTRODUCTION

Tactile perception is needed for robots to understand the
objects they manipulate and the surrounding environment
they interact with [1]. Similar to visual servoing where a
robot controls the pose of a camera relative to features of
the object image, tactile servoing control likewise changes
the pose of a tactile sensor in physical contact with an object
based on the touch information [2]. For example, Fig. 1(a)
shows a tactile robotic system comprising a robot arm (Dobot
MG400) and a tactile sensor (TacTip) for surface following,
which can be considered a tactile servoing task. During such
a process, the contact between the tactile sensor and the
object is changing continuously, through which the surface
of the unknown target can be explored.

Emerging high-resolution optical tactile sensors have been
developed and integrated into robotic systems for precise
tactile perception, such as GelForce [3], GelSight [4], GelTip
[5], GelSlim [6], etc. However, their capabilities of sliding
over surfaces while maintaining contact have yet to be tested.
The most significant difference among different optical tac-
tile sensors is their material properties and construction.
GelSight-type sensors have flat sensing surfaces comprised
of a molded elastomer. Although highly effective at imaging
fine surface details, they are less suited for sliding over
surfaces because of the relatively flat and stiff elastomer [7].
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Fig. 1: Overview of the experimental setup and the Voronoi
Graph for tactile servoing. (a) shows the surface following task
conducted by a low-cost desktop robot arm (Dobot MG400) and
a tactile sensor (TacTip). (b) displays the raw image comes from
the Tactip sensor. The concept of ’tessellation’ can be illustrated in
(c). The change of Voronoi enhanced graph data (d) have strong
explainability on X, Y, and Z dimension.

Among existing low-cost optical tactile sensors, a marker-
based optical tactile sensor (BRL TacTip [8]) has shown
effectiveness in tactile servoing tasks [7]. The TacTip has a
flexible 3D-printed skin and compliance from a soft gel, and
is therefore more practical for the tactile servoing task since
it has a greater tolerance for safe contact. The pins within the
TacTip skin are biomimetic in mimicking the dermal papillae
in human skin. The key features of contact information
can be extracted through computer vision techniques, where
deep learning-based methods are playing an increasingly
significant role.

Convolutional Neural Networks (CNNs) have been widely
used to discover latent tactile features for tactile pose esti-
mation [9], and have been proven to be effective for pose-
based tactile servoing tasks [7], [10]. However, CNN-based
approaches lack interpretability [11], since they extract pixel-
level features using fixed-size filters and fail to provide
explicit information generated from tactile signals. Recently,
Graph Neural Networks (GNNs) have gained increasing
popularity due to their expressive capabilities and better
applicability to non-Euclidean data whose structures are
irregular and changeable [12], [13]. The implicit relationship
between different markers caused by touch could be well
modeled by a GNN through feature-aggregating operations
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[14]. If regarded the pins as vertices, the localization of each
pin and the relative distance between any two pins will vary
with the skin deformation. This principle is highly similar to
the definition of node and edge in a graph, which is a non-
linear data structure. Considering that a GNN has a higher
efficiency of processing unstructured data, here we explore
GNN-based architectures, aiming to construct tactile pose
estimation models for pose-based tactile servoing tasks.

The initial step of applying GNNs to the TacTip for pose
estimation comes from graph construction. The K-Nearest
Neighbors (kNN) and Minimum Spanning Tree (MST) have
been applied to construct graph data [15], [16]. However,
the methods mentioned above are computationally expensive,
and thus not applicable to real-time tactile servoing tasks.
Meanwhile, Delaunay triangulation has been used to calcu-
late triangulation for a given set of discrete points, which has
been demonstrated to have higher robustness compared with
kNN [17]. Therefore, Delaunay triangulation will be used
to support the graph construction of tactile images in this
paper. Moreover, inspired by the study of [18], [19], the cells
generated by the Voronoi tessellation can provide a surrogate
of depth information for TacTip sensors. The area change
in each cell region should be related to local tactile sensor
compression. Therefore, we expect that Voronoi features can
be used to enrich the information of graph data converted by
tactile images.

To this end, we define each pin on the TacTip as a node and
integrate the pin’s position and Voronoi feature as the overall
features for the node. The constructed graphs from tactile
images are then fed to a GNN model for pose estimation,
paving a way for the implementation of tactile servoing. We
call this proposed method as Tac-VGNN model, which has
advantages over traditional CNN and GNN models in terms
of efficiency, interpretability and generalizability.

The key contributions of this paper are listed as follows.
• A novel Voronoi Graph representation is designed for

processing the tactile information of marker-based op-
tical tactile sensors.

• A Tac-VGNN model is developed for tactile pose esti-
mation, while the performances of interpretability and
efficiency were evaluated on a surface following task.

II. METHODOLOGY

A. Tactile Graph Generation

The BRL TacTip can be fabricated at low cost using multi-
material 3D printing technology, and customized to different
biomimetic morphologies by changing the specifications of
sensor diameters, radial depths of skin, and numbers of pins.
Two TacTips with different morphologies are selected for
experiments in this paper. One TacTip has a hexagonal layout
with 127 pins (denoted as ‘Hexagonal 127’), while the other
has a round layout with 331 pins (denoted as ‘Round 331’).
After data collection, the raw tactile images obtained from
TacTip are first converted to grayscale images (see Fig. 2(a)),
then erosion and mask filtering are used for noise removal
(see Fig. 2(b)). Subsequently, the positions of pins can be
identified via blob recognition (see Fig. 2(c)).

Fig. 2: Tactile data preprocessing: (a) the cropped grayscale tactile
image; (b) application of circular mask of suitable size to remove
artifacts from lighting; (c) pin positions extracted by blob detection.

Fig. 3: Different graph representations: (a) kNN graph with redun-
dant edges; (b) Delaunay graph; (c) Voronoi graph.

After image preprocessing, two approaches are explored
for the tactile graph generation. The kNN approach can be
used to build edges between each node and its adjacent
nodes; however, redundant edges may be generated for the
nodes in the outermost circle (see Fig. 3(a)), which may
affect the aggregation performance of the GNN model. Here,
Delaunay triangulation is used to build edges instead of kNN
to improve graph building, which generates disjoint triangles
for a set of discrete points, as shown in Fig. 3(b). Details of
the tactile graph generation are given in Algorithm 1 from
steps 1-5, which build graph nodes Vi and graph edges Ej .

B. Voronoi Feature Generation

Significant information about the contact distribution and
depth of deformation is contained within the shear displace-
ment of pins/markers on the 2D tactile image. The Voronoi
tessellation [20] can help extract this valuable information
that is highly relevant to the deformation on the sensing
surface. Algorithm 1 steps 6-21 describe the details of this
procedure. The enlarged boundary Vbound is built surround-
ing Vi to facilitate Voronoi vertice Vvertice generation, where



non-convex sets, such as Hexagonal 127, need virtual nodes
Vvirtual to assist. The area of each Voronoi tessellation Si

is matched to the location of Vi, then combined to form the
new node feature Xi = (Vi, Si) which relates to the pins’ 3D
information (xi, yi, zi). Then Voronoi graph can be defined
as G(Xi, Ej), as shown in Fig. 3(c), providing valuable
input for GNN models of sensor pose. Fig. 4 illustrates
the 3D plots of Voronoi graph after interpolation. When
deformation occurs, the pin density at the contact centre
decreases (Fig. 4(b)). The difference between two Voronoi
graphs can reveal the contact location (Fig. 4(c)).

Algorithm 1: Process of Voronoi graph generation
Input: Igray, // gray image after cropped and resized

1 Mcircle = 255; // binarized mask
2 Iprocessed = AND(Igray,Mcircle); // remove noise
3 xi, yi = Blob(Iprocessed); // extracted pins position
4 Vi = (xi, yi); // graph nodes
5 Ej = Delaunay(Vi); // graph edges
6 Voutmost = Convex(Vi); // outmost nodes
7 if Vi is not Convex then
8 Vvirtual = Rotate(Voutmost); // virtual nodes
9 Vconvex = Voutmost + Vvirtual; // convex nodes

10 Econvex = Delaunay(Vconvex); // convex edges
11 Ej = Econvex(index(Vi)); // filtered edges
12 Voutmost = Vconvex; // new outmost nodes
13 end if
14 Vbound = Voutmost × Lscale; // enlarge boundary
15 Vnew = Vbound + Vi; // new nodes set
16 Vvertice, Ri = Voronoi(Vnew); // vertices and regions
17 Rselect = Ri(index(Vi)); // filtered regions
18 Vselect = Vvertice(index(Rselect)); // filtered vertices
19 Si = Area(Vselect); // tessellation area size
20 Xi = (Vi, Si) ; // new node feature
21 G = (Xi, Ej) ; // Voronoi graph

Output: G(Xi, Ej), // Voronoi-enhanced graph

To ensure the proposed method can be used for real-time
applications, it is important to reduce the computation time
for the graph generation. We compare different generation
methods using different TacTips, with results summarised
in Table I. One would normally expect the Delaunay graph
generation method to have the highest computation speed
since it generates fewer edges than the kNN-based method.
However, for the hexagonal layout of pins, due to the
convex hull computation involved in generating the graph,
the computation time is increased; with the round layout of
pins, the computation time is lower as is more usual. The
time for Voronoi graph generation is the longest but is still
within a reasonable range (< 50 ms) for real-time operation.

C. Overview of the Tac-VGNN Model

The Tac-VGNN architecture is shown in Fig. 5, inspired
by Tactile GNN [14]. A 5-layer Graph Convolutional Net-
work (GCN) is introduced for feature extraction with filter
numbers of (16, 32, 48, 64, 96), whose input is a Voronoi

Fig. 4: 3D plots of Voronoi graph after interpolation operation:
(a) shows the reference data which has no contact; (b) represents
the Voronoi graph data when deformation occurs; (c) displays the
difference between the images in the first and second column.

TABLE I: Graph Generating Comparison

TacTip Sensor Graph Type Nodes Edges Time Cost
Hexagonal 127 pins kNN (127,2) (762,2) 0.004s
Hexagonal 127 pins Delaunay (127,2) (744,2) 0.007s
Hexagonal 127 pins Voronoi (127,3) (744,2) 0.019s

Round 331 pins kNN (331,2) (1986,2) 0.010s
Round 331 pins Delaunay (331,2) (1860,2) 0.008s
Round 331 pins Voronoi (331,3) (1860,2) 0.045s

graph G(Xi, Ej). A moderate number of GCN layers avoids
the risk of over-smoothing while maintaining adequate per-
formance. After the Pooling process, the down-scaled feature
vectors are sent to 3 Fully-Connected (FC) layers for pose
prediction, whose unit numbers are 96, 64 and 2. The final
output consists of the pose estimations for vertical movement
Y and rotation angle θRoll, further explained in Fig. 6(a).

Fig. 5: The network architecture of the Tac-VGNN model.

III. EXPERIMENTS AND RESULTS ANALYSIS

A. Tactile Data Collection

During data collection, the TacTip taps repeatedly against
a surface with a range of poses augmented with the shear
motion to imitate the real contact situations [9], [21]. The
pose of each contact is recorded and saved as labels for each
tactile image. The pose parameters for surface tasks include
vertical depth Y and rotation angle θRoll (see Fig. 6(a)). A
desktop robot is utilized for the tactile data collection using
a TacTip with 331 pins (setup shown in Fig. 6(b)).



Fig. 6: Illustration of pose definition and data collection process. (a)
required pose parameter for surface servoing task; (b) an example
of data collection using a robot arm. In terms of pose {Y , θRoll},
the collection setups have a range of {[-2, 2]mm, [-30, 30]deg}.
The tap range is 5mm along Y . Shear is added in {X , θRoll} with
range {[-5, 5]mm, [-5, 5]deg}, facilitating model robustness and
generalizability. The number of collected data is 5000.

Fig. 7: Comparison of model training efficiency. The training time
per epoch based on different batch sizes of four models is shown
on the diagram. The size of four kinds of markers indicates the
GPU memory usage during training for different models.

B. Experiment Design

Four models were used for comparative studies: i) original
CNN model (ver 1), ii) customized CNN model (ver 2),
iii) GNN model and iv) Tac-VGNN model. Two CNN
models work as pose estimation baseline for comparison,
whose architecture was designed in [9], [22], called PoseNet.
The CNN (ver 1) has 5 convolutional layers and 2 fully-
connected layers, while each convolutional layer has 256
filters. The CNN (ver 2) decreases the filter number for each
convolutional layer to 48 and adds an extra fully-connected
layer, simulating the regular Tac-VGNN structure. Both GNN
and Tac-VGNN have the same architecture but different input
dimensions. A kNN-based method is used to generate the
graph for GNN model, while a Delaunay-based method is
used for Tac-VGNN model.

TABLE II: Comparison of Model Test Performances

Model NConv NFC Pose Y MAE Pose θRoll MAE
CNN (ver 1) 5 2 0.06 mm 1.20 deg
CNN (ver 2) 5 3 0.07 mm 1.25 deg

GNN 5 3 0.07 mm 1.16 deg
Tac-VGNN 5 3 0.05 mm 1.02 deg

To train each model, the tactile dataset of 5000 samples
is split randomly into a training/validation dataset (3763
samples; ∼75%) and a test dataset (1237 samples; ∼25%).
A Linux PC with Titan XP GPU is used for model training.

C. Offline Analysis

Here, we conduct comparision studies among 4 models to
evaluate their performance in terms of i) Data interpretability;
ii) Training efficiency; iii) Prediction accuracy.

1) Data Intepretability: We used different parts of the
TacTip to generate deformation at different points of a test
object, and let tap depth Y modulate the deformation level.
The images in Fig. 8 show the Voronoi graph generated
from different levels of deformation. The strong correlation
between distribution characteristics and the deformation in
reality demonstrates the interpretability of the Voronoi graph.
Here, the contact locations are clearly visible and consistent
with changes in the density distribution as shown on the
heat map. Both the surface and edge contact are clearly
visualized. The depth information can also be seen through
the color differences between a 2 mm tap and a 4 mm tap.
In comparison, image data for CNN (Fig.1(b)) and vanilla
graphs (Fig.3(a)) for GNN have insufficient intuitiveness.

2) Training Efficiency: The training efficiency of each
model was evaluated by analyzing its computing time. As
shown in Fig 7, the CNN (ver 1) was about 10 times slower
than the GNNs under all batch sizes. It also has a huge
memory footprint, due to more filters being needed within
layers, which resulted in GPU memory leaks when the batch
size was 256 and 512. The same was also seen with the
regular-sized CNN (ver 2) model, which needed more than
2- or 3 times the compute time of GNNs. In contrast, the
average training speed of two GNNs were 0.86 and 1.05
sec/epoch respectively, whose 100 epochs of training were
completed in less than two minutes. Also, the maximum
memory usages were never more than half of the available
GPU capacity (5Gb). Evidently, results show both GNNs
have significant advantages over CNNs in terms of the train-
ing cost. As expected, Tac-VGNN was less computationally
efficient than GNN due to extra feature dimensions. We also
note that the faster training time of the GNNs will greatly
benefit the hyperparameter optimization process, which can
be very time-consuming for CNNs.

3) Prediction Accuracy: To compare the prediction capa-
bilities, the test results of each model have been summarised
in Table II. NConv and NFC indicate the convolutional
and fully-connected layer number. MAE denotes the Mean
Absolute Error of pose Y and θRoll. In all cases, it was
found that the rotation angle θRoll was harder to predict
compared to the vertical pose Y , which could be due to
the added rotational shear on the Z-axis during the data
collection. Overall, the most significant difference was pose
Y between GNN and Tac-VGNN (MAE reduced 28.57%),
which indicates that the addition of the Voronoi diagram
can help learn useful depth-related features. The estimated
vertical pose Y determines the contact depth of TacTip,
which is closely related to the servoing performance and



Fig. 8: Data interpretability comparison: (a) the reference state without contact, {Y = 0mm, θRoll = 0deg}; (b,c) the TacTip central area
contacts the surface at different depths, {Y = [2, 4]mm, θRoll = 0deg}; (d,e) and (f,g) the TacTip peripheral area touches the object at
the top and bottom respectively, {Y = [2, 4]mm, θRoll = 0deg}.

Fig. 9: Tac-VGNN model test performance for surface pose esti-
mation, including perpendicular depth Y and rotation angle θRoll.

experiment safety. The test result details of Tac-VGNN are
shown in Fig. 9.

D. Online Tactile Servoing

To achieve tactile servoing, a Proportional Integral (PI)
controller was used to maintain a reference pose designed to
keep the TacTip oriented normal to the surface [21], [22].
The input to the controller was received from the model
pose predictions. A radial move ∆r and an axial rotation
∆θ were generated to move the robot based on the pose
error and servo control gain. For the experiment, 5 household
items were selected to evaluate the pose models’ performance
(Fig. 10(a)). To quantify the tactile servoing performance, we
define an evaluation metric called smoothness S. By calcu-
lating the absolute value of slope between every two points
along the trajectory, the average of all these values represents
smoothness S. The smaller the value of S, the smoother
the trajectory. We chose GNN and Tac-VGNN models for
comparative studies to focus on the differences between the
two GNN-based methods. Five experiments were conducted
using five types of objects for surface following, which are
detailed as follows.

1) Cylindrical Can: The two pose models gave successful
surface following around a cylindrical can, even though the
curvature of the surface was significantly different from the
flat surface used in training. It appears that the GNN model
led to a trajectory with the most fluctuations and the Tac-

VGNN model gave a smoother trajectory. This behavior
could originate from the differences in the prediction error
of θRoll; it is possible the Tac-VGNN model also general-
izes better to curved surface geometries. Smaller cylinders
have greater curvature and more pronounced angle changes,
which we expect would amplify the differences in model
performance during the online surface following task.

2) Cylindrical Mesh: The addition of a mesh texture onto
the cylindrical object did not noticeably degrade the model
performance when following the general shape of the surface.
Again, the Tac-VGNN gave a smoother trajectory.

3) Rigid Square: The servoing along the straight surfaces
of the square objects was the easiest task for all models.
Only small deviations were seen at the start of the surface
following. The corners were challenging because these were
not included in the training data, but both models managed
to successfully turn and continue the surface following task.

4) Beveled Prism: The beveled prism was a challenging
object because it introduced a tilt relative to the Z-axis that
was not present during the data collection and model training
(Fig. 6(a)). Both two methods encountered some fluctuations
after each corner, which is the most difficult region to predict
accurate pose as the controller transitions from circular to
linear servoing; however, the robot was able to stabilize and
generate smooth trajectories on other parts of the object.

5) Tin Box: The soft tin box was the most challenging
as it has flexible surfaces. Any elastic deformation could
give a nonlinear change to the tactile sensor that can be
misleading for control and bring instability. In Fig. 10(b),
the GNN model without Voronoi enhancement failed when
first starting to turn. As the tip moves from the corner to
the flatter surface, the elastic deformation can increase dras-
tically, which requires accurate depth predictions to provide
responsive control. It further supports the poor estimation of
GNN in terms of pose Y . In contrast, the Tac-VGNN model
performed this task successfully, experiencing transient be-
havior around corners before reaching steady control.

From our experiments, the Tac-VGNN performed well
with fewer fluctuations and more accurate pose estimates
compared to the GNN model. Though the Voronoi graph
requires a longer generation time, experimental results show
that it meets the need for real-time control. The GNN had



Fig. 10: Comparison of surface servoing with different objects: (a) real scene when tactile servoing starts; (b) the trajectories for the
GNN model, which fails when servoing around the soft tin box; (c) the trajectories for the Tac-VGNN model which is the best overall;
(d) zoomed-in comparison of trajectories and local smoothness values.

a worse performance as it lacks reliable depth information
and so cannot accurately perceive the deformation, especially
during the initial contact, leading to imprecise control of the
contact depth as the tactile sensor servos around an object.

IV. CONCLUSIONS AND FUTURE WORK

In this study, we propose a Tac-VGNN model for tactile
pose estimation and evaluated its performance on a surface
following task. This method takes full advantage of the
additional information provided by Voronoi diagram to char-
acterise the contact depth in each tessellation area. It success-
fully extends tactile graph features from 2D into 3D contact
information, which has advantages in training efficiency,
pose prediction accuracy, and increased interpretability. The

experimental results indicate that the proposed method has
generalizability to complete the surface following tasks of
objects with shapes different from those used in training.
The interpretability of Tac-VGNN also helps operators build
models of objects, such as surface or edge features, facilitat-
ing improved dexterous manipulation capabilities.

Further improvements of Tac-VGNN can be made by
leveraging shear or force information to enhance tactile
perception. Additionally, we believe this research could lead
to more practical applications, such as medical robots for
tactile palpation [23], service robots for surface cleaning or
grasping [24], industrial robots for precise assembly and
product quality control [25], and other contact-rich tasks
[26].
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